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Abstract

For its simplicity and effectiveness, star model is popular

in shape matching. However, it suffers from the loose geo-

metric connections among parts. In the paper, we present

a novel algorithm that reconsiders these connections and

reduces the global matching to a set of interrelated local

matching. For the purpose, we divide the shape template

into overlapped parts and model the matching through a

part-based layered structure that uses the latent variable to

constrain parts’ deformation.

As for inference, each part is used for localizing candi-

dates by the partial matching. Thanks to the contour frag-

ments, the partial matching can be solved via modified dy-

namic programming. The overlapped regions among parts

of the template are then explored to make the candidates of

parts meet at their shared points. The process is fulfilled via

a refined procedure based on iterative dynamic program-

ming. Results on ETHZ shape and Inria Horse datasets

demonstrate the benefits of the proposed algorithm.

1. Introduction

Matching a given shape template to an image is the

core part in many visual tasks, such as object detection

[25, 15, 16, 20], pose estimation [14], etc. Shape match-

ing is challenging especially in cluttered scene due to oc-

clusion, background noise, and the non-rigid deformation

of the object. Thus, how to cope with noises and non-rigid

deformations is vital for developing successful matching al-

gorithm.

To suppress noises, recent methods [15, 20, 16] have pro-

posed to model the contour fragment instead of the edge

points, because the former usually groups edge points of

the same object together to assist analysis. On the other

side, due to imperfect edge detection results and/or group-

ing rules, object boundary sometimes breaks into several

fragments, such as that shown in Fig.1(b) where the bound-

ary of the swan is scattered in 5 segments, which is difficult

to match with a complete shape template. In addition, a

fragment may contain edge points of several objects, which

further complicates the analysis. Alternatively, [18] pro-

posed to work from the model side by deforming the shape

template to fit the image. The limitation of [18] is that it

negelects the connections among parts.

(a) (b)

Figure 1. (a). The input image from the ETHZ dataset[7] and (b).

the extracted contour fragments.

In this paper, we consider the matching problem from

the image side where we attempt to search for the object

boundary that resembles a given shape template. In this

way, shape matching becomes as how to select a subset

of contour fragments to best explain the given template.

Since selecting the contour fragments involves a combina-

torial optimization[15, 20] process that is usually NP-hard,

we propose to locate multiple parts of the object boundary

and then assemble them into a closed boundary. As object

boundary is usually broken, localizing local parts is obvi-

ously easier than detecting the global one. Hence we divide

the shape template into parts, and the partial template could

help to pick an involved contour fragments for the object.

In case the chosen contour fragments cannot guarantee to

be the object boundary, we let the adjacent partial templates

to share certain regions. These shared regions are shown

to be effective in bridging the gap among the chosen frag-

ments, and finally linking them into the boundary.

The rest of the paper is organized as follows. After

briefly reviewing related work in Sec.2, we formulate the
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shape matching based on the layered deformation model in

Sec.3. In the subsequent Sec.4 and 5, the approximate and

refined way are derived respectively for inferencing the op-

timal match. In Sec.6 experimental evaluations and analysis

are reported followed by conclusions drawn in Sec.7.

2. Related Work

Existing shape matching literature could be roughly

grouped by part description, part structure, and part heuris-

tics. These lines are summarised in the following para-

graphs respectively.

For part description, popular choices include the shape

context [1], distance measure [25, 14, 18], local shape de-

scriptors based on adjacent segments [8, 7], etc. Among

these methods, the Chamfer distance [2] measures the Eu-

clidean distance from each point in the template to its near-

est edge point in the image. To handle background noise,

Shotton et al. [25] considered the tangent orientation, and

proposed the oriented chamfer distance that contains both

the Euclidean distance and orientation difference. Ming-

Yu et al. [14] proposed the fast directional chamfer match-

ing (FDCM) algorithm that slides the shape template over

the entire image domain. Instead of giving the approximate

distance as in [25], [14] could achieve exact solution with

the aid of dynamic programming. Since neither CM nor

FDCM possesses capability to handle complex deforma-

tions, Nguyen [18] introduced a part based chamfer match-

ing that allows each part to deform along its norm direction

and used a chain structure to model the connections among

parts.

Different from these distance measures, this paper

presents a distance measure that enforces the order of points

underlying the contour. Since contour is a point sequence,

order is an indispensable factor [24] that fits into the rep-

resentation of contour fragments and suppresses noises. To

handle the complex deformation of parts, we further intro-

duce a layered model based distance measure with latent

variable to allow deformation of each part within a linear

space.

For part structure, the chain structure is a natural choice

for describing the connections among parts because the con-

tour is a point sequence. There are many proposed meth-

ods [24, 23, 26, 18] that represent the shape by a chain of

parts and use dynamic programming for inference. In addi-

tion, Coughlan and Huiying [3] viewed each contour point

as a part, and used a fully connected network for defining

the connections among part. Leordeanu et al. [13] adopted

the same structure as [3], with inference substituted by the

spectral matching. Felzenszwalb[4] and Lu et al. [15] pro-

posed a hierarchical structure to represent the detected con-

tour fragments with rules defined on the structure. Besides

the chain structure, star model is perhaps the most popular

one and is adopted by many recent work [12, 11, 19, 25, 20].

It works by localizing the candidates of parts from the im-

age and letting the candidates to vote for the object poses.

For part heuristics, since star model often suffers from

its loose connection among parts, there are some methods

that utilize the bottom-up features to guide the search of

parts. E.g., Ferrari et al. [8, 7] explored the connectivity

among contour fragments to use their spatial adjacency to

make partial matching robust to noises. Praveen and Shi

[20] chose another heuristic which requires a contour frag-

ment to either belong to an instance or be completely ir-

relevant. These strategies effectively suppress noises and

improve the matching accuracy.

In the paper, we tackle the problem of shape template

matching from cluttered image using a star-like model. Ob-

ject part in our model is a piece of contour fragments. Dif-

ferent from the classical star model, we further introduce the

hard constraints on the adjacent parts to enforce their shared

points to meet each other. The next section elaborates our

proposed model.

3. The Layered Deformation Model

Sf

scf
si

Figure 2. Representation of shape. The blue and red segments

are two parts overlapping with each other and the green triangle

indicates the object center.

As shown in Fig.2, we represent shape by a set of con-

tours; each contour is a point sequence. For simplic-

ity, our discussion focuses on the shape with a single se-

quence, and the obtained conclusions can be straightly ex-

tended to that with multiple ones. We denote the shape by

S := {si| i = 1, · · · , |S|} where | · | gives the number of

the points. Throughout the paper, we use an bold uppercase

letter for the shape, the corresponding bold lowercase letter

for its point and |S| for the length.

In the image side, a set of contour fragments are ex-

tracted. In our general case for shape matching, the contour

fragments U usually correspond to multiple objects occlud-

ing each other. To distinguish the fragments in U, we intro-

duce a vector b that stores the index range. The range for

cth fragment is [bc, bc+1). We give an example of fragments

in Fig.1(b), where fragments are discriminated by color.

Considering that boundary of an object is usually broken

into several parts as shown in Fig.1(b), we split S into a set
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of parts and let the adjacent parts overlap with each other as

shown in Fig.2. Parts of the shape are generated by cropping

the S using a moving square centered on it. Each part itself

is a point sequence, denoted by Sf where the subscript f
is the index set. Center of the part is located on scf . In

practice, we use 0.4 for the ratio of the overlapping region

throughout the paper. It means that when two parts overlap,

they share 40% points.

3.1. Match based on Two­Stage Deformation

Matching the shape template S to the image U involves

determining a similarity transform and a one-to-one corre-

spondence. The one-to-one correspondence picks a point

from U for each point in shape template S. The selected

points give a shape instance Y. The similarity transform

is then used for eliminating the difference in scale, rotation

and displacement between the shape template S and its in-

stance Y in image. It also corresponds to the pose of shape

instance in the image. All the possible similarity transforms

construct the parameter space.

In practice, the parameter space is usually discretized by

sampling a set of scaling factors, the rotation angles and

the displacement. For sake of brevity, we neglect the in-

fluence of scale and rotation, and assume that both factors

have been optimized by enumerating the possible combina-

tions of them. Then the only factor left is the displacement.

Given a displacement vector o, there is a potential instance

with its center on o.

Searching for the one-to-one correspondence is inter-

laced with the optimization of the similarity transform. To

model their relations, a layered structure in Fig.3(a) is used.

It models the alignment between the boundary Y and the

shape template S and evaluates their difference.

Yf

ycf

o

S

U

K

(a)

Yf

ycf

zf

Wf

λ

o

S

U

K

(b)

Figure 3. (a). The shape matching model without part variation,

(b).The shape matching model with part variation.

The structure in Fig.3(a) gives a part-based way for

alignment since registration of a part is much easier than

that of the whole shape. On the other hand, it is observed

that points belonging to the same part usually share the sim-

ilar geometric properties. Considering the characteristics,

we introduce a two-layered structure to describe a part’s de-

formation. The layered structure allows each part of the

boundary to displace with respect to its center o, and shape

of each part to deform with respective to the part’s center.

In Fig.4, we use a toy example to illustrate the aligning

process. The square in Fig.4(a) gives the template; its four

corners correspond to the centers of four parts. When reg-

istering the square to the shape in Fig.4(b), the proposed

model aligns their centers first, then finds the new locations

for the four corners, and finally registers the displaced parts

of the template. The coarse-to-fine way could effectively

handle deformation since it considers the deformation from

multiple scales.

According to the structure, we can deduce the posterior

for the object center o and the boundary Y given the U and

S. It takes the form by,

p(Y,o|U,S) ∝ (1a)

p(o)
∏

f

p(ycf |o,U,S)p(Yf |ycf ,U,S) ∝ (1b)

∏

f

p(ycf |o,U,S)p(Yf |ycf ,U,S) ∝ (1c)

∏

f

exp
(

−φcf (ycf ,o)
)

exp (−φf (Yf )) (1d)

where, p(o) is assumed to be uniformly distributed on the

image domain, thus can be omitted in Eq.1c; φcf and φf in

Eq.1d are the energy for displacing the center and register-

ing the part respectively.

It is worth noting that matches of our parts are intercon-

nected with each other. Their counterparts {Yf} are the

restriction of the same boundary Y on the respective set f .

Given a point si shared by two parts Sf and Sf ′ , the point

in both parts should be deformed to the same point as shown

in Fig.4(d). Thus through the shared points, we rejoin the

connections among parts, making our model different from

the star model.

The similarity between part Yf and Sf are determined

by two potential functions. The function φcf measures the

energy for displacing center of the part as shown in Fig.4(c).

Its form is given by,

φcf (ycf ,o) =
|f |

2
‖ycf − o− scf ‖Σcf

(2)

where ‖ · ‖Σcf
is the Mahalanobis distance: (·)TΣ−1

cf
(·).

Without loss of generality, we assume that center of the

shape template S is aligned with the origin.

After the operation, we measure the energy for register-

ing two centered point sequences. Energy for the second

operation uses the similar form as chamfer distance[2]. It

measures the shape difference by calculating the total dis-

tance between them as shown in Eq.3. Because scale and

rotation have been excluded via the enumeration, unlike

chamfer distance the distance φf does not suffer from the
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Sf

scf

Sf ′

scf ′

(a)

Sf

Sf ′

(b)

Sf

Sf ′

(c)

Sf

Sf ′

(d)

Figure 4. A toy example for registration with the proposed layered structure. (a) gives the shape template that is to be aligned with the

shape in (b) where centers of both shapes are aligned. (c) gives the new locations for the four corners of the square and the displaced parts

with respected to the new locations and (d) illustrates the registration of the displaced parts of the template.

scale.

φf (Yf ) =
1

2

∑

i∈f\{cf}

[

1

ρ
dfi(yi) + δU(yi)

]

(3)

where

dfi(yi) =
∥

∥

(

yi − ycf

)

−
(

si − scf
)∥

∥ (4)

The distance measure considers the influence of the miss-

ing correspondence, and δU is an indicator function which

equals to 0 when ycf ∈ U, and otherwise 1. It penalizes

the case that si misses its counterpart in U. That is to say, it

requires that if the match point for si exists, then si should

be a point in U. The constraint forces the Y to follow the

boundary of U.

3.2. Shape Match with Part Variation

We introduce a latent model for the part, allowing shape

of each part to deform within a linear space spanned by a

set of shape bases. The latent model is shown in Fig.3(b)

with its mathematical form in Eq.5.

p(Y, {zf},o|U,S) ∝ (5a)
∏

f

p(ycf |o,U,S)p(Yf |ycf , zf ,Wf ,U,S)p(zf |λ) (5b)

∝
∏

f

e−φcf
(ycf

,o)e−φf (Yf ,zf ) exp

(

−
‖zf‖

2

2λ

)

(5c)

In the equation, φcf keeps the same, and φf is modified to

incorporate the latent variable and takes the form in Eq.6.

φf (Yf , zf ) =
1

2

∑

i∈f\{cf}

[

1

ρ
dfi + δU(yi)

]

(6)

The distance dfi changes to,

dfi(yi, zf ) =
∥

∥

(

yi − ycf

)

−
(

si +Wfizf − scf
)∥

∥ (7)

The matrix Wfi contains a set of shape bases for the ith
point. Size of the matrix is 2×L, and L is the length of the

latent variable zf .

For each cropped part S
(0)
f , we randomly generated a set

of affine transforms and operate them on the part. After

that, a set of samples {S
(i)
f } are on hand, which are further

analyzed with the principle component analysis (PCA), re-

sulting in the mean shape Sf and a set of shape basis Wf .

4. Approximate Match via Iterative DP

To search for optimal matching is now reduced to maxi-

mum a posterior estimation that can be further transformed

to an energy-minimization in Eq.8.

argminY,{zf}

∑

f

Ef (Yf , zf ,o) (8)

The definition for Ef is given by Eq.9

Ef (Yf , zf ,o) = φcf (ycf ,o)+φf (Yf , zf )+
‖zf‖

2

2λ
(9)

4.1. Pose Estimation through Voting

Due to noises and the descriptive capbability of the

model, it is very difficult to find a global solution Y for

the problem in Eq.8. To approach an approximate solution,

we neglect the connections among parts of Y and deal with

each part independently. The relaxation reduces the original

problem to a set of subproblems in Eq.10.

min
Y

f

f
,zf

Ef (Y
f
f , zf ,o) (10)

It is worth mentioning that the part Y
f
f involved in Eq.10 is

different from Yf . The new notation is not the restriction

of whole shape Y on the subset f ; it does not require that

y
f
i must equal to y

f ′

i for a shared point indexed by i.
The graph structure underlying Ef is then explored for

the problem in Eq.10. It tells that Y
f
f is independent of
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the pose parameter conditioned on the center. Given the as-

sumption that the center point of a part is pinned on uj , the

contour fragment can be optimized ignoring the influence

of the pose. The conclusion leads to the decomposed mini-

mization in Eq.11.

min
j

φcf (uj ,o)+ min
zf ,Y

f

f
:yf

cf
=uj

φf (Y
f
f , zf )+

‖zf‖
2

2λ
(11)

Center point ycf in Eq.11 is forced to be on some edge point

uj . For each uj , an optimal contour fragment centered on it

can be optimized, resulting in an optimal value φf |uj
. Min-

imization with respect to j then takes the form as,

min
j

φcf (uj ,o) + φf |uj
(12)

Problem in Eq.12 belongs to the generalized distance

transform of sampled function. When Σcf in the potential

function φcf is diagonal, fast algorithm supplied in [6] is

applicable. For each part f , the minimization outputs a vot-

ing map for instance centers. By summing the voting maps

of different fs, we reach a map for the object that indicates

how possible the object is located on o. By thresholding the

map, a set of potential candidates for the object poses are

on hand.

4.2. Iterative DP for Contour Fragments

The left piece for the puzzle is the calculation of φf |uj
.

This involves the optimization w.r.t. Y
f
f and zf under the

constraint that center of the fragment is pinned on uj . Be-

fore describing the procedure, we summarize the problem

in Eq.13 where φf is substituted by its definition.

min

∑

i∈f\{cf}

[

1
ρ
dfi(y

f
i , zf ) + δU(yi)

]

2
+

‖zf‖
2

2λ
(13)

Solution for the problem is achieved by an iterative loop

alternating between the contour fragment and the latent

variable. It comprises: (1) the gradient descent for zf given

current estimate of Y
f
f ; and (2) the dynamic programming

for Y
f
f given the estimate of zf .

Given Y
f
f , latent variable zf is optimized by the steepest

descent. The partial derivative w.r.t. zf is calculated by

Eq.14.

∂

∂zf
=

1

2ρ

∑

i∈f\{cf}

∂dfi(y
f
i , zf )

∂zf
+

zf

λ
(14)

With the gradient, gradient descent iterates until a local op-

timum is found.

When latent variable is fixed, the optimization defined in

Eq.13 reduces to the problem in Eq.15.

min
Y

f

f
:yf

cf
=uj

∑

i∈f\{cf}

[

1
ρ
dfi(y

f
i , zf ) + δU(yi)

]

2
(15)

If we neglect the fact that contour fragment is a point se-

quence, the optimization minimizes each i independently

for a point y
f
i ; it searches for a point from the contour frag-

ment that minimizes the distance dfi(y
f
i , zf ).

The optimization breaks the order of the contour frag-

ment because it cannot guarantee that selected points {yf
i }

make a point sequence. The goal of the optimization here is

to find partial boundary of the object, which is obviously a

point sequence. Thus order is an indispensable factor. Since

the fragment holding uj is also a point sequence, the prob-

lem can be reduced to find a subsequence from the fragment

which has minimum distance to the centered Sf . The op-

timization can be fulfilled by dynamic programming (DP)

proposed by Scott and Nowak[24]. Their DP can handle

the case that some points in the sequence may loose their

matches. DP then starts from uj , and outputs an optimal

point sequence. For accuracy, the process can jump to the

fragments adjacent to the one holding uj .

For initialization, we set zf to 0 and start with the opti-

mization of Y
f
f . The refinement then alternates between the

latent variable zf and the part Y
f
f . Our experiments show

that after 2−3 epochs, the process converges and we choose

2 for all parts.

5. The Matching Refinement

The way that optimizes each part independently neglects

the connections among parts; the localized parts often lead

to the inconsistent case as shown in Fig.5. Given a point

si shared by two parts: f and f ′, the case shows that the

matched points y
f
i and y

f ′

i cannot meet each other.

si

iy
f
i

i

y
f ′

i

Figure 5. The defects led by the independent optimization of parts.

To resolve the inconsistency, we explicitly require that

part Y
f
f must equal to the restriction of some shape Y on

the set f . The matching problem with added constraints

then takes the form as,

min
∑

f Ef (Y
f
f , zf ,o)

s.t. Y
f
f = Yf , ∀f

(16)

The Dual decomposition (DD) [10, 22] introduces a set of

the Lagrangian multipliers, each for a constraint. It then
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gives the Lagrangian dual function as,

g({λf}) = min
{Yf

f
,Y}

∑

f

[

Ef (Y
f
f , zf ,o) + (Yf

f −Yf )
Tλf

]

(17)

where λf is the vector for the Lagrange multipliers for the

constraints involving Y
f
f . After eleminating the Y, the

original problem is reduced to a set of slaves and a single

master as shown in Eq.18.

{

gf ({λf}) = min
Y

f

f

Ef (Y
f
f , zf ,o) + (Yf

f )
Tλf

max{λf}∈Λ

∑

f gf ({λf})

(18)

In our shape matching, each slave corresponds to a partial

matching problem, and the master adjusts the multipliers in

the constrained space Λ to restrain the slaves, making the

localized parts meet each other at their shared points. To

achieve the same effects, we propose a modified slave in

Eq.19.

min
Y

f

f
,zf

Ef (Y
f
f , zf ,o)+

γt
2

∑

i∈f

∑

f ′∈Fi\{f}

‖yf
i −y

f ′

i ‖ (19)

Given a shared point yi, Fi is the set of all the segments

containing the point. γt can be viewed as multiplier, con-

trolling the influence of the added term. The slave makes

its part to be consistent with its adjacent fragments at the

shared points. It uses the shared points to rejoin the dif-

ferent parts. During the optimization, an iterative process is

then implemented where parts of boundary Y are sequential

refined with the value of γt gradually tuned.

5.1. Matching Refinement for Parts

After some rearrangement of the modified slave, we

can follow the same procedure invented in the approximate

stage to find the optimal part. This is fulfilled by absorbing

functions of the multipliers into the potential functions. To

show, we rewrite the modified potential function φ̃cf and φ̃f

in Eq.20,























φ̃cf (y
f
cf
,o) = φcf (y

f
cf
,o)+

γt

2

∑

f ′∈Fcf
\{f} ‖y

f
cf

− yf ′

cf
‖

φ̃f (Y
f
f , zf ) = φf (Y

f
f , zf )+

∑

i∈f\{cf}
γt

2

∑

f ′∈Fi\{f}
‖yf

i − y
f ′

i ‖

(20)

For the modified potential φ̃f , the added term is absorbed

in its distance metric, resulting in the modified distance in

Eq.21.

d̃fi(yi, zf ) = dfi(yi, zf )+
γt
2

∑

f ′∈Fi\{f}

‖yf
i −y

f ′

i ‖ (21)

With the modified distance, the iterative DP is also appli-

cable. However, since the estimated parts {Yf
f } change

with the pose, the modified potential function φ̃f becomes

pose dependent while the original φf is independent of the

pose. Thus, the optimization of the modified potential φ̃f

is pose specific, subsequently the refinement can only be

implemented pose by pose.

In one epoch for the refinement, all the parts are updated

in turn. Experiments show that the procedure usually con-

verges in 8 to 10 epochs. In the experiments, we chose 8 for

all refinements.

6. Experimental Evaluation

6.1. Experimental Setup

The experiments were conducted on the ETHZ shape

dataset[7] and the INRIA horses[7] dataset, and we fol-

lowed the same experimental setup in [14, 18] that used a

single template to detect and localize all its instances. The

shape template is preprocessed such that each has a diago-

nal length of 256. The two datasets have six classes, and all

come with the edge map by Berkeley edge detector [17]; to

make the comparison fair, we used the same detector which

finds the salient boundaries of the object while suppressing

the noises.

Parameters for the matching were determined empiri-

cally; in fact, our method works for a wide range of param-

eters. Throughout the experiments, we make ρ equal to 20
and the Σcf = diag([2002, 2002]). Parts are generated by

cropping the shape template with the moving squares cen-

tered on the contour. In experiments, we test three different

sizes: 48, 64, and 96 for the square.

6.2. Comparison

We compared our algorithm against oriented chamfer

matching (OCM) [25], methods by Ferrari et al. [8, 7], the

fast direction chamfer distance matching (FDCM)[14], and

chamfer template matching (CTM)[18]. All the involved

algorithms adopted 0.2 Intersection over Union (IoU) to de-

termine an instance. Given an instance, we have its one-to-

one correspondence from the shape template to edge map

and thus get a set of edge points, i.e. Y. The bounding box

for the instance is then generated by calculating the bound-

ing rectangle of these selected points.

We show the false positive per image (FPPI) vs. detec-

tion rate (DR) in Fig.6. The proposed method achieved the

best performance in 4 out of 6 classes. For the bottles class,

the proposed algorithm is slightly worse to the more recent

CTM[18]. For the INRIA horses class, the detection accu-

racy of the proposed algorithm is almost same as the method

by [7] that uses half of the samples for training. It slightly

outperforms the method by [7] when FPPI is less than 0.5
and is slightly worse when FPPI goes beyond 0.5. In Fig.7,

we give some localized results; among the localized false

positives, some are very similar to our shape template.
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Figure 6. The FPPI vs DR curves for ETHZ dataset. All methods for comparison used the 0.2 overlapping ratio. 64 is the size of the square

for generating parts; w stands for the match with part variation and wo for match without the part variation.

Table 1. Comparison for the detection rate for 0.3/0.4 FPPI under 0.5 overlapping ratio.

Applelogos Bottles Giraffes Mugs Swans Mean

Proposed(48/w) 0.977/0.977 0.891/0.909 0.747/0.747 0.924/0.924 1/1 0.908/0.912

Proposed(48/wo) 0.977/0.977 0.946/0.946 0.725/0.747 0.879/0.939 1/1 0.905/0.922

Proposed(64/w) 1/1 0.964/0.982 0.758/0.758 0.849/0.849 0.970/0.970 0.908/0.912

Proposed(64/wo) 0.977/0.977 0.909/0.946 0.571/0.582 0.833/0.864 0.939/0.939 0.846/0.862

Proposed(96/w) 0.932/0.955 1/1 0.703/0.736 0.833/0.849 0.939/0.939 0.882/0.896

Proposed(96/wo) 0.886/0.909 0.964/0.964 0.517/0.539 0.788/0.803 0.939/0.939 0.819/0.831

Proposed(best) 1/1 1/1 0.758/0.758 0.924/0.924 1/1 0.936/0.936

Srinivasan[20] 0.95/0.95 1/1 0.872/0.896 0.936/0.936 1/1 0.952/0.956

Wang[27] 0.90/0.90 1/1 0.92/0.92 0.94/0.94 0.94/0.94 0.940/0.940

Maji[16] 0.95/0.95 0.929/0.964 0.896/0.896 0.936/0.967 0.882/0.882 0.919/0.932

Riemenschneider[21] 0.933/0.933 0.970/0.970 0.792/0.819 0.846/0.863 0.926/0.926 0.893/0.905

Fezenswalb[5] 0.95/0.95 1/1 0.729/0.729 0.839/0.839 0.588/0.647 0.821/0.833

Ferrari[7] 0.777/0.832 0.798/0.816 0.399/0.445 0.751/0.8 0.632/0.705 0.671/0.72

Gu[9] 0.906/- 0.948/- 0.798/- 0.832/- 0.868/- 0.871/-

For further evaluation, we compare the proposed algo-

rithm against some state-of-art methods through the detec-

tion rate at 0.3/0.4 FPPI. In Tbl.1, we summarized the re-

sults. All the involved algorithms adopted the PASCAL

standard that uses 0.5 IoU. When best performance of our

algorithm is considered, it gets the highest detection ac-

curacy in 3 out of 6 classes. Our overall performance is

very close to Wang et al.’s method [27] and slightly out-

performed by Srinivasan et al.’s method [20]. On the other

side, both Wang et al.’s [27] and Srinivasan et al. [20] re-

quire a training procedure for improving the descriptive ca-

pability of their shape models. Besides, Srinivasan et al.

[20] have to combine the discriminative model with the de-

scriptive model to further improve the accuracy. To con-

clude, the proposed algorithm achieves the comparable re-

sults with the state-of-the-art methods.

6.3. Influence of the Parameters

In the section, we discuss the influence of parameters

from the use of refinement, the part variation, and size

of the part and the centers of parts. First, experiments

with/without connectivity priors have shown that the prior

is critical for resolving the inconsistent case in the approxi-

mate stage and help pruning false positives, which leads to

clear increase on detection accuracy. As reported in Tbl.2,

the average precision (AP) for matching with refinement is

significantly higher than that without the refinement.

The use of the part variation also benefits the model’s
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Figure 7. The localization results. (For left to right row: ”Applelo-

gos”, ”Bottles”, ”Giraffes”, ”Mugs”, ”Swans”, ”INRIA Horses”.)

Last row shows some examples of false positives.

Table 2. AP for match with and without refinement (0.5 IoU)

recorded by “R” and “NoR” respectively.

48/w 64/w 96/w

NoR R NoR R NoR R

Applelogos 0.73 0.91 0.80 0.95 0.73 0.87

Bottles 0.82 0.82 0.77 0.84 0.72 0.92

Giraffes 0.60 0.65 0.56 0.65 0.49 0.62

Mugs 0.52 0.84 0.50 0.75 0.58 0.70

Swans 0.64 0.89 0.71 0.90 0.78 0.87

Horses 0.49 0.79 0.43 0.76 0.34 0.64

adaption to deformations, but it is less significant than the

refinement. As shown in Tbl.1, matching with the variation

gets higher detection rate than that without the part varia-

tion in nearly every case. The ’Bottles’ under size 48 is the

only exception. For ’Bottles’, when the square size equals

to 48, majority of the cropped parts are the straight lines.

Use of the part variation makes the discriminative capabil-

ity of parts degenerate. For others, part variation enlarges

the deformation of the parts; and meanwhile, does not sac-

rifice the discriminative capability.

As for the size of the square, it determines the length

of the cropped fragments, and subsequently influences the

matching performance. Our matching algorithm gets higher

detection performs when the size is 48 and 64. With the

increase of the size, the cropped fragments has a higher

risk that they cannot distribute on a single contour fragment

and subsequently decrease the matching accuracy. This is

the reason why smaller size gives relatively higher perfor-

mance. But it does not mean that smaller is better. With the

decrease of the size, we also face a risk that parts lose their

discriminative capability just like the ’Bottles’ discussed

before. If the size is too small, parts cannot discriminate

the contour fragments belonging to the object from those

of the backgrounds. Thus, this parameter should carefully

determined though it works in a wide range.

For centers of parts, they do affect our detection accu-

racy. To evaluate their influence, we use the same part size

of 48 and generate four sets of centers, denoted by s1− s4.

The mean values of the average precision on the ETHZ

dataset are 0.824, 0.813, 0.805 and 0.791 respectively. The

variation mainly comes from two sources. The first is that

the overlapping strategy will make some boundary points

be counted more times than the others. Besides, due to the

nature of shape, some parts are more salient than the other.

Thus, when centers of the parts change, their covered points

vary, which subsequently leads to the variation.

Besides, we report the time-complexity of the proposed

algorithm. It is runned on a desktop with 4G memory and

Intel Core i7 2.93GHz cpu. The proposed algorithm is im-

plemented in Matlab with some codes written in C. For all

the 6 classes, we do not consider rotation; while for scaling,

we search each image with 10 scales that distribute equally

in [0.3,1.8]. For each scale s, the detected contour frag-

ments U are rescaled with a factor of 1/s to eliminate the

scale difference between the template and image. The aver-

age processing time of an image is 68s. Specifically, gen-

eration of contour fragments uses about 2-3s, the approxi-

mation stage takes around 13s, and the refinement is about

53s. When part variation is considered, another 4 seconds is

used. The running times under different sizes of the square

are similar because while the increase of the size will de-

crease the number of the parts, it will also increase the num-

ber of points in each part, such that the two factors counter

affect each other, and the overall running time keeps similar.

7. Conclusion

In the paper, we supply a solution for matching shape in

the cluttered images. It works with contour fragments, picks

the involved ones with the aid of the shape template, and

links them into the boundary. The algorithm noted the fact

that an object’s boundary is usually scattered in several con-

tour fragments. In response to it, it divides the shape tem-

plate into overlapped parts. Each part is used for localizing

candidates by solving a partial matching problem. Thanks

to the contour fragments, the partial matching is robust to

noises, but it suffers from the loose connection among the

localized candidates. Thus, a refined procedure is utilized

to resolve the inconsistency among candidates and makes

the partial matching more reasonable, that is verified by the

experiments. In the further, we will extend the model to

object segmentation, since resolved boundary gives a rough

approximation to the object boundary.

Acknowledgements: This work was supported by Natural

Science Foundation of China under Grant NO. 61305051

and 61328303.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. PAMI, 2002. 2

1616



[2] G. Borgefors. Hierarchical chamfer matching: a parametric

edge matching algorithm. PAMI, 1988. 2, 3

[3] J. Coughlan and H. Shen. Shape matching with belief prop-

agation: Using dynamic quantization to accomodate occlu-

sion and clutter. In CVPRW, 2004. 2

[4] P. F. Felzenszwalb. Hierarchical matching of deformable

shapes. In CVPR, 2007. 2

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. PAMI, 2010. 7

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Distance trans-

forms of sampled functions. Technical report, Cornell Com-

puting and Information Science, 2004. 5

[7] V. Ferrari, F. Jurie, , and C. Schmid. From images to shape

models for object detection. IJCV, 2010. 1, 2, 6, 7

[8] V. Ferrari, T. Tuytelaars, and L. Van Gool. Object detection

by contour segment networks. In ECCV. 2006. 2, 6

[9] C. Gu, J. Lim, P. Arbelaez, and J. Malik. Recognition using

regions. In CVPR, 2009. 7

[10] N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy

minimization and beyond via dual decomposition. PAMI,

2011. 5

[11] P. M. Kumar, P. Torr, and A. Zisserman. Extending pictorial

structures for object recognition. In BMVC, 2004. 2

[12] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-

egorization and segmentation with an implicit shape model.

In ECCV workshop on statistical learning in computer vi-

sion, 2004. 2

[13] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local

appearance: Category recognition from pairwise interactions

of simple features. In CVPR, 2007. 2

[14] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa.

Fast directional chamfer matching. In CVPR, 2010. 1, 2, 6

[15] C. Lu, L. Latecki, N. Adluru, X. Yang, and H. Ling. Shape

guided contour grouping with particle filters. In ICCV, 2009.

1, 2

[16] S. Maji and J. Malik. Object detection using a max-margin

hough transform. In CVPR, 2009. 1, 7

[17] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-

ural image boundaries using local brightness, color, and tex-

ture cues. PAMI, 2004. 6

[18] D. T. Nguyen. A novel chamfer template matching method

using variational mean field. In CVPR, 2014. 1, 2, 6

[19] A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment-

model for object detection. In ECCV. 2006. 2

[20] Q. Z. Praveen Srinivasan and J. Shi. Many-to-one contour

matching for describing and discriminating object shape. In

CVPR, 2010. 1, 2, 7

[21] H. Riemenschneider, M. Donoser, and H. Bischof. Using

Partial Edge Contour Matches for Efficient Object Category

Localization. In ECCV, 2010. 7

[22] M. Salzmann. Continuous inference in graphical models

with polynomial energies. In CVPR, 2013. 5

[23] F. Schmidt, D. Farin, and D. Cremers. Fast matching of pla-

nar shapes in sub-cubic runtime. In ICCV, 2007. 2

[24] C. Scott and R. Nowak. Robust contour matching via the

order-preserving assignment problem. TIP, 2006. 2, 5

[25] J. Shotton, A. Blake, and R. Cipolla. Multiscale categorical

object recognition using contour fragments. PAMI, 2008. 1,

2, 6

[26] Y. Su and Y. Liu. A voting scheme for partial object extrac-

tion under cluttered environment. IJPRAI, 27(2):1–37, 2013.

2

[27] X. Wang, X. Bai, T. Ma, W. Liu, and L. J. Latecki. Fan Shape

Model for Object Detection. In CVPR, 2012. 7

1617


