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Abstract

Despite their enormous success in solving hard combi-

natorial problems, convex relaxation approaches often suf-

fer from the fact that the computed solutions are far from

binary and that subsequent heuristic binarization may sub-

stantially degrade the quality of computed solutions. In this

paper, we propose a novel relaxation technique which incor-

porates the entropy of the objective variable as a measure

of relaxation tightness. We show both theoretically and ex-

perimentally that augmenting the objective function with an

entropy term gives rise to more binary solutions and con-

sequently solutions with a substantially lower optimality

gap. We use difference of convex function (DC) program-

ming as an efficient and provably convergent solver for the

arising convex-concave minimization problem. We evalu-

ate this approach on three prominent non-convex computer

vision challenges: multi-label inpainting, image segmenta-

tion and spatio-temporal multi-view reconstruction. These

experiments show that our approach consistently yields bet-

ter solutions with respect to the original integral optimiza-

tion problem.

1. Introduction

Numerous problems in vision – including two-region

and multi-region image segmentation, stereo- and multi-

view reconstruction or optical flow estimation – can be cast

as variational multi-labeling problems of the form

u
∗ = argmin

u

E(u), (1.1)

with a labeling function u : Ω! Γ from a domain Ω to a la-

bel space Γ. The domain and the label space can be both dis-

crete or continuous. Numerous works have proposed meth-

ods for efficiently computing solutions to the above integer

problem. A common approach [21] is to rephrase the above

integer problem as a binary labeling problem with an indi-

cator variable u : Ω! {0, 1}|Γ|:

u∗
bin = argmin

u:Ω→{0,1}|Γ|

E(u) , (1.2)

possibly subject to additional constraints. While this binary

formulation often leads to a convex energy E, the binary

constraint makes the optimization domain non-convex and

generally yields a hard combinatorial problem.

Relaxation. The central idea of many convex relaxation

techniques is to drop the integrality constraint and consider

the relaxed convex problem:

u∗
rel = argmin

u:Ω→[0,1]|Γ|

E(u). (1.3)

Solving this problem is usually much easier, but its solution

u∗
rel can be non-binary and consequently a rounding scheme

needs to be applied to obtain a binary solution.

Rounding. In general, the rounded solution can be very

different from the globally optimal solution u∗
bin and may

not even be a local minimum of the binary objective (1.2).

The simplest rounding scheme is to select the label with

the highest likelihood. We will detail the rounding schemes

later when looking at certain problem instances of (1.3).

For certain 2-label problems, a thresholding theorem

[17] may assure provably optimal binary solutions upon

simple thresholding of the relaxed solution u∗
rel. For more

general multi-label problems the computed solutions are of-

ten far from binary and rounding may drastically increase

the energy and the corresponding a-posteriori optimality

bound (the energetic difference between rounded and re-

laxed solution). Moreover, a number of works incorporate

additional constraints on the solution in order to constraint

the volume/area [22, 27], or higher order moments [8] of

the resulting segmentation, or to enforce size proportions of

respective segments [15]. While these constraints are mean-

ingful for the binary problem (1.2), they often change their

physical meaning in the relaxed setting (1.3).

Novel relaxation scheme. In order to cope with the above

mentioned problems we propose to augment problem (1.1)

with an additional term which promotes the integrality of

the solution during optimization and thereby leads to better

solutions with substantially smaller optimality gaps. The

key idea is to control the integrality of the objective vari-

able by means of Shannon’s entropy. Entropy minimization

has been used in several computer vision applications in-

cluding shadow removal [4] and image segmentation [23]
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where it is used as a general color consistency criterion for

separating histograms. To the best of our knowledge this

work is the first to apply entropy minimization on the label-

ing function u. The augmented relaxed problem composes

of the original labeling problem and the additional entropy

term H weighted by ✓ 2 R≥0 and reads as follows:

u∗ = argmin
u:Ω→[0,1]|Γ|

E(u) + ✓H(u). (1.4)

This generalizes the convex relaxation problem (1.3), ob-

tained by setting ✓ = 0. Likewise, by taking ✓ ! 1 we

also recover (1.2) since the entropy term becomes an inte-

gral constraint. Unfortunately problem (1.4) is not convex

anymore for ✓>0 and obtaining the global minimum of its

relaxed version is generally not possible anymore. Luckily,

problem (1.4) exhibits a special structure: it decomposes

into a convex function E(·) and a concave function ✓H(·)
being equivalent to a difference of convex functions (DC).

This makes formulation (1.4) amenable to the DC program-

ming approach [25] which guarantees to find a stationary

point of the objective. Although there is no guarantee for

finding a globally optimal solution, we show that the ob-

tained non-rounded results are more binary than the results

of state-of-the-art relaxation methods. In this paper, we fo-

cus on spatially continuous variational approaches as they

are easily parallelizable and do not suffer from metrication

errors in contrast to their discrete counterparts [7]. Though,

our approach might also be applicable in a discrete setting.

1.1. Contributions

Our contributions can be summarized as follows:

• We propose to use the entropy of the objective variable

to empirically measure the tightness of a relaxed solu-

tion. We enhance the integrality of solutions by jointly

optimizing the objective function and the entropy.

• We propose to use a provably convergent algorithm

for solving the arising convex-concave problem which

combines DC programming and a state-of-the-art first

order solver.

• We show theoretically and experimentally that our

method provides solutions which are more integral

and exhibit a tighter energy bound than state-of-the-

art convex relaxation methods. Our approach thus pro-

motes simple rounding schemes.

• The proposed entropy augmentation does not change

the algorithm complexity. In all experiments we ob-

served an improved convergence behavior and runtime

speed-ups up to a factor of two.

• We demonstrate the effectiveness of our approach

on several computer vision applications including

multi-label image inpainting, image segmentation and

spatio-temporal multi-view reconstruction.

2. Shannon’s Entropy

Originally formulated for discrete random variables

Shannon’s information entropy is a measure of uncertainty.

Suppose that u : Ω ⇢ R
d ! [0, 1]|Γ| is a soft labeling func-

tion such that 8x 2 Ω :
P|Γ|

`=1 u`(x) = 1. Interpreting u(x)
as a probability distribution on each x 2 Ω we can apply

information entropy on a labeling problem by directly im-

posing it on the indicator variable u. The total entropy of a

labeling function can be written as follows:

H(u) =

Z

Ω

−

|Γ|
X

`=1

u` log u` dx , (2.1)

which is an integral of a point-wise concave entropy mea-

sure in each x 2 Ω. For brevity we will refer to the total

entropy as entropy for the rest of the paper.

3. Solving the Convex-Concave Program

In the field of variational convex relaxation approaches,

non-convex optimization has gained tremendous popular-

ity in recent years. However most of these works focus

on realizing non-convex regularizers [18, 13]. We make

use of DC programming, dating back to a seminal work

by Tao et al. [25] which generalizes subgradient algorithms

for convex maximization. The principle of minimizing the

difference of convex functions heavily relies on concepts

from convex optimization and especially DC duality [26].

Closely related to DC programming is the so called convex-

concave procedure (CCCP) described later in [29] though

it assumes differentiability of the objective function. In [6]

DC programming is applied to a QP relaxation of MAP in-

ference in order to cope with the non-convex objective.

3.1. DC Programming

DC programming deals with solving a non-convex prob-

lem of the following form:

min
u
{g(u)− h(u)} , (3.1)

where g(u) and h(u) are convex functions. In order to solve

(3.1) we make use of a simplified form of the DC algorithm

[24]. Based on DC duality and the KKT conditions for DC

programs, the algorithm generates the following sequences

vk 2 @h(uk) and uk+1 2 @g∗(vk) which guarantee to con-

verge to a critical point. The overall DC algorithm is il-

lustrated in Algorithm 1, where g∗ denotes the Legendre-

Fenchel conjugate of g.

3.2. Solving monotone inclusions

Note that since uk+1 2 @g∗(vk) , vk 2 @g(uk+1) ,
0 2 @g(uk+1)− vk and since g a convex, we solve a mono-

tone inclusion problem in each iteration. Hence choosing
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Algorithm 1 The DC Algorithm

Initialize u0 2 dom g.

while not converged do

Choose vk 2 @h(uk)
Choose uk+1 2 @g∗(vk)
k  k + 1

end while

uk+1 2 @g∗(vk) in algorithm 1 amounts to solving the fol-

lowing convex optimization problem:

uk+1 = argmin
u

g(u)− hvk, ui (3.2)

In order to be able to solve problem (1.4) using DC pro-

gramming we make the following identifications:

g(u) = E(u) + δUrel
(u) h(u) = ✓H(u) , (3.3)

where δUrel
(u) denotes the characteristic function:

δUrel
(u) =

(

0 if u(x) 2 [0, 1] 8x 2 Ω,

1 otherwise.
(3.4)

Most variational problems g(u) are large scale and non-

smooth and therefore not easily solvable using standard

solvers. To this end, we use the state-of-the-art primal-dual

algorithm of Pock et al. [2] which solves a saddle point for-

mulation of problem (3.2) (further details in the supplemen-

tary material). Using Algorithm 1 we can solve any prob-

lem of the form (1.4). For binary tomographic reconstruc-

tion, [28] proposed a similar DC programming framework

for implicit rounding. In contrast to the entropy term which

is well-grounded on information theory and naturally gen-

eralizes to higher dimensions, they use a negative quadratic

term as a heuristic to impose integrality of the solution.

4. Experiments

We consider three problem instances which exhibit non-

tight relaxations. For all experiments we initialized function

u in our algorithm with a zero or random function while

choosing the entropy parameter as ✓ 2 [0.01, 0.5].

4.1. Multi-label Image Segmentation

In variational multi-label image segmentation one as-

sumes a continuous domain Ω and a discrete label space

Γ with |Γ| ≥ 2. The image domain Ω ⇢ R
2 is to be

segmented into |Γ| pairwise disjoint regions Ω` which are

encoded by the label indicator function u : Ω ! {0, 1}|Γ|,
u`(x) = 1x∈Ωl

. The overall problem can be stated as a min-

imal partition problem. To find a solution to such a problem

augmented with an entropy term we solve the following op-

timization problem:

min
u

|Γ|
X

`=1

Z

Ω

h

λu`(x)%`(x) +
1

2
|Du`|

i

dx+ ✓H(u)

s.t.

|Γ|
X

`=1

u`(x)=1, u(x) ≥ 0 8x 2 Ω (4.1)

The data fidelity term %l(x) : Ω ! R assigns a color-

based pixel-wise cost to each pixel x for belonging to re-

gion `. Expression Du in the smoothness term denotes the

distributional derivative of u throughout the paper. It en-

courages regularity of the obtained partitions in the solution

by minimizing its boundary length and is chosen as pro-

posed by Zach et al. [30]. Although the relaxation of Cham-

bolle, Cremers and Pock (CCP) [1] of the boundary length

is tighter compared to Zach et al. [30], its complexity grows

quadratically with the number of labels, making it impracti-

cal for large scale problems with many labels. Note that the

energy functional (4.1) is a convex-concave program which

can be solved by applying the DC algorithm 1. Figure 1 il-

lustrates that despite the less tight relaxation (4.1) we obtain

a drastic improvement of the solution by augmenting the op-

timization problem by an entropy term. We observe that for

the inner optimization problem in Algorithm 1, only a few

iterations (1-5) are necessary for convergence. As a result,

we obtain tight solutions even with the simple relaxation of

Zach et al. [30] without the need to drastically increase the

runtime by using a tighter CCP relaxation.

Rounding. To compute a binary solution from the re-

laxed one, we select the most likely label point-wise, i.e.

8x : ubin(x) = êj with j = min
{
argmax`(u

∗
rel(x))`

 
and

êj being the j-th unit vector in the space {0, 1}|Γ|. Note

that Lellmann et al. [10] proposed a probabilistic round-

ing scheme which provides an a-priori bound on the energy.

However it is slower and yields slightly degraded results

in practice (see [9] for a comparison on the triple-junction

problem).

4.1.1 Non-Uniqueness of the Solution

The energy (4.1) without H(u) is not strictly convex and

thus admits several binary solutions. If the relaxation is not

tight then convex combinations of distinct binary solutions

may get assigned lower energies which in turn promotes

non-binary solutions. This is especially visible for larger

numbers of labels. Figure 2 shows that already with 4 labels

the CCP relaxation tends to produce a convex combination

of binary solutions which is a valid minimizer in the case of

the relaxed problem as we show in Proposition 4.1.
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Input Zach [30] CCP [1] Zach+Entropy CCP+Entropy

Figure 1. Inpainting using different relaxations of the Potts model with (θ = 0.02) and without (θ = 0) entropy. The visualized entropy

shows that the joint minimization of the entropy yields more binary solutions.

Input Zach [30] CCP [1] Zach+Entropy CCP+Entropy

Figure 2. Inpainting in the case of 4 regions. In case of non uniqueness our approach (with θ = 0.02) picks an almost integral solution

with lower energy (see table 1).

Proposition 4.1 (Convex combinations of binary solutions

have lower energies). The convex combination u↵ = ↵u∗
1+

(1−↵)u∗
2 of two binary solutions u∗

1, u
∗
2 : Ω!{0, 1}

|Γ| of

problem (1.2) has lower or equal energy (Eq. (1.3)) than

the energies of the binary solutions, i.e. E(u↵)E(u∗
1).

Proof. By convexity of the objective E(u) we have:

E(↵u∗
1 + (1− ↵)u∗

2)  ↵E(u∗
1) + (1− ↵)E(u∗

2)
and since E(u∗

1) = E(u∗
2) we prove the claim. The general-

ization for more than two solutions is straightforward.

We observe that adding an entropy term tends to con-

strain the solution space to more integral solutions, hence

our approach helps picking a solution which is more binary

and hence tighter than the convex combination. In addi-

tion to the entropy, we measure the tightness of the solu-

tion by also evaluating the established posterior optimality

bound [16] G(ubin, u
∗
rel) =

E(ubin)−E(u∗
rel)

E(u∗
rel
) , where u∗

rel is the

solution of the relaxed problem and ubin the corresponding

rounded solution. The exact runtimes and comparisons of

different relaxations combined with entropy are presented

in Table 1. Note that in addition to obtaining tighter so-

lutions our algorithm outperforms the original formulation

even in the runtime. The following Proposition 4.2 shows

that additionally minimizing the entropy promotes binary

solutions over convex combinations.

Proposition 4.2 (Energy (1.4) favors binary solutions over

convex combinations). Lets denote the objective (1.4) by

EH(u) = E(u) + ✓H(u) and let u↵ =
P

i↵iu
∗
i be a

convex combination of different optimal binary labelings

u∗
i : Ω!{0, 1}

|Γ| with normalized weights ↵i 2 [0, 1],
P

i ↵i = 1. Then, for sufficiently large ✓, binary solu-

tions u∗
i have a strictly lower entropy-augmented energy

EH than convex combinations of binary solutions u↵, that

is, EH(u↵) > EH(u∗
i ).

Proof. Using the definition of EH , the convexity of E(u)
and the property that H(u) vanishes for binary u, we de-

rive the following equalities and inequalities for any binary

solution u∗
i :

EH(u↵)−EH(u∗
i ) = E(u↵)−E(u∗

i )
| {z }

≤0

+✓
(
H(u↵)−H(u∗

i )
)

| {z }

≥0

(4.2)

By choosing ✓ >
E(u∗

i
)−E(uα)

(H(uα)−H(u∗
i
)) the following inequality

holds:

EH(u↵)− EH(u∗
i ) > 0, EH(u↵) > EH(u∗

i ) (4.3)
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Zach CCP Zach+Entropy CCP+Entropy

Erel 630.1 634.3 639.6 637.7

Ebin 673.9 691.6 666.8 668.1

G(ubin, u
∗

rel) 0.069 0.090 0.042 0.047

Entropy H 2769 1739 379 306

Runtime [s] 153 188 68 125

Table 1. Relaxed and binary energies for different relaxations with

and without entropy term, optimality gaps as well as entropy val-

ues and runtimes in seconds for the 4-region inpainting in Fig. 2.

Table 1 shows the corresponding energies Ebin and Erel

to the results in Figure 2 for the binary and relaxed solu-

tions for the Zach and CCP relaxation respectively. While

the energies obtained using the additional entropy term are

higher than the relaxed energies, the binarized energies of

both relaxations combined with an entropy penalization are

clearly lower than the mere convex relaxations.

4.2. Binary Image Segmentation with a Fixed Vol-
ume Constraint

By considering only two labels the relaxation of prob-

lem (1.3) becomes tight and optimal binary solutions can

be computed via simple thresholding of the relaxed solu-

tion [17]. Unfortunately, this changes easily by adding fur-

ther constraints to the optimization problem. We consider a

fixed volume constraint on the solution of the segmentation

problem. Volume constraints have been used with convex

relaxation methods for image segmentation [22, 14], image-

based modeling [27, 20] and they have also been general-

ized to higher order moment constraints [8]. In [14] they

also addressed the problem of the non-tight relaxation, but

their suggested algorithm is less general as user-provided

seed points are required. Discrete approaches to this NP-

hard problem have been suggested in [11, 3]. Both of them

are restricted to equality constraints and the former only

provides approximate solutions and its runtime is exponen-

tial in the number of labels. Our approach is more gen-

eral than previous works, it provides the desired results for

the fixed volume segmentation problem and it improves the

convergence of a state-of-the-art solver at the same time.

Thus, we consider the following minimization problem:

min
u

Z

Ω

⇥
g|Du|+ λfu

⇤
dx+ ✓H(u)

s.t.

Z

Ω

u dx− Vt = 0 , (4.4)

where λ steers the smoothness of the solution by changing

the impact of the data fidelity term being defined by func-

tion f : Ω ! R, f(x) = (c1 − I(x))2 − (c2 − I(x))2 in

which c1, c2 2 R are gray values for foreground and back-

ground, I : Ω ! R is the input image and Vt denotes the

pre-defined target volume. The total variation weight is de-

fined as g = exp(−|rf |). Note that one easily adapts the

approach to bound the volume with inequality constraints

[8, 14], but the problems of the relaxation can be better

demonstrated with an equality constraint.

Because of the volume constraint there is no free choice

of thresholds to obtain a binary solution and the threshold-

ing theorem [17], which directly relates solutions of the re-

laxed problem to binary one, does not apply anymore. For

rounding, simple thresholding as in [3] might violate the

volume constraint. The following rounding scheme from

[27] addresses both the volume constraint and the binary

constraint. It even guarantees fulfillment of the volume con-

straint, if several non-binary u(x) have identical values, i.e.

no threshold exists to binarize the solution without violating

the volume constraint.

Proposition 4.3 (Rounding scheme for fixed volume con-

straint [27, Prop.2]). The relaxed solution of (4.4) can be

projected to the set of binary functions in such a way that

the resulting binary function preserves the target volume Vt.

Proof. It suffices to order the voxels xi 2 V by decreasing

values u(x1) ≥ u(x2) ≥ . . . ≥ u(x|V |). Subsequently, one

sets the value of the first Vt voxels to 1 and the value of the

remaining voxels to 0.

u
re

l
u

b
in

E
n

tr
o

p
y

f u∗

rel θ=0 θ=0.03 θ=0.1

Figure 3. Segmenting a fraction of an homogeneous rectangle

(gray) with the fixed volume constraint. Left to right columns:

data term f , analytic optimal solution u∗

rel (top row) of the relaxed

problem without entropy term. This solution is never perfectly

reached due to slow convergence and oscillations. θ=0 depicts a

sample solution. The corresponding rounded solution is far from

the optimal solution: a disc with the area of the square next to the

square. This optimal solution u∗

bin is found by adding the entropy

term with θ= 0.03. Increasing the impact of the entropy term to

θ=0.1 increases the non-convexity and adds local optima.

The experiment in Fig. 3 demonstrates the relaxation

problem with the volume constraint. The goal is to seg-

ment a fraction of a homogeneously colored rectangle using

the volume constraint. The first column of Fig. 3 depicts

the data term containing a square with strong foreground

preference (black) and a rectangle with equal cost for fore-

ground and background (gray). The white area strongly
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prefers a background label. The area of the gray rectan-

gle is six times larger than the square. The target volume Vt

is chosen to be twice the size of the square, i.e. a sixth of

the rectangle shall be filled. Due to the relaxation, the op-

timal solution is not necessarily compact anymore (u∗
rel top

row). If no preference is given by the data term or by the

boundary conditions, an equal distribution of the volume

yields the lowest energy. For the corresponding rounded

solution (middle row) we set the first Vt voxels to one ac-

cording to Prop. 4.3, but since all pixels in the rectangle

have equal value, their ordering is arbitrary and can lead

to many different non-optimal solutions. Since the optimal

relaxed solution contains the same information as the data

term, optimal rounding is as hard as solving the original

problem again in this case. Due to very slow convergence

and oscillating behavior of the solver, the optimal relaxed

solution is not reached because little volume portions are

permanently shifted around and the induced pixel orderings

are not related to the optimal binary solution (✓ = 0). An

optimal binary solution u∗
bin - a compact disc with the area

of the square - can be obtained with the proposed entropy

augmentation(✓ = 0.03 middle row). The entropy term fa-

vors binary and thus compact solutions, and ensures that the

relaxed solution is close to the binary one which ensures the

applicability of simple rounding schemes.

Choice of the entropy weight ✓. As a general rule for all

experiments in the paper, we found that ✓ should be chosen

as small as possible, but large enough to favor binary solu-

tions. This is because larger ✓ increase the non-convexity

of the problem and thus also the potential number of local

optima, as illustrated in the last two columns of Fig. 3.

Input 80% 100% 110%

θ
=
0

θ
=
0
.0
5

Figure 4. Changing the target volume Vt on a real image reveals

that relaxation problems occur frequently. The figure compares

relaxed solutions urel with and without entropy term. Vtb=100%
corresponds to the segmentation result without volume constraint.

As shown in Fig. 4 the relaxation problems occur fre-

quently and especially if fractions of regions with approx-

imately homogeneous data costs need to be filled. Fig. 5

shows two more such cases for which the rounding yields

solutions that heavily violate the expected minimal bound-

ary length and how the entropy term avoids these problems.

The right plot in Fig. 6 illustrates the rounding scheme

and shows non-binary homogeneous regions as plateaus in

the sorted label graph which are effectively eliminated by

the proposed entropy augmentation. If the target volume

seeks into a homogeneous region the rounding might result

in shapes not having a minimal contour length (as shown

in Fig. 5). The left plot of Fig. 6 shows that the entropy

augmentation consistently yields lower binary energies and

leads to smaller energy differences between relaxed and bi-

nary solutions which avoids the need for more complex

rounding schemes. The relaxed solution of the original

problem has always the lowest energy. Conversely, the cor-

responding rounded energy was always the largest in all our

experiments. In all experiments the entropy augmentation

stabilized the oscillating behavior of the numerical solver

in the presence of non-binary homogeneous image regions

and thus lead to better and faster convergence.

4.3. Spatio-temporal Multi-View Reconstruction
with a Fixed Volume Constraint

The binary 2D image segmentation model from the pre-

vious section can be lifted to higher dimensions for spatio-

temporal multi-view reconstruction [19]. Then, the fixed

volume constraint can be applied separately to each time

frame to express the prior that the overall scene volume

should not change over time which is, for instance, approx-

imately true when capturing humans with tight clothing. In

this section, we demonstrate 1) that the findings of the previ-

ous section are practically even more relevant in a 3D recon-

struction setting, and 2) that the proposed entropy augmen-

tation gives consistently better results over entire sequences.

The surface Σ of the reconstructed model is represented

as a binary labeling u : V⇥T ! {0, 1} of interior or exte-

rior defined by the indicator function u = 1Σ. It is observed

by N cameras with known projections {⇡i}
N
i=1 and approx-

imate silhouettes {Si(t)}
N
i=1. The volume-constrained and

entropy-augmented reconstruction problem reads

min
u

Z

V×T

⇥
⇢|Dxu|+ gt|Dtu|+ λfu

⇤
dx+ ✓H(u)

s.t.

Z

V

u dx− Vt = 0 8t 2 T . (4.5)

Note that we also change the domain from Ω to V⇥T
in the entropy term H(u) in Eq. (2.1). The regulariza-

tion term in Eq. (4.5) is split into a spatial and a temporal

part. The temporal term is weighted by function gt(x, t) =
exp

(
− |rf(x, t)|

)
which reduces the temporal smoothing

in the presence of motion. The spatial term contains the

photoconsistency measure ⇢(x) : V⇥T ! R≥0 which lo-

cally attracts the surface to locations with high photometric

consistency, which, in turn, is estimated by means of trun-

cated normalized cross-correlation matching scores of im-

age patches from neighboring cameras. Similarly to the 2D
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Relaxed result urel Rounded result ubin Point-wise entropy

1
4
0
%

1
7
0
%

θ = 0 θ = 0.03 θ = 0 θ = 0.03

H(u) = 8539 H(u) = 527

H(u) = 9944 H(u) = 591

θ = 0 θ = 0.03

Figure 5. Effect of the entropy term on the rounded solution. This figure continues Fig. 4 with volume percentages 140% and 170%
and shows the strong difference between relaxed and corresponding rounded solutions in regions with approximately homogeneous data

costs. The level-sets of urel in these homogeneous regions do not necessarily obey a minimal boundary length for the enclosed volume (red

boxes). The proposed entropy augmentation tackles the problem and ensures that relaxed and binary solutions are more similar.

Figure 6. This figure further studies the target volumes 80%, 140% and 170% from Figs. 4, 5. These plots should be read color-wise.

Each color represents a different target volume. Left: Energy plots during numerical optimization. Binary energies (solid lines) are always

larger than relaxed ones (dashed lines). Apart from the first iterations, the energies without entropy term (thick lines) are almost always

sandwiching the ones with entropy augmentation (thin lines). That is, the entropy term reduces the gap between relaxed and binary energies.

Right: Visualization of the rounding scheme (Prop. 4.3). All pixels are ordered with respect to their relaxed label urel(x). The plot shows

non-binary pixels 6K to 22K (of 120K). The target volume represents a single point on the x-axis defining the transition between 0 and 1.

The non-binary, almost homogeneous image regions form plateaus in this plot and lead to ambiguous selections in the rounding process.

segmentation case, the data fidelity function f : V⇥T ! R

gives local preferences for the label of u and is defined as

the log-likelihood ratio of the probabilities of being either

in the surface interior or exterior. For brevity and readabil-

ity, we refer to [19] for the exact definitions of the data term

and the regularizer weight, also because their influence on

the solution is similar to the 2D case. For temporal con-

sistency, three consecutive time frames are jointly solved

and longer sequences are processed with a temporal slid-

ing window approach. An iso-surface is extracted from the

center frame using the rounding scheme in Prop. 4.3 and the

Marching Cubes algorithm [12].

Fig. 7 shows a slice of a single reconstruction together

with one of 16 input images, the data term f next to sev-

eral solutions for different target volumes. The figure com-

pares the impact of the entropy term and shows significant

artifacts in the solutions without entropy augmentation. Be-

sides the fact that homogenous cost regions occur frequently

in the 3D setting, we observed that noisy cost regions cause

the same problems as long they do not infer monotonicity

on a larger scale. Especially the Neumann boundary condi-

tions attract the distribution of volume in the entire scene,

because it minimizes the regularizer.

Figs. 8 and 9 show the evaluation of our method on

the INRIA dataset [5]. Fig. 8 shows energy and volume

plots over time. In many frames the volume constraint

compensates for low photometric matching scores and dis-

tributes the volume according to their score. The energy

plot demonstrates the robustness of the entropy augmenta-

tion as we consistently obtained lower binary energies for

the entire sequence. In Fig. 9 we illustrate the benefit of

the volume constraint in conjunction with the entropy term.

While the energy without entropy distributes the volume to

generate smooth transitions between opposing labels the en-

tropy term concentrates the volume to the locations with the

best likelihood score. In sum, the fixed-volume relaxation

problem (4.4) remains tight as long as the data term or the

boundary conditions enforce a monotonicity of local costs

to avoid fractional homogeneous labelings. The supplemen-

tary material provides further details on the experiments.
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Figure 8. Plots of the volume (lower graphs) and several energies (upper graphs) in comparison for 500 frames of a multi-view video

sequence (children playing sequence from [5]). Without volume constraint the volume changes over time due to insufficient matching

information and occlusions which appear mostly when the volume is above our chosen target volume (cyan line). The upper graphs

depict relaxed (dashed) and binary (solid) energies with (blue) and without (red) the volume constraint. Interestingly, the solution without

volume constraint always has a higher energy. The blue graphs show binary and relaxed solutions with (light blue) and without (dark

blue) the entropy term. For the entire sequence we verified that the solutions without entropy enclose the ones with entropy term, i.e.

Eθ=0

rel < Eθ>0

rel < Eθ>0

bin < Eθ=0

bin as shown in the magnified area. That is, our approach gives consistently better binary solutions.
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Figure 7. Changing the volume of a 3D reconstruction cross sec-

tion. Homogeneous regions in the cost function occur often in a

3D reconstruction setup which in turn causes non-tight relaxations.

The volume adaption can generate strong artifacts which are effec-

tively suppressed with the proposed entropy augmentation.

5. Conclusion

We proposed a relaxation technique for general multi-

label problems which assures that the computed solutions

of the relaxed problem are more binary and consequently

have lower optimality gaps. The key idea is to combine the

traditional convex relaxations with a concave entropy-term

which favors binary solutions. We showed that the arising

non-convex problem can be optimized with a provably con-

vergent DC programming method. We demonstrated both

theoretically and experimentally that binary solutions are

energetically favored and that optimality gaps are smaller.

Experiments on multi-region inpainting, image segmenta-

tion and spatio-temporal multi-view reconstruction demon-

Frame 4 Frame 13 Frame 95

w
it

h
o
u
t

θ
=
0

w
it

h

θ
=
0
.5

with vs. without volume constraint θ = 0 vs. θ = 0.5
Figure 9. Reconstruction results with and without volume con-

straint (for θ = 0.5) as well as with and without entropy term in

comparison (for fixed Vt). For the first 50 frames the volume is

too low (see Fig. 8 bottom) and the constraint improves the recon-

struction (first two columns). Column 3 compares the impact of

the entropy term. With entropy term, the regularizer concentrates

the volume at locations with a higher data term rather than dis-

tributing volume around regions with low data term for attaining

smoothness. Therefore, the girls arm is better recovered for the

same target volume.

strate that the proposed entropy-based relaxation method is

faster and consistently yields solutions of better visual qual-

ity and lower energy with respect to the original binary op-

timization problems.
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[20] M. R. Oswald, E. Töppe, and D. Cremers. Fast and glob-

ally optimal single view reconstruction of curved objects. In

Proc. International Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 534–541, June 2012. 5

[21] T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cre-

mers. A convex formulation of continuous multi-label prob-

lems. In Proc. European Conference on Computer Vision

(ECCV), pages 792–805, 2008. 1

[22] C. Reinbacher, T. Pock, C. Bauer, and H. Bischof. Vari-

ational segmentation of elongated volumetric structures. In

Proc. International Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2010. 1, 5

[23] M. Tang, I. Ben Ayed, and Y. Boykov. Pseudo-bound

optimization for binary energies. In D. Fleet, T. Pajdla,

B. Schiele, and T. Tuytelaars, editors, Computer Vision,

ECCV 2014, volume 8693 of Lecture Notes in Computer

Science, pages 691–707. Springer International Publishing,

2014. 1

[24] P. D. Tao. Convex analysis approach to dc programming:

Theory, algorithms and applications. Acta Mathematica Viet-

namica, 22(1):289–355, 1997. 2

[25] P. D. Tao and E. B. Souad. Algorithms for solving a class of

nonconvex optimization problems. methods of subgradients.

North-Holland Mathematics Studies, 129:249–271, 1986. 2

[26] J. Toland. Duality in nonconvex optimization. Journal

of Mathematical Analysis and Applications, 66(2):399–415,

1978. 2
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