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Abstract

Online Multiple Target Tracking (MTT) is often addressed

within the tracking-by-detection paradigm. Detections are

previously extracted independently in each frame and then

objects trajectories are built by maximizing specifically de-

signed coherence functions. Nevertheless, ambiguities arise

in presence of occlusions or detection errors. In this paper

we claim that the ambiguities in tracking could be solved by

a selective use of the features, by working with more reliable

features if possible and exploiting a deeper representation of

the target only if necessary. To this end, we propose an online

divide and conquer tracker for static camera scenes, which

partitions the assignment problem in local subproblems and

solves them by selectively choosing and combining the best

features. The complete framework is cast as a structural

learning task that unifies these phases and learns tracker

parameters from examples. Experiments on two different

datasets highlights a significant improvement of tracking

performances (MOTA +10%) over the state of the art.

1. Introduction

Multiple Target Tracking (MTT) is the task of extract-

ing the continuous path of relevant objects across a set of

subsequent frames. Due to the recent advances in object

detection [9, 4], the problem of MTT is often addressed

within the tracking-by-detection paradigm. Detections are

previously extracted independently in each frame and then

objects trajectories are built by maximizing specifically de-

signed coherence functions [17, 5, 19, 2, 8, 22]. Tracking

objects through detections can mitigate drifting behaviors in-

troduced by prediction steps but, on the other hand, it forces

the tracker to work in adverse conditions, due to the frequent

occurrence of false and miss detections.

The majority of approaches address MTT offline, i.e. by

exploiting detections from a set of frames [17, 5, 8] through

global optimization. Offline methods benefit from the big-

ger portion of video sequence they dispose of to establish

Figure 1: The scene is partitioned in local zones. Green zones is

where the same number of tracks and detections are present. Red

zones, where miss and false detections (white dashed contours)

are discovered and solving the associations may call for complex

appearance or motion features.

spatio-temporal coherence, but can not be used in real-time

applications. Conversely, online methods track the targets

frame-by-frame; they have a larger spectra of application

but must be both accurate and fast despite working with less

data. In this context, the robustness of the features play a

major role in the online MTT task. Some approaches claim

the adoption of complex targets models [2, 22] to be the

solution, while others argue that this complexity may affect

the long-term robustness [21]. For instance, in large crowds

people appearance is rarely informative. As a consequence,

tracking robustness is often achieved by focusing on spatial

features [19], finding them more reliable than visual ones.

We do believe that many of the ambiguities in tracking

could be solved by a selective use of the features, by working

with more reliable features if possible and exploiting a deeper

representation of the target only if necessary. In fact, a

simple spatial association is often sufficient while, as clutter

or confusion arise, an improved association scheme on more

complex features is needed (Fig. 1).

In this paper a novel approach for online MTT in static

camera scenes is proposed. The method selects the most

suitable features to solve the frame-by-frame associations

depending on the surrounding scene complexity.
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Specifically, our contributions are:

• an online method based on Correlation Clustering that

learns to divide the global association task in smaller

and localized association subproblems (Sec. 5),

• a novel extension to the Hungarian association scheme,

flexible enough to be applied to any set of preferred

features and able to conquer trivial and complex sub-

problems by selectively combining the features (Sec. 6),

• an online Latent Structural SVM (LSSVM) framework

to combine the divide and conquer steps and to learn

from examples all the tracker parameters (Sec. 7).

The algorithm works by alternating between (a) learning the

affinity measure of the Correlation Clustering as a latent

variable and (b) learning the optimal combinations for both

simple and complex features to be used as cost functions by

the Hungarian. Results on public benchmarks underline a

major improvement in tracking accuracy over current state

of the art online trackers (+10% MOTA).

The work takes inspiration from the human perceptive behav-

ior, further introduced in Sec. 3. According to the widely ac-

cepted two-streams hypothesis by Goodale and Milner [11],

the use of motion and appearance information is localized in

the temporal lobe (what pathway), while basic spatial cues

are processed in the parietal lobe (where pathway). This

suggests our brain processes and exploits information in

different and specific ways as well.

2. Related works

Tab. 1 reports an overview of recent tracking-by-detection

literature approaches separating online and offline methods

and indicates the adoption of tracklets (T), appearance mod-

els (A) and complex learning schemes (L). Offline meth-

ods [5, 17, 12, 16] are out of the scope of the paper and are

reported for the sake of completeness.

Tracklets are the results of an intermediate hierarchical as-

sociation of the detections and are commonly used by both

offline and online solutions [16, 12, 23]. In these ap-

proaches, high confidence associations link detections in

a pre-processing step and then optimization techniques are

employed to link tracklets into trajectories. Nevertheless

tracklets creation involves solving a frame by frame assign-

ment problem by thresholding the final association cost and

errors in tracklets affect the tracking results as well.

In addition, online methods often try to compensate the lack

of spatiotemporal information through the use of appearance

or other complex features model. Appearance model is typi-

cally handled by the adoption of a classifier for each tracked

target [22] and data associations is often finalized through

an averaged sum of classifiers scores, [7, 2]. As a conse-

quence, learning is on targets model, not on associations.

C A T L M

Offline methods

Berclaz et al. [5] 2011 X

Milan et al. [17] 2014 X X X X

Hoffman et al. [12] 2013 X X X

Li et al. [16] 2009 X X

Online methods

Yang and Nevatia [23] 2014 X X

Breitenstein et al. [7] 2009 X

Bae and Yoon [2] 2014 X X X

Possegger et al. [19] 2014 X

Wu et al. [22] 2013 X

Our proposal 2015 X 1/2 X X

Table 1: Overview of offline and online related works in terms of

code availability (C), appearance models (A), tracklets computation

(T), associations learning (L) and presence in the MOT Challenge

competition (M). In our method, use of appearance set to 1/2 means

only when needed.

Moreover, online methods also need to cope with drifting

when updating their targets model. One possible solution is

to avoid model updating when uncertainties are detected in

the data, i.e. a detection cannot be paired to a sufficiently

close previous trajectory [2]. Nevertheless, any error intro-

duced into the model can rapidly lead to tracking drift and

wrong appearance learning. Building on these considera-

tions, Possegger et al. [19] does not consider appearance at

all and only work with distance and motion data.

Differently from the aforementioned online learning meth-

ods, our approach is not hierarchical and we do not compute

intermediate tracklets because errors in the tracklets corrupt

the learning data. Similarly to [2], we model a score of

uncertainty but based on distance information only and not

on the target model, since distance can not drift over time.

This enables us to invoke appearance and other less stable

features only when truly needed as in the case of missing

detections, occluded objects or new tracks.

3. Related perception studies

The proposed method is inspired by the human cognitive

ability to solve the tracking task. In fact, events such as eye

movements, blinks and occlusions disrupt the input to our

vision system, introducing challenges similar to the ones

encountered in real world video sequences and detections.

Perception psychologists have studied the mechanisms em-

ployed in our brain during multiple object tracking since the

’80s [13, 20, 1], though only recently RMI experiments have

been used to confirm and validate proposed theories. One

of these preeminent theories is given in a seminal work by

Kahneman, Treisman and Gibbs in 1992 [13]. They pro-

posed the theory of Object Files to understand the dominant
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Figure 2: First row shows the human tracking process according to

Kahneman, Treisman and Gibbs theory [13]. Below a schematic

view of the inference and learning steps underpinning our method.

role of spatial information in preserving target identity. The

theory highlights the central role of spatial information in

a paradigm called Spatio-Temporal Dominance. Accord-

ingly, target correspondence is computed on the basis of

spatio-temporal continuity and does not consult non-spatial

properties of the target. If spatio-temporal information is

consistent with the interpretation of a continuous target, the

correspondence will be established even if appearance fea-

tures are inconsistent. “Up in the sky, look: It’s a bird. It’s

a plane. It’s Superman!” - this well known quote, from the

respective short animated movie (1941), suggests that the

people pointing at Superman changed their visual perception

of the target to the extent of giving him a completely different

meaning, while they never had any doubt they kept refer-

ring to the same object. Nevertheless, when correspondence

cannot be firmly established on the basis of spatial informa-

tion, appearance, motion, and other complex features can be

consulted as well. In particular, in [13] the tracking process

is divided into a circular pipeline of three steps (Fig 2, top

row). The correspondence uses only positional information

and aims at establishing if detected objects are either a new

target or an existing one appearing at a different location.

The review activates when ambiguity in assignments arises,

and recomputes uncertain target links by also taking into

account more complex features. Eventually, the impletion is

the final task to assess and induce the perception of targets

temporal coherence.

Our proposal relies on a similar scheme but re-designed

in a larger context to deal with a multitude of targets as in

the case of MTT problem.

4. The proposal

As depicted in Fig. 2, the proposed method relates the 3

steps of correspondence, review and impletion to a divide

and conquer approach. Targets are divided in the where

pathway by checking for incongruences in spatial coherence.

Eventually, the tracking solution is conquered by associat-

ing coherent elements in the where (spatial) domain and

incoherent ones in the what (visual) domain.

The core of the proposal is twofold. First, a method to

divide potential associations between detections and tracks

into local clusters or zones. A zone can be either simple

or complex, calling for different features to complete the

association. Targets can be directly associated to their closest

detections if they are inside a simple zone (e.g. when we

have the same number of tracks and detections, green area

in Fig. 3b). Conversely, targets inside complex areas (red in

Fig. 3b) are subject to a deeper evaluation where appearance,

motion and other features may be involved.

Second, we cast the problems of splitting potential asso-

ciations and solving them by selecting and weighting the

features inside a unified structural learning framework that

aims at the best set of partitions and adapts from scene to

scene.

4.1. Problem formulation

Online MTT is typically solved by optimizing, at frame

k, a generic assignment function for a set of tracks T and

current detections Dk:

h(T ,Dk) = argmin
y

n∑

i=1

C(i,yi), (1)

where y is a permutation vector of {1, 2, . . . , n} and C ∈
R

n×n is a cost matrix. The cost matrix C is designed to

include dummy rows and columns to account for new de-

tected objects (Din) or leaving targets (Tout). More formally,

if matrix A : T × Dk → R contains association costs for

currently tracked targets and detections, the cost matrix is:

C =

[
A Tout

Din Ξ

]
(2)

where Din, Tout contain the cost ξ of creating a new track

on the diagonal and +∞ elsewhere. Similarly, Ξ is a full

matrix of value ξ.

The formulation in Eq. (1) evaluates all the associations

through the same cost function, built upon a preferred set

of features. In order to consider different cost functions for

specific subsets of associations, we reformulate Eq. (1) as:

h(T ,Dk) = argmin
y,Z

∑

(i,yi)∈z

z∈Zs

Cs(i,y
i) +

∑

(i,yi)∈z

z∈Zc

Cc(i,y
i)

(3)

where we explicit the different contribution of trivial and

difficult associations, whose costs are given by the functions

Cs and Cc respectively. Associations are locally partitioned

in zones z ∈ Z as shown in Fig. 3b. Hereinafter, we seam-

lessly refer to a zone z as a portion of the scene or the set of

detections and tracks that lie onto it. A zone can be simple

z ∈ Zs or complex to solve z ∈ Zc depending on the set of

associations it involves.
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(a) frame input (b) divide associations (c) conquer associations

Figure 3: Overview of the inference procedure. (a) In the image targets are represented by bird eye view sketches (shaded when occluded)

and detections by crosses. (b) In the divide step detections and non-occluded targets are spatially clustered into zones. A zone with an equal

number of targets and detections is simple (solid green contours), complex otherwise (dashed red contours). (c) Associations in simple zones

are independently solved by means of distance features only. Complex zones are solved by considering more complex features such as

appearance or motion and accounting for potentially occluded targets, which are shared across all the complex zones.

5. Learning to divide

In this section, we propose a method to generate zones z

and decide whether associations in those zones are simple

z ∈ Zs or difficult z ∈ Zc. A zone z can be defined as an

heterogeneous set of tracks and detections characterized by

spatial proximity. Even if simple, the concept of proximity

may vary across sequences, and the importance of distances

on each axis depends on targets dominant flows in the scene.

Zones are computed through the Correlation Clustering (CC)

method [3] on the cost matrix A suitably modified to obtain

an affinity matrix Ā as required by the CC algorithm. To

move from cost features (distances) in A to affinity features

in Ā, the cost features vector is augmented with their simi-

larity counterpart and the affinity value is computed as the

scalar product between this vector and a parameter vector θ:

Ā(i, j) =

θ
T (|tix − d

j
x|, |t

i
y − d

j
y|︸ ︷︷ ︸

cost features

, 1− |tix − d
j
x|, 1− |t

i
y − d

j
y|︸ ︷︷ ︸

similarity features

)T ,

(4)

where ti and dj are the i-th track and j-th detection respec-

tively. The θ vector has the triple advantage of weighting

differently distances on each axis, avoiding to set thresholds

in the affinity computation and controlling the compactness

and the balancing of clusters. Further detail on learning θ

are provided in the following sections.

To prevent the creation of clusters composed only of

detections or tracks, a symmetric version of Ā is created

having a zero block diagonal structure:

Āsym =

[
0 Ā

ĀT 0

]
(5)

Through this shrewdness, two tracks (detections) can be in

the same cluster only if close to a common detection (track).

The CC algorithm, applied on Āsym, efficiently partition the

scene in a set of zones Z so that the sum of the affinities

between track-detection pairs in the same zone is maximized:

argmax
Z

∑

z∈Z

∑

(i,j)∈z

Āsym(i, j). (6)

Eventually, a zone z is defined as simple if it contains an

equal number of targets and detections, otherwise is com-

plex. As previously stated, associations in a complex zone

z ∈ Zc cannot be solved with the use of distance informa-

tion only (Fig. 3b), but require more informative features to

disambiguate the decision.

6. Learning to conquer

The divide mechanism brings the advantage of splitting

the problem into smaller local subproblems. Associations be-

longing to simple zones can be independently solved trough

any bipartite matching algorithm. The complete tracking

problem must deal also with occluded target as well. We

consider a target as occluded when it is not associated to a

detection (e.g. a miss detection in frame k occurred, shaded

people in Fig. 3). Since occluded targets are representation

of disappeared objects, they are not included in the zones at

the current frame. All the subproblems related to complex

zones z ∈ Zc are consequently connected by sharing the

whole set of occluded targets. In order to simultaneously

solve the whole set of subproblems, we construct an aug-

mented version of the matrix in Eq. (2) where the block H

accounts for potential associations between occluded tracks

and current detections:

Ĉ =



Â +∞ Tout

H Hocc +∞
Din Ξ Ξ


 . (7)

Hocc is a ξ-diagonal matrix (+∞ elsewhere) used to keep

occluded tracks still occluded in the current frame. The
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solution of the optimization problem in Eq. 1 on matrix Ĉ,

obtained by applying the Hungarian algorithm, provides the

final tracking associations for this frame.

More precisely, thanks to the peculiar block structure

of Ĉ a single call to Hungarian results in solving the

partitioned association problem in Eq. (3), subject to the

constraint that each occluded element can be inserted in a

single complex zone subproblem solution. In Ĉ, simple

zones subproblems are isolated by setting the association

cost outside the zone to +∞. Similarly, complex zones

results in independent blocks as well, but are connected

through the presence of occluded elements, i.e. non-infinite

entries in H.

By casting the problem using the cost matrix Ĉ, it is possible

to learn, in a joint framework, to combine features in order to

obtain a suitable cost for both the association (either in sim-

ple or complex zones) and the partition in zone as well. To

this end we introduce a linear w-parametrization on Â and

H with a mask vector πZ that selects the features according

to the complexity of the belonging zone :

Ĉ(i, j) = wT
πZ(i, j) ◦ f(i, j), (8)

being ◦ the Hadamard product. The feature vector contains

both simple and complex information between the i-th track

and the j-th detection:

f(i, j)T = ( 1︸︷︷︸
ξ

, |tix − d
j
x|, |t

i
y − d

j
y|︸ ︷︷ ︸

features for z ∈ Zs

,

1− |tix − d
j
x|, 1− |t

i
y − d

j
y|︸ ︷︷ ︸

features for divide step

,

|tix − d
j
x|, |t

i
y − d

j
y|, g1(t

i, dj), g2(t
i, dj), . . .

︸ ︷︷ ︸
features for z ∈ Zc

).

(9)

where g1, g2, . . . are distance functions between track i and

detection j on complex features 1 and 2 respectively. Pre-

cisely, πZ selectively activates features according to the

following rules:

πZ(i, j)
T =





( 0, 1, 1, 0, 0, 0, 0, 0, 0, . . . ) if (a)

( 0, 0, 0, 0, 0, 1, 1, 1, 1, . . . ) if (b)

(∞, 0, 0, 0, 0, 0, 0, 0, 0, . . . ) if (c)

(10)

where the pair target-detection in ĈZ(i, j) may (a) belong

to the same simple zone, (b) be composed by elements be-

longing to complex zones and (c) have elements belonging

to different zones.

The feature vector f(i, j) is computed only on pairs of

(possibly occluded) tracks and detections. To extend the

parametrization to the whole matrix Ĉ, it is sufficient

to set πZ = (1, 0, 0, . . . )T outside Â and H. Anal-

ogously, for elements Ĉ(i, j) outside Â or H, we set

f(i, j) = (∞, 0, 0, . . . )T and f(i, j) = (1, 0, 0, . . . )T when

Ĉ(i, j) = +∞ and Ĉ(i, j) = ξ respectively. The learning

procedure in Sec. 7 computes the best weight vector w and

consequently ξ is learnt as a bias term. Recall that ξ governs

tracks initiation and termination. Eq. (3) becomes a linear

combination of the weights w and a feature map Φ:

h(T ,Dk;w) = argmax
y,Z
−wT

n∑

i=1

πZ(i,y
i) ◦ f(i,yi)

= argmax
y,Z

wTΦ(T ,Dk,y,Z).

(11)

The feature map Φ is a function evaluating how well the set

of zones Z and the proposed tracking solution y for frame k
fit on the input data T and Dk.

Given a set of weights w, the tracking problem in Eq. (11)

can be solved by first computing the zones Z through the

divide step on matrix Āsym of Eq. (5) and then by con-

quering the associations in each zone through the Hun-

garian method on matrix Ĉ. Note that now Āsym(i, j) =
wT (0, 1, 1, 1, 1, 0, 0, . . . )T ◦ f(i, j) and θ is a subset of w.

7. Online subgradient optimization

The problem of Eq. (11) requires to identify the complex

structured object (y,Z) ∈ Y × Z such that Z is the set

of zones that best explain the k-th frame tracking solution

y for an input (T ,Dk). Zones z ∈ Z are modelled as la-

tent variables, since they remain unobserved during training.

To this end, we learn the weight vector w in h(T ,Dk;w)
through Latent Structural SVM [24] by solving the follow-

ing unconstrained optimization problem over the training set

S = {(T ,Dk,yk)}k=1...K :

min
w

λ

2
‖w‖2 +

1

K

K∑

k=1

H̃k(w), (12)

with H̃k(w) being the structured hinge-loss. H̃k(w) results

from solving the loss-augmented maximization problem

H̃k(w) = max
y,Z

Hk(y,Z;w)

= max
y,Z

∆k(y,Z)− 〈w, ψk(y,Z)〉,
(13)

where ∆k(y,Z) = ∆(yk,Zk,y,Z) is a loss function that

measures the error of predicting the output y instead of

the correct output yk while assuming Z to hold instead

of Zk, and we defined ψk(y,Z) = Φ(T ,Dk,yk,Zk) −
Φ(T ,Dk,y,Z) for notation convenience.

Solving Eq. (13) is equivalent to finding the output-latent

pair (y,Z) generating the most violated constraint, for a

given input (T ,Dk) and a latent setting Zk. Despite the

generality of the learning framework, the loss function ∆ is
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Algorithm 1 Block-Coordinate Primal-Dual Frank-Wolfe Algorithm for learning w on a sequence of K frames

1: Let w(0) ← 0,w
(0)
k ← 0, l(0) ← 0, l

(0)
k ← 0 for k = 1, . . . ,K

2: for k ← 1 to K do

3: Compute simple features for learning to divide Eq. (9)

4: Latent completion: Zk = argmaxZ wTΦ(T ,Dk,yk,Z) through Correlation Clustering on Āsym of Eq. (5)

5: Compute complex features for learning to conquer Eq. (9)

6: Max Oracle: (ȳk, Z̄k) = argmaxy,Z Hk(y,Z;w) through Hungarian on Eq. (14)

7: Let ws ←
1

λK
ψk(ȳ, Z̄) and ls ←

1
n
∆k(ȳ, Z̄)

8: Let γ ← [λ(w
(r)
k −ws)

Tw(r) − l
(r)
k + ls]/[λ‖w

(r)
k −ws‖

2] and clip to [0, 1]

9: Update w
(r+1)
k ⇐ (1− γ)w

(r)
k + γws and l

(r+1)
k ⇐ (1− γ)l

(r)
k + γls

10: Update w(r+1) ⇐ w(r) +w
(r+1)
k −w

(r)
k and l(r+1) = l(r) + l

(r+1)
k − l

(r)
k

11: end for

o
1

o
2

d
1

d
2

d
3

  

(a) Inference Step

o
1

o
2

d
1

d
2

d
3



  

(b) Maximization Oracle

Figure 4: Thanks to the choice of the Hamming loss, the maximiza-

tion oracle is reduced to an assignment problem efficiently solved

through the Hungarian algorithm, as for the inference step.

problem dependent and must be accurately chosen. In partic-

ular, we adopted the Hamming loss function that, substituted

in Eq. (13), behaves linearly making the maximization oracle

solvable as a standard assignment problem, Fig. 4b:

H̃k(w) = max
y,Z

n∑

i=1

1{yi
k 6= yi}+wT

πZ(i,y
i) ◦ f(i,yi)

(14)

where Φ(T ,Dk,yk,Zk) was dropped as not dependent on

either y or Z .

The learning step of Eq. (12) can be efficiently solved online,

under the premise that the dual formulation of LSSVM re-

sults in a continuously differentiable convex objective after

latent completion. We designed a modified version of the

Block-Coordinate Frank-Wolfe algorithm [15] presented in

Alg. 1. The main insight here is to notice that the linear

subproblem employed by Frank-Wolfe (line 5) is equiva-

lent to the loss-augmented decoding subproblem of Eq. (14),

which can be solved efficiently through the Hungarian algo-

rithm [14]. To deal with latent variables during optimization,

we added the latent completion process (line 4) where, given

an input/output pair, the latent variable Zk which best ex-

plain the solution yk to the observed data is found. Through

the latent completion step, the objective function optimized

by Frank-Wolfe has guarantees to be convex.

8. Experimental results

In this section we present two different experiments that

highlight the improvement of our method over state of the

art trackers in static camera sequences. The first experiment

is devoted to stress the method in clutter scenarios where

moderate crowd occurs and our divide and conquer approach

gives its major benefits in terms of both computational speed

and performances. The second experiment is on the publicly

available MOT Challenge dataset that is becoming a standard

for tracking by detection comparison. Test were evaluated

employing the CLEAR MOT [6] measures and trajectory

based measures (MT,ML,FRG) as suggested in [18]. All

the detections, where not provided by authors, have been

computed using the method in [9] as suggested by the proto-

col in [18]. Results are averaged per experiment in order to

have a quick glimpse on the tracker performances. Individ-

ual sequences results are provided in the additional material.

To train the parameters acting on the complex zones, the

LSSVM have been trained with ground truth (GT) trajec-

tories and the addition of different levels of random noise

simulating miss and false detections. In all the tests, oc-

cluded objects locations are updated in time using a Kalman

Filter with a constant velocity state transition model, and

discarded if not reassociated after 15 frames.

8.1. Features

The strength of the proposal is the joint LSSVM frame-

work that learns to weight features for both partitioning the

scene and associating targets. On these premises, we pur-

posely adopted standard features. Without loss of generality,

the method can be expanded through additional and more

complex features as well. The features always refer to a

single detection d ∈ Dk and a single track t ∈ T , occluded

or not, and its associated history, in compliance with Eq. (9).

In the experiments, the appearance of the targets is mod-

eled through a color histogram in the RGB space. Every

time a new detection is associated to a track, its appearance
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Figure 5: Tracking results on PETS09-S2L3, 1shatian3 and GVEII from the MCD dataset (top row). AVG-TownCentre, ADL-Rundle-3 and

Venice-1 from the MOT Challenge sequences (bottom). Next to images, simple (green) and complex (red) zones are displayed.

information is stored in the track history. The appearance

feature g1 is then computed as the average value of the

Kullback-Leibler distance of the detection histogram from

track previous instances. Additionally, we designed tracks

to contain their full trajectories over time. By disposing of

the trajectories, we modeled the motion coherence g2 of a

detection w.r.t a track by evaluating the smoothness of the

manifold fitted on the joint set of the new detected point and

the track spatial history. More precisely, given a detected

point, an approximate value of the Ricci curvature is com-

puted by considering only the subset of detections of the

trajectory lying inside a given neighborhood of the detected

point. An extensive presentation of this feature is in [10].

8.2. Datasets and Settings

Midly Crowded Dataset (MCD): the dataset is a collection

of moderately crowded videos taken from both public

benchmarks with the addition of ad-hoc sequences. This

dataset consists of 4 sequences: the well-known PETS09

S2L2 and S2L3 sequences, and 2 new sequences. GVEII

is characterized by a high number of pedestrian crossing

the scene (up to 107 people per frame), while 1shatian3,

captured by [25], is a sequence characterized by a high

density and clutter (up to 227 people per frame). A single

training stage was performed by gathering the first 30% of

each video. These frames have not been used at test time.

MOT Challenge: the dataset consists of several public avail-

able sequences in different scenarios. Detections and an-

notations are provided by the MOTChallenge website. In

our test we consider the subset of the sequences coming

from fixed cameras since distances are not meaningful in

the moving camera settings: TUD-Crossing, PETS09-S2L2,

AVG-TownCentre, ADL-Rundle-3, KITTI-16 and Venice-1.

Learning was performed on a distinct set of sequences pro-

vided on the website for training.

8.3. Comparative evaluation

Results on MCD: Quantitative results of our proposal on

the MCD dataset compared with the state of the art trackers

app MOTA MOTP MT ML IDS FRG

LDCT w.n. 47.7 68.8 88 26 209 103

LDCT (all features) X 40.6 66.3 61 43 446 193

LDCT (only simple) 36.4 64.7 58 50 586 276

Bae and Yun [2] X 39.0 65.8 84 35 637 289

Possegger et al. [19] 38.7 65.0 79 37 455 440

Milan et al. [17] 40.6 66.7 64 42 242 141

Table 2: Average results on MCD. In the appearance column, w.n.

is when needed. More details on the light gray baselines in the text.

MOTA MOTP MT ML FP FN IDS FRG

Online

LDCT 43.1 74.5 9 10 682 2780 161 187

RMOT 30.4 70.2 2 27 1011 3259 74 125

TC ODAL 24.2 70.9 1 31 1047 3528 75 152

Offline

MotiCon 32.0 70.6 2 30 777 3280 110 105

SegTrack 32.3 72.1 3 38 520 3454 80 76

CEM 28.1 71.2 5 24 1256 3088 87 97

SMOT 23.9 71.7 2 27 706 3627 120 208

TBD 28.0 71.3 3 25 1233 3083 192 193

DP NMS 22.7 71.4 3 17 1062 3052 529 325

Table 3: Averaged results of our method (LDCT) and the other

MOT Challenge competitors on the 6 fixed camera sequences. See:

http://www.motchallenge.net for detailed results.

are presented in Tab. 2, while visual results are in Fig. 5. We

compared against two very recent online methods [19, 2]

that focus either on target motion or appearance. Moreover,

the offline method [17] has been considered being one of

the most effective MTT methods up to now. In the MCD

challenging sequences, we outperform the competitors in

terms of MT values having also the lowest number of IDS

and FRAG. This is basically due to the selective use of the

proper features depending on the outcomes of the divide

phase of our algorithm. This solution allows our tracker to

take the best of both worlds against [19] and [2]. MOTA

measure is higher as well testifying the overall quality of

the proposed tracking scheme. Additionally, in Fig. 6 we re-

ported the track lenght curves (TL) on the MCD dataset. TL

curve is computed by considering the length of the correctly

tracked GT trajectories plotted in descending order. The plot
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Figure 6: Tracks length curves (TL) on MCD sequences. The gray shaded area indicates the performances reached by a simple global NN

algorithm (lower bound) and the highest score obtained for each track combining all different methods results (upper bound).

gives information on the ability of the tracker to build con-

tinuous and correct tracks for all the ground truth elements

in the scene, neglecting the amount of false tracks inserted.

Our AUC is always greater than competitors’ thanks to the

adoption of complex zones that effectively deals with oc-

cluded/disapperared objects and keep the tracks longer.

To evaluate the improvement due to the adoption of

the divide and conquer steps, which is the foundation of

our tracker, in Tab. 2 we also test two baselines: when

either all features or spatial features only were used for all

the assignments independently of the zone type. In both

tests, the divide step, the parameter learning and occlusion

handling remain as previously described. Improvement

of the complete method (dark gray) over these baselines

(light gray) suggests that complex features are indeed more

beneficial when used selectively.

Results on MOT Challenge: Tab 3 summarizes the accu-

racy of our method compared to other state of the art algo-

rithms on the MOT Challenge dataset. Similarly to the MCD

experiment, we observe that our algorithm outperforms the

other state of the art methods. Our method achieves best

results in most of the metrics, keeping IDS and FRG rela-

tively low as well. In turn, our method records the highest

MOTA compared to others with a significant margin (+10%).

Excellent results on this dataset highlight the generalization

ability of our method, which was trained on sequences dif-

ferent (although similar) from the ones in the test evaluation.

Fig. 5 shows some qualitative examples of our results.

Furthermore, our online tracker has been designed to per-

form considerably fast. We report an average performances

of 10 fps on the MOT Challenge sequences. The runtime is

strongly influenced by the number of detections as well as

by the number of tracks created up to a specific frame. The

performances are in line or faster than the majority of the

current methods that report an average of 3-5 fps.

The computational complexity of solving Eq. (1) using

the Hungarian algorithm isO(N +No)
3 with N the number

of tracks and detections to be associated and No the number

of occluded tracks. Since the complexity of the divide step

is linear in the number of targets, our algorithm reduced the

assignment complexity to NO(α2 ) + O(Nβ + No)
3. The

first term applies for simple zones and is linear in N being

dominated by α that is the average number of detections in

every partition (α << N ). The second term modulates the

complexity of the association algorithm in complex zones

by the β factor, i.e. is the percentage of complex zones in the

scene. Eventually the No term is related to the recall of the

chosen detector. As an example No can be realistically set

to 0.3N and, if the percentage of complex zones β is 10%,

the algorithm is 50× faster than its original counterpart.

9. Conclusion

In this work, we proposed an enhanced version of the

Hungarian online association model to match recent features

advancement and cope with different sequences peculiarities.

The algorithm is able to learn to effectively partition the

scene and choose the proper feature combination to solve

simple and complex association in an online fashion. As

observed in the experiments, the benefits of our divide and

conquer approach are evident in terms of both computational

complexity of the problem and tracking accuracy.
The proposed tracking framework can be ex-

tended/enriched with a different set of simple and
complex features and it can learn to identify the relevant
ones for the specific scenario1. This can open a major room
for improvement by allowing the community to test the
method with more complex and sophisticated features. We
invite the reader to download the code and to test it by
adding her favorite features.
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