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Abstract

Complex event retrieval is a challenging research prob-

lem, especially when no training videos are available. An

alternative to collecting training videos is to train a large

semantic concept bank a priori. Given a text description of

an event, event retrieval is performed by selecting concepts

linguistically related to the event description and fusing the

concept responses on unseen videos. However, defining an

exhaustive concept lexicon and pre-training it requires vast

computational resources. Therefore, recent approaches au-

tomate concept discovery and training by leveraging large

amounts of weakly annotated web data. Compact visually

salient concepts are automatically obtained by the use of

concept pairs or, more generally, n-grams. However, not

all visually salient n-grams are necessarily useful for an

event query–some combinations of concepts may be visu-

ally compact but irrelevant–and this drastically affects per-

formance. We propose an event retrieval algorithm that

constructs pairs of automatically discovered concepts and

then prunes those concepts that are unlikely to be help-

ful for retrieval. Pruning depends both on the query and

on the specific video instance being evaluated. Our ap-

proach also addresses calibration and domain adaptation

issues that arise when applying concept detectors to unseen

videos. We demonstrate large improvements over other vi-

sion based systems on the TRECVID MED 13 dataset.

1. Introduction

Complex event retrieval from databases of videos is dif-

ficult because in addition to the challenges in modeling the

appearance of static visual concepts–e.g., objects, scenes–

modeling events also involves modeling temporal varia-

tions. In addition to the challenges of representing motion

features and time, one particularly pernicious challenge is

that the number of potential events is much greater than

the number of static visual concepts, amplifying the well-

*The first two authors contributed equally to this paper.

known long-tail problem associated with object categories.

Identifying and collecting training data for a comprehensive

set of objects is difficult. For complex events, however, the

task of even enumerating a comprehensive set of events is

daunting, and collecting curated training video datasets for

them is entirely impractical.

Consequently, a recent trend in the event retrieval com-

munity is to define a set of simpler visual concepts that are

practical to model and then combine these concepts to de-

fine and detect complex events. This is often done when no

examples of the complex event of interest are available for

training. In this setting, training data is still required, but

only for the more limited and simpler concepts. For exam-

ple, [5, 21] discover and model concepts based on single

words or short phrases, taking into account how visual the

concept is. Others model pairs of words or n-grams in or-

der to disambiguate between the multiple visual meanings

of a single word [9] and take advantage of co-occurrences

present in the visual world [23]. An important aspect of re-

cent work [29, 5] is that concept discovery and training set

annotation is performed automatically using weakly anno-

tated web data. Event retrieval is performed by selecting

concepts linguistically related to the event description and

computing an average of the concept responses as a measure

for event detection.

Based on recent advances, we describe a system that

ranks videos based on their similarity to a textual descrip-

tion of a complex event, using only web resources and with-

out additional human supervision. In our approach, the tex-

tual description is represented by and detected through a

set of concepts. Our approach builds on [5] for discover-

ing concepts given a textual description of a complex event,

and [9] for automatically replacing the initial concepts with

concept pairs that are visually salient and capture specific

visual meanings.

However, we observe that many visually salient concepts

generated from an event description are not useful for de-

tecting the event. In fact, we find that removing certain con-

cepts is a key step that significantly improves event retrieval

performance. Some concepts should be removed at training

time because they model visually salient concepts that are
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Figure 1. Framework overview. An initial set of concepts is discovered from the web and transformed to concept pairs using an action

centric part of speech (grammar) model. These concept pairs are used as Google Image search text queries, and detectors are trained on the

search results. Based on the detector scores on the test videos, co-occurrence based pruning removes concepts that are likely to be outliers.

Detectors are calibrated using a rank based re-scoring method. An instance level pruning method determines how many concepts are likely

to be observed in a video and discards the lowest scoring concepts. The scores of remaining concepts are fused to score each video. Motion

features of the top ranked videos are used to train a SVM and update the video list. Finally, the initial detectors are re-trained using the

top ranked videos of this video list, and the process of co-occurrence based pruning, instance level pruning and rank based calibration is

repeated to re-score the videos.

not likely to be meaningful based on linguistic considera-

tions. Others should be removed if an analysis of video co-

occurrences and activation patterns indicates that a concept

is likely to be irrelevant or not among the subset of concepts

that occur in a video instance. These problems are further

confounded by the fact that concept detectors are initially

trained on weakly supervised web images1, so there is a do-

main shift to video, and detector responses are not properly

calibrated.

Our contribution is a fully automatic algorithm that dis-

covers concepts that are not only visually salient, but are

also likely to predict complex events by exploiting co-

occurrence statistics and activation patterns of concepts. We

address domain adaptation and calibration issues in addition

to modelling the temporal properties. Evaluations are con-

ducted using the TRECVID EK0 dataset, where our system

outperforms state-of-the-art methods based on visual infor-

mation.

1We prefer to use web images for concept training because a web search

is a weak form of supervision which provides no spatial or temporal local-

ization. This means that if we search for video examples of a concept, we

do not know how many and which frames contain the concept (a temporal

localization issue), while an image result is much more likely to contain

the concept of interest (the spatial localization still remains).

2. Related Work

Large scale video retrieval commonly employs a

concept-based video representation (CBRE) [1, 22, 24, 30],

especially when only few or no training examples of the

events are available. In this setting, complex events are

represented in terms of a large set of concepts that are ei-

ther event-driven (generated once the event description is

known) [5, 13, 21] or pre-defined [29, 7, 8]. A test query

description is mapped to a set of concepts whose detectors

are then applied to videos to perform retrieval. However,

methods based on pre-defined concepts need to train an ex-

haustive set of concept detectors a priori or the semantic

gap between the query description and the concept database

might be too large. This is computationally expensive and

currently infeasible for real-world video retrieval systems.

Instead, in this paper, given the textual description of the

event to be retrieved, our approach leverages web image

data to discover event-driven concepts and train detectors

that are relevant to this specific event.

Recently, web (Internet) data has been widely used for

knowledge discovery [11, 2, 9, 29, 10, 14]. Chen et al.

[6] use web data to weakly label images, learn and ex-

ploit common sense relationships. Berg et al. [2] automati-

cally discover attributes from unlabeled Internet images and
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their associated textual descriptions. Duan et al. [11] de-

scribe a system that uses a large amount of weakly labeled

web videos for visual event recognition by measuring the

distance between two videos and a new transfer learning

method. Habibian et al. [14] obtain textual descriptions of

videos from the web and learn a multimedia embedding for

few-example event recognition. For concept training, given

a list of concepts, each corresponding to a word or short

phrase, web search is commonly used to construct weakly

annotated training sets [5, 29, 9]. We use the concept name

as a query to a search engine, and train the concept detector

based on the returned images.

Moreover, retrieval performance depends on high qual-

ity concept detectors. While the performance of a concept

detector can be estimated (e.g., by cross-validation [9]), am-

biguity remains in associating linguistic concepts to visual

concepts. For example, groom in grooming an animal and

groom in wedding ceremony are totally different, and while

two separate detectors might be capable of modeling both

types of groom separately, a single groom detector would

likely perform poorly. Similarly, tire images from the web

are different from frames containing tires in a video about

changing a vehicle tire, since there are often people and

cars in these frames. To solve this problem, [9, 19] use an

n-gram model to differentiate between multiple senses of a

word. Habibian et al. [13] instead leverage logical relation-

ships (e.g., “OR”, “AND”, “XOR”) between two concepts.

Mensink et al. [23] exploit label co-occurrence statistics

to address zero-shot image classification. However, it is not

sufficient to discover visually distinctive concepts, since not

all concepts are equally informative for modeling events.

We present a pruning process to discover visually distinc-

tive and useful concepts by a pruning process.

Recent work has also explored multiple modalities–

e.g., automatic speech recognition (ASR), optical charac-

ter recognition (OCR), audio, and vision–for event detec-

tion [16, 17, 29] to achieve better performance over vision

alone. Jiang et al. [17] propose MultiModel Pseudo Rele-

vance Feedback (MMPRF), which selects several feedback

videos for each modality to train a joint model. Applied to

test videos, the model yields a new ranked video list that

is used as feedback to retrain the model. Wu et al. [29]

represent a video by using a large concept bank, speech in-

formation, and video text. These features are projected to

a high-dimensional concept space, where event/video sim-

ilarity scores are computed to rank videos. While multi-

modal techniques achieve good performance, their visual

components alone significantly under-perform the system

as a whole.

All these methods suffer from calibration and domain

adaptation issues, since CBRE methods fuse multiple con-

cept detector responses and are usually trained and tested

on different domains. To deal with calibration issues, most

related work uses SVMs with probabilistic outputs [20].

However, the domain shift between web training data and

test videos is usually not addressed by calibration alone. To

reduce this effect, some ranking-based re-scoring schemes

[16, 17] replace raw detector confidences with the confi-

dence rank in a list of videos. To further adapt to new do-

mains (e.g., from images to videos), easy samples have been

used to update detector models [27, 16]. Similar to these ap-

proaches, we use a rank based re-scoring scheme to address

calibration issues and update models using the most confi-

dent detections to adapt to new domains.

3. Overview

The framework of our algorithm is shown in Fig. 1.

Given an event defined as a text query, our algorithm re-

trieves and ranks videos by relevance. The algorithm first

constructs a bank of concepts by the approach of [5] and

transforms it into concept pairs. These concept pairs are

then pruned by a part of speech model. Each remaining con-

cept pair is used as a text query in a search engine (Google

Images), and the returned images are used to train detectors,

which are then applied to the test videos. Based on detector

responses on test videos, co-occurrence based pruning re-

moves concept pairs that are likely to be outliers. Detectors

are then calibrated using a rank based re-scoring method.

An instance level pruning method determines how many

concept pairs should be observed in a video from the class,

discarding the lowest scoring concepts. The scores of the

remaining concept pairs are fused to rank the videos. Mo-

tion features of the top ranked videos are then used to train

a SVM and re-rank the video list. Finally, the top ranked

videos are used to re-train the concept detectors, and we

use these detectors to re-score the videos.

The following sections describe each part of our ap-

proach in detail.

4. Concept Discovery

The concept discovery method of [5] exploits weakly

tagged web images and yields an initial list of concepts for

an event. Most of these visual concepts correspond to single

words, so they may suffer from ambiguity between linguis-

tic and visual concepts. Consequently, we follow [9] by

using n-grams to model specific visual meanings of linguis-

tic concepts and [23] by using co-occurrences. From the top

P concepts in the list provided by [5], we combine single-

word concepts into pairs and retain the phrase concepts to

form a new set of concepts. The resulting concepts reduce

visual ambiguity and are more informative. We refer to the

concepts trained on pairs of words as pair-concepts.

Fig. 2 shows the frames ranked highest by the proposed

pair-concept detectors, the original concept detectors for

single words, and the sum of two independently trained con-
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Figure 2. Top five ranked videos by different concept detectors trained using web images for three events: (a) attempting a bike trick, (b)

changing a vehicle tire, (c) getting a vehicle unstuck. The first and second rows show the results of running unary concepts on test videos.

The third row combines two unary concept detectors by adding their scores. The fourth row shows the results of our proposed pair-concept

detectors. Pair-concepts are more effective at discovering frames that are more semantically relevant to the event.

cept detectors on the words constituting the pair-concept.

Pair-concept detectors are more relevant to the event than

the unary detectors or the sum of two detectors. For exam-

ple, in Fig. 2, the event query is attempting a bike trick, and

two related concepts are jump and bicycle. The jump de-

tector can only detect a few instances of jumping, none of

which are typical of a bike trick. The bicycle detector suc-

cessfully detects bicycles, but most detections are of people

riding bicycles instead of performing a bike trick. If the

two detectors are combined by adding their scores, some

frames with bikes and jump actions are obtained, but they

are still not relevant to bike trick. However, the jump bi-

cycle detections are much more relevant to attempting bike

trick–people riding a bicycle are jumping off the ground.

Concepts which do not result in good visual models

(e.g., cute water, dancing blood) can be identified [9, 5].

But, even when concepts lead to good visual models, they

might still not be informative (e.g., car truck, and puppy

dog). Moreover, even if concepts are visual and informa-

tive, videos do not always exhibit all concepts related to an

event, so expecting all concepts to be observed will reduce

retrieval precision. For these reasons, it is not only nec-

essary to select concepts that can be modeled visually, but

also to identify subsets of them that are useful to the event

retrieval task. We propose three concept pruning schemes to

remove bad concepts: pruning based on grammatical parts

of speech, pruning based on co-occurrence on test videos,

and instance level pruning. The first two schemes remove

concepts that are unlikely to be informative, while the last

identifies a subset of relevant concepts for each video in-

stance.

4.1. Part of speech based pruning

Action centric concepts are effective for video recogni-

tion, as shown in [3, 26]. Based on this, we require that

a pair-concept contain one of three types of action centric

words: 1) Nouns that are events, e.g., party, parade; 2)

Nouns that are actions, like celebration, trick; 3) Verbs, e.g.,

dancing, cooking, running. Word types are determined by

their lexical information and frequency counts provided by

WordNet [25]. Then, action centric concepts are paired with

other concepts that are not action centric to yield the final

set of pair-concepts.

Table 1 shows the pair-concepts discovered for an event.

Qualitatively, these concepts are more semantically relevant

to events than the single word concepts from [5]. An im-

provement would be to learn the types of pair-concepts that

lead to good event models, based on their parts of speech.

However, as our qualitative and quantitative results show,

the proposed action-centric pruning rule leads to significant

improvements over using all pairs, so we leave data-driven

learning for future work.

Pair-concept detectors are trained automatically using

web images. For each concept, 200 images are chosen as

positive examples, downloaded by using the concept as the

textual query for image search on Google Images. Then,

500 negative examples are randomly chosen from the im-

ages of other concepts from all events. Based on the deep

features [15] of these examples, the detectors are trained us-

ing a RBF kernel SVM using LibSVM [4] with the default

parameters.

4.2. Co­occurrence based pruning

Not all action-centric pair-concepts will be useful, for a

number of reasons. First, the process of generating unary-

concepts from an event description is uncertain [5], and

might generate irrelevant ones. Second, even if both unary

concepts are relevant individually, they may lead to non-

sensical pairs. And finally, even if both unary concepts are

relevant, web search sometimes returns irrelevant images

which can pollute the training of concept detectors.

To reduce the influence of visually unrelated and noisy

concepts, we search for co-occurrences between detector

responses and keep only pair-concepts whose detector out-

puts co-occur with other pair-concepts at the video level.

The intuition is that co-occurrences between good concepts

will be more frequent than coincidental co-occurrences be-

tween bad concepts. One reason for this is that if two pair-

concepts are both relevant to the same complex event, they

are more likely to fire in a video of that event. Another rea-

son is that detectors are formed from pairs of concepts, so

many pair-concepts will share a unary concept and so are

likely to be semantically similar to some extent. For ex-

ample cleaning kitchen and washing kitchen share kitchen.
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Figure 3. Example of co-occurrence based concept pruning. The five rows correspond to the top 15 videos retrieved by five concept

detectors (stuck car, stuck tire, stuck truck, stuck winter, stuck night) for detecting the event getting a vehicle unstuck. Frames from the

same videos are marked with bounding boxes of the same color, and repeating colors across concept detectors denote co-occurrences. For

example, the yellow border in rows corresponding to stuck car, stuck tire, and stuck truck signifies that all three concept detectors co-occur

in the video represented by the yellow color. The solid boxes denote the positive videos, while the dashed ones are negatives. Stuck night

and stuck winter do not co-occur often with other concepts, so they are discarded. Note that the negatives are all marked with red cross in

the upper-right corner.

In other cases, pair-concepts may share visual properties as

they are derived for a specific event, for example stuck car

and stuck tire can co-occur because a tire can be detected

along with a car in a frame or in a video.

Let V = {V1, V2, ..., VN} denote the videos in the test

dataset, where Vi contains Ni frames {Vi1, Vi2, ..., ViNi
}

(sampled from the video for computational reasons). Given

K concept detectors {D1, D2, ..., DK} trained on web-

images, each concept detector is applied to V . For each

video Vi, an Ni ×K response matrix Si is obtained. Each

element in Si is the confidence of a concept for a frame.

After employing a hierarchical temporal pooling strategy

(described in section 5) on the response matrix, we obtain a

confidence score sik for the detector Dk applied to video Vi.

Then for each concept detector Dk, we rank the N videos

in the test set based on the score sik. Let Lk denote the

top M ranked videos in the ranking list.We construct a co-

occurrence matrix C as follows:

Cij =

{

|Li ∩ Lj |/M 1 ≤ i, j ≤ K, i 6= j

0 i = j,
(1)

where |Li ∩ Lj | is the number of videos common to Li

and Lj . A concept detector Di is said to co-occur with an-

other detector Dj if Cij > t, where t is between 0 and 1.

A concept is discarded if it does not co-occur with c other

concepts.

An example is shown in Fig. 3. Here, the top 15 ranked

videos retrieved by five different concept detectors for the

event getting a vehicle unstuck are shown. The stuck win-

ter detector co-occurs with other detectors in only one of

the top 15 videos, the stuck night detector does not co-

occur with any other detector, so these two detectors are

discarded. Also, fewer positive examples of the complex

event are retrieved by the two discarded detectors than the

other three, suggesting that the co-occurrence based prun-

ing strategy is effective in removing concepts which are

outliers. After pruning some concepts using co-occurrence

statistics, we fuse the scores of good concepts by taking the

mean score of these concepts and rank the videos in the test

set using this score.

4.3. Instance Level Pruning

Although many concepts may be relevant to an event, it

is not likely that all concepts will occur in a single video.

This is because not all complex event instances exhibit all

related concepts, and not all concept instances are detected

even if they are present (due to computer vision errors).

Therefore, computing the mean score of all concept detec-

tors for ranking is not a good solution. So, we need to pre-

dict an event when only a subset of these concepts is ob-

served. However, the subset is video instance specific and

knowing all possible subsets a priori is not feasible with

no training samples. Even though these subsets cannot be

determined, we can estimate the average cardinality of the

set based on the detector responses observed for the top M
ranked videos after computing the mean score of detectors.

For each event, the number of relevant concepts is estimated

as:

Nr = K −min(⌈

∑K

k=1

∑M

i=1 1(sik < T )

M
⌉, λ) (2)

where 1(·) is the indicator function–it will be 1 if the con-

fidence score of concept k present in video Vi is less than a

detection threshold T (i.e., detector Dk does not detect the

concept k in the video Vi) and 0 otherwise. ⌈·⌉ is the ceil-

ing function, and λ is a regularizer to control the maximum

number of concepts to be pruned for an event. This equa-

tion computes the average number of detected concepts in

the top ranked videos. When combining the concept scores,

we keep only the top Nr responses and discard the rest.
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Table 1. Concepts discovered after different pruning strategies

Event Discovered Concepts

Working on a

metal crafts

project

Initial Concepts art, bridge, iron, metal, new york, new york city, united state, work, worker

After part of speech

based pruning

iron art, iron bridge, iron craft, metal art, metal bridge, metal craft, new york, new

york city, united state, work iron, work metal, work worker, worker art, worker

bridge, worker craft

After co-occurrence

based pruning

iron art, iron craft, metal art, metal bridge, metal craft, work iron, work metal

Dog show

Initial Concepts animal, breed, car, cat, dog, dog show, flower, pet, puppy, show

After part of speech

based pruning

animal pet, breed animal, breed car, breed cat, breed dog, breed flower, breed puppy,

car pet, cat pet, dog pet, dog show, flower pet, puppy pet, show animal, show car,

show cat, show dog, show flower, show puppy

After co-occurrence

based pruning

animal pet, breed animal, breed car, breed cat, breed dog, breed puppy, cat pet, dog

pet, dog show, puppy pet, show cat, show dog, show puppy

Parade

Initial Concepts city, gay, gay pride, gay pride parade, new york, new york city, nyc event, parade,

people, pride

After part of speech

based pruning

city parade, gay city, gay people, gay pride, gay pride parade, new york, new york

city, nyc event, people parade, pride parade

After co-occurrence

based pruning

city parade, gay pride, gay pride parade, people parade, pride parade

5. Hierarchical Temporal Pooling

Our concept detectors are frame-based, so we need a

strategy to model the temporal properties of videos. A com-

mon strategy is to treat the video as a bag, pooling all re-

sponses by the average or max operator. However max-

pooling tends to amplify false positives; on the other ex-

treme, average pooling would be robust against spurious

detections, but expecting a concept to be detected in many

frames of a video is not realistic and would lead to false neg-

atives. As a compromise, we propose hierarchical temporal

pooling, where we perform max pooling within sub-clips

and average over sub-clips over a range of scales. Note that

the top level of this hierarchy corresponds to max pooling,

the bottom level corresponds to average pooling, and the

remaining levels correspond to something in-between. The

score for a concept k in video Vi is computed as follows,

sik =

l
∑

n=1

n
∑

j=1

mnj

n
(3)

where, l is the maximum number of parts into which a video

is partitioned (a scale at which the video is analyzed), mnj

is the max pooling score of the detector in part j of the

video partitioned into n equal parts. Temporal pooling has

been widely used in action recognition [18] for representing

space-time features. In contrast, we perform temporal pool-

ing over SVM scores, instead of pooling low level features.

6. Domain Adaptation

Score Calibration. The detectors are trained on web-

images, so their scores are not reliable because of the do-

main shift between the web and video domains. In addition,

each detector may have different response characteristics on

videos, e.g., one detector is generic and has a high response

for many videos, while another detector is specific and has

a high response only for a few videos. Thus we calibrate

their responses before fusion as follows :

s′ik =
1

1 + exp(Rk (sik)−u

u
)

(4)

where, s′ is the calibrated score, Rk is the rank of video Vi

when generating the rank list only using concept detector

Dk, and u controls the decay factor in the exponential. This

re-scoring function not only calibrates raw detector scores,

but it also gives much higher score to highly ranked samples

while ignoring the lower ranked ones, which is appropriate

for retrieval.

Detector Retraining. Based on the domain adaptation

approach of [17], we use pseudo-relevance from top-ranked

videos to improve performance. Since web-detectors only

capture static scene/object cues in a video, it is beneficial to

extract Fisher Vectors (FV) on Improved Dense Trajectory

(IDT) features [28] to capture the motion cues. Based on the

rank list obtained from concept detectors, we train a linear

SVM using LIBLINEAR [12] on the top ranked videos us-

ing the extracted Fisher Vectors. The lowest ranked videos

are used as negative samples. These detectors are applied

again on the test videos. Finally, we use late fusion to com-

bine the detection scores obtained using motion features

with web-detectors.

We further adapt the concept detectors to the video do-

main by retraining them on frames from top-ranked videos.

For each detector, we obtain frames with the highest re-

sponse in the top ranked videos (after fusion with motion

features) to train a concept detector (with the constraint that
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Figure 4. Average Precision (AP) scores of initial concepts, all pair-concepts, the concepts after part of speech based and co-occurrence

pruning are shown for the event ”Getting a vehicle unstuck”. AP after combining the concepts is also reported. Note that part of speech

pruning helps in removing many pair-concepts with low AP. Moreover, co-occurrence based pruning removes the two lowest performing

pair-concepts and improves the AP after part of speech pruning significantly.

similar frames should not be selected twice to encourage di-

versity). We then repeat the process of co-occurrence based

pruning, instance level pruning and rank based calibration

to fuse the scores for the new concept detectors. Finally,

the video scores are updated by summing the fused scores

(original concept detectors + IDT) and the scores of adapted

concept detectors.

7. Experiments and Results

We perform experiments on the challenging TRECVID

Multimedia Event Detection (MED) 2013 dataset. We first

verify the effectiveness of each component of our approach,

and then show the improvement on the EK0 dataset by com-

paring with state-of-the-art methods.

7.1. Dataset and Implementation Details

The TRECVID MED 2013 EK0 dataset consists of un-

constrained Internet videos collected by the Linguistic Data

Consortium from various Internet video hosting sites. Each

video contains only one complex event or content not re-

lated to any event. There are 20 complex events in total in

this dataset, with ids 6-15 and 21-30. These event videos

together with background videos (around 23,000 videos),

form a test set of 24,957 videos. In the EK0 setting, no

ground-truth positives training videos are available. We ap-

ply our algorithm on the test videos, and mAP score is cal-

culated based on the video ranking.

For each event in EK0 dataset, we choose the top 10 con-

cepts (i.e., P = 10) in the list provided by [5] and transform

them into pair-concepts. The web image data on which con-

cept detectors are trained is obtained by image search on

Images using each pair-concept as a query. The Type op-

tion is set to Photo to filter out irrelevant cartoon images.

We downloaded around 200 images for each concept pair

query. We sample each video every two seconds to obtain

a set of frames. Then, we use Caffe [15] to extract deep

features on all the frames and web images, by using the

model pre-trained on ImageNet. We used the fc7 layer after

dropout, which generates a 4,096 dimensional feature for

each video frame or image. The hyper-parameters to deter-

mine if a concept co-occurs with another t, length of the in-

tersection list M , regularization constant λ, detector thresh-

old Nr are selected based on leave one-event out cross vali-

dation, since they should be validated with event categories

different from the one being retrieved. We found hyper-

parameters to be robust after doing sensitivity analysis. The

number of levels l in hierarchical temporal pooling was set

to 5. The Fisher Vectors of the top 50 ranked videos and the

bottom 5,000 ranked videos are used to train a linear SVM.

Table 2. Comparative results

Pre-Defined Method mAP

No Concept Discovery [5] 2.3%

Yes SIN/DCNN [17] 2.5%

Yes CD+WSC [29] 6.12%

Yes Composite Concept [13] 6.39%

Initial concepts 4.91%

All Pair-concepts 7.54%

No +Part of speech pruning 8.61%

+Cooc & inst pruning 10.85%

+Adaptation 11.81%

7.2. Evaluation on MED 13 EK0

Table 1 shows the initial list of concepts, the concepts

that remain after part of speech based pruning, and the

concepts that remain after co-occurrence based pruning for

three different events. Although the initial concepts are re-

lated to the event, web queries corresponding to them would

provide very generic search results. Since we have 10 unary

concepts per event, there are 45 unique pair-concept detec-

tors for each event. Approximately 10-20 pair-concepts re-

main after part of speech based pruning. This helps to re-
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Figure 5. Mean average precision (mAP) scores for the events on the MED13 EK0 dataset. By pruning concepts that are not useful for

retrieving the complex event of interest, our approach progressively improves the utility of the remaining.

duce the computational burden significantly and also prunes

away noisy pairs. Finally, co-occurrence based pruning dis-

cards additional outliers in the remaining pair-concepts.

Table 2 shows the results of our method on the

TRECVID EK0 dataset. We observe significant perfor-

mance gains (5.4% - 11.81% vs 6.39%) over other vision

based methods which do not use any training samples. Our

performance is almost 2-5 times their mAP. Note that the

methods based on pre-defined concepts must bridge the se-

mantic gap between the query specification and the pre-

defined concept set. On the other hand, we leverage the

web to discover concepts. Our approach follows the same

protocol as [5] which performs the same task. Using the

same initial concepts as [5], our method obtains 5 times

the mAP as that of [5]. Fig. 5 shows the effect of each

stage in the pipeline. Replacing the initial set of con-

cepts by action based pair-concepts provides the maximum

gain in performance of ∼3.7% (4.9% to 8.61%). Next,

co-occurrence based pruning improves the mAP by 1.8%

(8.61% to 10.4%). Calibration of detectors and instance

level pruning improves the mAP score to 10.85%. Finally,

adapting each detector on the test dataset and using motion

information allows us reach a mAP of 11.81%. The perfor-

mance is low for events 21 to 30 because there are only ∼25

videos for these events while events 6-15 have around 150

videos each in the test set.

To illustrate that the proposed pruning methods remove

concepts with low AP, in Fig 4 we plot AP scores of ini-

tial unary concepts, all pair-concepts, part of speech based

concepts and the concepts after co-occurrence based prun-

ing. Note that almost 50% of pair-concepts had an average

precision below 10% before pruning. After part of speech

and co-occurrence based pruning, our approach is able to

remove all these low scoring concepts in this example.

We would note that Hierarchical Temporal Pooling pro-

vides significant improvement in performance for this task.

In Table 3, we show mAP scores for different pooling meth-

ods for initial, pair-concepts and after concept pruning (be-

fore Detector Retraining). It is clear that Hierarchical Tem-

poral Pooling improves performance in all three cases. We

also observe that concepts after pruning have best perfor-

mance across all pooling methods .

Table 3. Pooling Results

Initial All Pairs After Pruning

Avg. Pooling 2.84% 4.54% 5.94%

Max. Pooling 4.45% 6.87% 9.01%

Hierarchical 4.91% 7.54% 10.85%

8. Conclusion

We demonstrated that carefully pruning concepts can

significantly improve performance for event retrieval when

no training instances of an event are available, because even

if concepts are visually salient, they may not be relevant to a

specific event or video. Our approach does not require man-

ual annotation, as it obtains weakly annotated data through

web search, and is able to automatically calibrate and adapt

trained concepts to new domains.
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