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Figure 1. A personalized aging face by the proposed method. The personalized aging face contains the aging layer (e.g.,

wrinkles) and the personalized layer (e.g., mole). The former can be seen as the corresponding face in a linear combination

of the aging patterns, while the latter is invariant in the aging process. For better view, please see ×3 original color PDF.

Abstract

In this paper, we aim to automatically render aging faces

in a personalized way. Basically, a set of age-group specific

dictionaries are learned, where the dictionary bases cor-

responding to the same index yet from different dictionar-

ies form a particular aging process pattern cross different

age groups, and a linear combination of these patterns ex-

presses a particular personalized aging process. Moreover,

two factors are taken into consideration in the dictionary

learning process. First, beyond the aging dictionaries, each

subject may have extra personalized facial characteristics,

e.g. mole, which are invariant in the aging process. Sec-

ond, it is challenging or even impossible to collect faces

of all age groups for a particular subject, yet much eas-

ier and more practical to get face pairs from neighboring

age groups. Thus a personality-aware coupled reconstruc-

tion loss is utilized to learn the dictionaries based on face

pairs from neighboring age groups. Extensive experiments

well demonstrate the advantages of our proposed solution

over other state-of-the-arts in term of personalized aging

progression, as well as the performance gain for cross-age

face verification by synthesizing aging faces.

† This work was performed when X. Shu was visiting National Uni-

versity of Singapore.

∗ Corresponding author.

1. Introduction

Age progression, also called age synthesis [6] or face ag-

ing [33], is defined as aesthetically rendering a face image

with natural aging and rejuvenating effects for an individ-

ual face. It has found application in some domains such as

cross-age face analysis [19], authentication systems, finding

lost children, and entertainment. There are two main cate-

gories of solutions to the age progression task: prototyping-

based age progression [13, 36, 7] and modeling-based age

progression [33, 35, 17]. Prototyping-based age progres-

sion transfers the differences between two prototypes (e.g.,

average faces) of the pre-divided source age group and tar-

get age group into the input individual face, of which its age

belongs to the source age group. Modeling-based age pro-

gression models the facial parameters for the shape/texture

synthesis with the actual age (range).

Intuitively, the natural aging process of a specific human

usually follows the general rules in the aging process of all

humans, but this specific process should also contain some

personalized facial characteristics, e.g., mole, birthmark,

etc., which are almost invariant with time. Prototyping-

based age progression methods cannot well preserve this

personality of an individual face, since they are based on

the general rules in the human aging process for a relatively

large population. Modeling-based age progression methods

do not specially consider these personalized details. More-

over, they require dense long-term (e.g. age span exceeds

20 years) face aging sequences for building the complex

models. However, collecting these dense long-term face
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aging sequences in the real world is very difficult or even

unlikely. Fortunately, we have observed that the short-term

(e.g. age span smaller than 10 years) face aging sequences

are available on the Web, such as photos of celebrities of

different ages on Facebook/Twitter. Some available face

aging databases [5, 1, 25] also contain the dense short-term

sequences. Therefore, generating personalized age progres-

sion for an individual input by leveraging short-term face

aging sequences is more feasible.

In this paper, we propose an age progression method

which automatically renders aging faces in a personalized

way on a set of age-group specific dictionaries, as shown

in Figure 1. Primarily, based on the aging-(in)variant pat-

terns in the face aging process, an individual face can be

decomposed into an aging layer and a personalized layer.

The former shows the general aging characteristics (e.g.,

wrinkles), while the latter shows some personalized facial

characteristics (e.g., mole). For different human age groups

(e.g., 11-15, 16-20, ...), we design corresponding aging dic-

tionaries to characterize the human aging patterns, where

the dictionary bases with the same index yet from different

aging dictionaries form a particular aging process pattern

(e.g., they are linked by a dotted line in Figure 1). There-

fore, the aging layer of the aging face can be represented by

a linear combination of these patterns with a sparse coeffi-

cient (e.g., [0, 0.38, 0, 0, 0.20, · · · ]), where the redundancy

between the aging layer and the input face can be defined

as the personalized layer, which is invariant in the aging

process. The motivation for the sparsity is to use fewer dic-

tionary bases for reconstruction such that the reconstructed

aging layer of face can be shaper and less blurred. Finally,

we render the aging face in the future age range for the indi-

vidual input by synthesizing the represented aging layer in

this age range and the personalized layer.

To learn a set of aging dictionaries, we use the more prac-

tical short-term face aging pairs as the training set instead

of the possibly unavailable long-term face aging sequences.

Based on the aging relationships between a face aging pair

of the same person covering two neighboring age groups,

we assume that the sparse representation of a younger-age

face w.r.t. the younger-aging dictionary can represent its

older-age face w.r.t. the older-aging dictionary, excluding

the personalized layer. The distribution of face aging pairs

is shown in the upper part of Figure 2. We can see that:

(1) each age group has its own aging dictionary, and ev-

ery two neighboring age groups are linked by the collected

dense short-term face aging pairs; (2) one particular may

appear in two different neighboring-group face pairs, which

makes all the age groups linked together; (3) the person-

alized details (the personalized layer) contain the personal-

ized facial characteristics. These three properties are able to

guarantee that all aging dictionaries can be simultaneously

trained well by a personality-aware coupled reconstruction

loss on the short-term face aging pairs.

Our main contributions in this paper are two-fold: (1) we

propose a personalized age progression method to render

aging faces, which can preserve the personalized facial

characteristics; (2) since it is challenging or even impossi-

ble to collect intra-person face sequences of all age groups,

the proposed method only requires the available short-term

face aging pairs to learn all aging dictionary bases of human

aging, which is more feasible. Extensive experiments well

validate the advantage of our proposed solution over other

state-of-the-arts w.r.t. personalized aging progression, as

well as the performance gain for cross-age face verification

by synthesizing aging faces.

2. Related Work

Age progression has been comprehensively reviewed in

literature [6, 23, 24]. As one of the early studies, Burt et

al. [4] focused on creating average faces for different ages

and transferring the facial differences between the average

faces into the input face. This method gave an insight into

the age progression task. Thereafter, some prototyping-

based aging methods [36, 13] were proposed with differ-

ent degrees of improvements. In particular, the paper [13]

leveraged the difference between the warped average faces

(instead of the original average faces) based on the flow

from average face to input face. A drawback of these meth-

ods is that the aging speed for each human is synchronous

and no personalized characteristic is saved, which leads

to similar aging results of many faces to each other. Al-

though some researchers target at individual-specific face

aging [26, 10, 11], lack of personality for aging faces is still

a challenging problem.

Modeling-based age progression which considers shape

and texture synthesis simultaneously is another popular

idea [2]. There have been quite a quantity of modeling-

based age progression methods proposed, including active

appearance model [14], craniofacial growth model [22],

and-or graph model [33], statistical model [21] and implicit

function [3, 28], etc. Generally, to model large appearance

changes over a long-term face aging sequence, modeling-

based age progression requires sufficient training data. Suo

et al. [32] attempted to learn long-term aging patterns from

available short-term aging databases by a proposed concate-

national graph evolution aging model.

3. Personalized Age Progression with Aging

Dictionary

3.1. Overview of Our Framework

The framework of the proposed personalized age pro-

gression is plotted in Figure 2. The offline phase is de-

scribed as follows. First, we collect the dense short-term

aging pairs of the same persons from the Web and also from
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Figure 2. Framework of the proposed age progression. Dg denotes a aging dictionary of the age group g. In the offline phase,

we collect short-term aging face pairs and then train the aging dictionary. In the online phase, for an input face, we firstly

render its aging face in the nearest neighboring age group. Taking this aging face as the input of the aging face in the next

age group, we repeat this process until all aging faces are rendered. For better view, please see ×3 original color PDF.

available databases. Second, for each age group, we design

a corresponding aging dictionary to represent its aging char-

acteristics. Third, all aging dictionaries are simultaneously

trained by a personality-aware coupled dictionary learning

model on the collected database. In the online phase, for an

input face, we first construct the aging face in the nearest

neighboring age group by the corresponding aging dictio-

nary with an implicitly common coefficient, as well as a

personalized layer. After that, taking this new aging face as

the input of aging synthesis in the next age group, we repeat

this process until all aging faces have been rendered. More

details will be described in Section 3.4.

3.2. Formulation

We divide the human aging process into G age groups

(each group spans less than 10 years) in this paper. Let

{x1
i , · · · , x

g
i , · · · , xG

i } denote a selected face aging se-

quence of the person i, where the face photo x
g
i ∈ R

f

falls into the age group g (f is the number of pixels in

the face photo). Assume we have L face aging sequences

{x1i , x2i , · · · , xGi }
L
i=1 in total. For the age group g (g =

1, 2, · · · , G), we define its aging dictionary Bg to capture

the aging characteristics, which will be learned in the fol-

lowing.

Personality-aware formulation. Our aging dictionary

learning model considers the personalized details of an indi-

vidual when representing the face aging sequences on their

own aging dictionaries. Since the personalized characteris-

tics are aging-irrelevant and -invariant, such as mole, birth-

mark, permanent scar, etc., we plan to add a personalized

layer pi ∈ R
f for a face aging sequence {x1i , x2i , · · · , xG

i }
to indicate the personalized details in the human aging pro-

cess. Moreover, considering the computational efficiency,

we employ PCA projection to reduce the dimension of the

dictionary. Let Hg ∈ R
f×m denote the PCA projected ma-

trix of all data in the age group g, and the original aging

dictionary Bg is redefined as Dg ∈ R
m×k, where k is the

number of dictionary bases. All aging dictionaries com-

pose an overall aging dictionary D = [D1,D2, · · · ,DG] ∈
R

m×K , where K = k × G. So far, the aging face x
g+j
i

of x
g
i equals the linearly weighted combination of the ag-

ing dictionary bases in the age group g + j and the per-

sonalized layer pi, i.e., x
g+j
i ≈ Hg+jDg+jai + pi for

j = 1, · · · , G − g, where ai and pi are the common

sparse coefficient and the personalized layer, respectively.

For L face aging sequences {x1i , · · · , xG
i }

L
i=1 covering all

age groups, a personality-aware dictionary learning model
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is formulated as follows,

min
{Dg}G

g=1
,

{ai,pi}
L
i=1

G
∑

g=1

L
∑

i=1

{

‖xg
i −H

gDgai−pi‖
2

2
+γ‖pi‖

2

2
+λ‖ai‖1

}

s.t. ‖Dg(:, d)‖
2
≤ 1, ∀d∈{1, · · · , k}, ∀g∈{1, · · · , G},

(1)

where Dg(:, d) denotes the d-th column (base) of Dg , and

parameters λ and γ control the sparsity penalty and regular-

ization term, respectively. Dg(:, d) is used to represent the

specific aging characteristics in the age group g.

Short-term coupled learning. We have observed that

one person always has the dense short-term face aging pho-

tos, but no long-term face aging photos. Collecting these

long-term dense face aging sequences in the real world is

very difficult or even unlikely. Therefore, we have to use the

shot-term face aging pairs instead of the long-term face se-

quences. Let x
g
i ∈ R

f denote the i-th face in the age group

g, and y
g
i ∈ R

f denote the i-th face of the same person in

the age group g +1, where g = 1, 2, · · · , G − 1. Let ev-

ery two neighboring age groups share n face pairs, and then

there are N = n× (G− 1) face aging pairs in total. For the

face aging pairs {x
g
i , y

g
i }

n
i=1 covering the age group g and

g+1 (g = 1, 2, · · · , G − 1), we reformulate a personality-

aware coupled dictionary learning model to simultaneously

learn all aging dictionaries, i.e.,

min
{Dg}G

g=1
,

{{ag
i
,p

g
i
}n
i=1

}G−1

g=1

G−1
∑

g=1

n
∑

i=1

{

‖xg
i −HgDga

g
i −p

g
i ‖

2

2
+γ ‖pg

i ‖
2

2

+
∥

∥y
g
i −Hg+1Dg+1a

g
i −p

g
i

∥

∥

2

2
+λ‖agi ‖1

}

s.t. ||Dg(:, d)||2 ≤ 1, ∀d∈{1, · · · , k}, ∀g∈{1, · · · , G}.
(2)

In Eqn. (2), every two neighboring aging dictionaries Dg

and Dg+1 corresponding to two age groups are implicitly

coupled via the common reconstruction coefficient a
g
i , and

the personalized layer p
g
i is to capture the personalized de-

tails of the person i, who has the face pair {x
g
i , y

g
i }. It is

noted that face aging pairs are overlapped, which guaran-

tees that we can train all aging dictionaries within a unified

formulation. Let D = [D1, · · · ,DG] ∈ R
m×K , Pg =

[pg
1, · · · ,p

g
n] ∈ R

f×n, P = [P1, · · · ,PG−1] ∈ R
f×N ,

Ag = [ag1, · · · ,a
g
n] ∈ R

k×n and A = [A1, · · · ,AG−1] ∈
R

K×N , and Eqn. (2) can be rewritten in the matrix form

after some algebratic steps

min
D,A,P

G−1
∑

g=1

{

‖Xg −HgDgAg −Pg‖
2

F + γ ‖Pg‖
2

F

+
∥

∥Yg −Hg+1Dg+1Ag −Pg
∥

∥

2

F
+ λ‖Ag‖

1

}

s.t. ||Dg(:, d)||2 ≤ 1, ∀d∈{1,· · ·,k}, ∀g∈{1, · · ·, G},
(3)

where ||Ag||1 =
∑n

i=1
||agi ||1.

3.3. Optimization Procedure

The objective function in Eqn. (3) is convex w.r.t. A, D

and P separately, which can be iteratively solved through

three alternating sub-procedures of optimization. Specifi-

cally, we fix the other unknown variables when updating

one unknown variable. This process iterates until conver-

gence. The iteration steps shall end when the relative cost

of the objective function stays unchanged. The proposed

aging dictionary learning is summarized in Algorithm 1.

Updating A. When updating A, we fix D and P and

select the terms related to A in Eqn. (3):

min
A

G−1
∑

g=1

{

‖Xg −WgAg −Pg‖
2

F

+
∥

∥Yg −Wg+1Ag −Pg
∥

∥

2

F
+ λ‖Ag‖

1

}

,

(4)

where Wg = HgDg and Wg+1 = Hg+1Dg+1. Let Ug =
Xg − Pg , Vg = Yg − Pg , and then we also have

min
A

G−1
∑

g=1

{

∥

∥

∥

∥

[

Ug

Vg

]

−

[

Wg

Wg+1

]

Ag

∥

∥

∥

∥

2

F

+λ‖Ag‖
1

}

. (5)

Eqn. (5) drops into a classical Lasso problem, which is ef-

fectively solved by the SPAMS toolbox1 in this paper.

Updating P. By fixing D, A, and omitting the unrelated

terms of Eqn. (3), we have the objective function w.r.t. P:

min
P

G−1
∑

g=1

{

‖Zg−Pg‖
2

F +‖Rg−Pg‖
2

F +γ‖Pg‖
2

F

}

, (6)

where Zg = Xg −WgAg , and Rg = Yg −Wg+1Ag .

For g = 1, 2, · · · , G−1, solving Eqn. (6), and we obtain the

updating way of P = [P1, · · · ,Pg, · · ·PG−1] as follows,

Pg = (Zg +Rg)/(2 + γ). (7)

Updating D. We update D by fixing A and P. Specif-

ically, we update Dc (c = 1, 2, · · · , G) while fixing all the

remaining dictionaries excluding Dc. We omit the terms

which are independent of D in Eqn. (3):

min
{Dc}G

c=1

G−1
∑

c=1

{

||Uc−HcDcAc||2F +
∥

∥Vc−Hc+1Dc+1Ac
∥

∥

2

F

}

,

(8)

where Uc = Xc − Pc, and Vc = Yc − Pc. Solving

Eqn. (8), and we can obtain a closed-form solution of Dc.

Dc
(

ǫ1A
c−1(Ac−1)

T
+ ǫ2A

c(Ac)
T
)

− (Hc)T
(

ǫ1V
c−1(Ac−1)

T
+ ǫ2U

c(Ac)
T
)

= 0,
(9)

where two indicators ǫ1 and ǫ2 are defined as follows,
⎧

⎨

⎩

ǫ1 = 0, ǫ2 = 1, for c = 1;
ǫ1 = 1, ǫ2 = 1, for c = 2, 3, · · · , G− 1;
ǫ1 = 1, ǫ2 = 0, for c = G.

(10)

1http://spams-devel.gforge.inria.fr/
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Algorithm 1 Aging Dictionary Learning (Offline)

Input: Face aging pairs {Xg,Yg}G−1

g=1 , k, λ and γ.

Output: D = [D1,D2, · · · ,Dc, · · · ,DG].
Initialization: D=[D1, · · · ,Dc, · · · ,DG], A=[A1, · · · ,Ag,

· · · ,AG−1], P=[P1, · · · ,Pg, · · · ,PG−1], and iter ← 1.

1: Normalize{Xg,Yg}G−1

g=1 and calculate the projected matrices

H1, · · · ,Hc, · · · ,HG.

2: repeat

3: for g = 1, 2, · · · , G− 1 do

4: Update Ag with Eqn. (5).

5: end for

6: for c = 1, 2, · · · , G do

7: Update Dc with Eqn. (9).

8: Project the columns of Dc onto the unit ball.

9: end for

10: for g = 1, 2, · · · , G− 1 do

11: Update Pg with Eqn. (7).

12: end for

13: iter ← iter + 1.

14: until Convergence

3.4. Age Progression Synthesis

After learning the aging dictionary D = [D1, · · · ,DG],
for a given face x belonging to the age group g2, we can

convert it into its aging face sequence {xg+1, ...,xG}. In

the aging dictionary learning phase (the offline phase), the

neighboring dictionaries are linked via the short-term (i.e.,

covering two age groups) face aging pairs as the training

data. Our aging synthesis (the online phase) should be con-

sistent with this training phase. Therefore, we first gen-

erate the aging face xg+1 in the nearest neighboring age

group (i.e., age group g+1) by the learned aging dictionary

with one common coefficient, as well as the personalized

layer. The coefficient and personalized layer are optimized

by solving the following optimization:

min
ag,pg

∥

∥

∥

∥

[

x

xg+1(0)

]

−

[

Wg

Wg+1

]

ag −

[

pg

pg

]
∥

∥

∥

∥

2

2

+ λ‖ag‖
1
+ γ ‖pg‖

2

2
,

(11)

where xg+1(0) is an initial estimation. Eqn. (11) can be

solved by alternatively updating ag and pg until conver-

gence, the updating ways are the same as reported in Sec-

tion 3.3. After that, taking this new aging face xg+1 in the

current age group g+1 as the input of aging synthesis in the

next age group (i.e., age group g+2), we repeat this process

until all aging faces have been rendered. Figure 2 shows

this age synthesis process.

More specifically, if we render an aging face xg+1+j

for the input xg+j , an initial setting of xg+1+j is needed.

In the scenario of age progression, we use the average

2Here, its age range and gender can also be estimated by an age esti-

mator and a gender recognition system in paper [15], respectively.

Algorithm 2 Age Progression Synthesis (Online)

Input: Input face x in age range of age group g, average faces

{rg}Gg=1, λ, γ, and t ← 1.

Output: Aging faces xg+1,xg+2, · · · ,xG.

Initialization: xg+1(0) = rg+1, for g = 1, 2, · · · , G− 1.

1: while t < 4 do

2: xg+1(t) = xg+1(t− 1), for g = 1, 2, · · · , G− 1.

3: for c = g, g + 1, · · · , G− 1 do

4: Optimize âg and p̂g of Eqn. (11) with input pairs

{xg,xg+1(t)}.

5: Calculate xg+1(t) = Hg+1Dg+1âg − p̂g .

6: end for

7: t ← t+ 1.

8: end while

9: xg+1 = xg+1(t− 1), for g = 1, 2, · · · , G− 1.

face rg+1+j of the age group g + 1 + j3 as the ini-

tialization of yg+1+i(0) = rg+1+i. However, these

outputs yg+1(1) for g = 1, 2, · · · , G − 1 are not de-

sired due to the facial differences between individual

face and average face. We repeat the rendering of

all aging faces with the new input pairs {xg,xg+1(1)},

{xg+1(2),xg+2(1)},· · · ,{xG−1(2),xG(1)}. We find that

generally we can obtain invariable and desired aging faces

when we repeat this process three times. A visualized ex-

ample is shown in Figure 3(b). Algorithm 2 describes the

age progression synthesis in detail.

4. Experiments

4.1. Implementation Details

Data collection. To train the high-quality aging dictio-

nary, it is crucial to collect sufficient and dense short-time

face aging pairs. We download a large number of face pho-

tos covering different ages of the same persons from Google

and Bing image search, and other two available databases,

Cross-Age Celebrity Dataset (CACD) [5] and MORPH ag-

ing database [25]. The CACD database contains more than

160,000 images of 2,000 celebrities with the age ranging

from 16 to 62. The MORPH database contains 16,894 face

images from 4,664 adults, where the maximum and aver-

age age span are 33 and 6.52 years respectively. Both of

CACD and MORPH contain quite a number of short-term

intra-person photos. Since these faces are mostly “in the

wild", we select the photos with approximately frontal faces

(−15◦ to 15◦) and relatively natural illumination and ex-

pressions. Face alignment [37] are implemented to obtain

aligned faces. To boost the aging relationship between the

neighboring aging dictionaries, we use collection flow [12]

to correct all the faces into the common neutral expression.

We divide all images into 18 age groups (i.e., G = 9): 0-5,

6-10, 11-15, 16-20, 21-30, 31-40, 41-50, 51-60, 61-80 of

3In this paper, the average faces are computed by referring to [13].
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Figure 3. Convergence curve and three-times aging re-

sults. (a) Convergence curve of the optimization procedure.

(b) Faces enclosed by the blue-line box and yellow-line box

are the input face and average faces, respectively. The aging

faces in the 2nd, 3rd and 4th row are the aging outputs of

the 1st, 2nd and 3rd time of rendering, respectively.

two genders, and find that no person has aging faces cover-

ing all aging groups. Actually, the aging faces of most sub-

jects fall into only one or two age groups (i.e. most persons

have face photos covering no more than 20 years). There-

fore, we further select those intra-person face photos which

densely fall into two neighboring age groups. Finally, there

are 1600 intra-person face pairs for training (800 pairs for

males, and 800 pairs for females). Every two neighboring

age groups for one gender share 100 face aging pairs of the

same persons and each age group, except for the “0-5" age

group and the “61-80" age group, has 200 face photos. We

train two aging dictionaries for male and female, respec-

tively.

PCA projection. Take the male subset as an example.

We stack s images in the age group g as columns of a data

matrix Mg∈R
f×s, where s=100 for g ∈ {1, 9}, otherwise

s = 200. The SVD of Mg is Mg = UgSg(Vg)T . We

define the projected matrix Hg = Ug(:, 1 : m) ∈ R
f×m,

where Ug(:, 1 :m) is truncated to the rank = m (m < f ).

We use the same strategy for the female subset.

Parameter setting. The parameters λ and γ in Eqn. (3)

are empirically set as λ = 0.01 and γ = 0.1. The number

of bases of each aging dictionary is set as k = 70. In Fig-

ure 3(a), we show the convergence properties of aging dic-

tionary learning for male and female subsets. As expected,

the objective function value decreases as the iteration num-

ber increases. This demonstrates that Algorithm 1 achieves

convergence after about 30 iterations.

Aging evaluation. We adopt three strategies to compre-

hensively evaluate the proposed age progression. First, we

qualitatively evaluate the proposed method on the FGNET

database [1], which is a publicly available database and has

been widely used for evaluating face aging methods. This

database contains 1,002 images of 82 persons, and the age

range spans from 0 to 69: about 64% of the images are from

children (with ages < 18), and around 36% are from adults

(with ages � 18). We show the age progression for every

photo in the FGNET dataset, and do qualitative compari-

son with the corresponding ground truth (available older

photo) for each person. For reference, we also reproduce

some aging results of other representative methods. Sec-

ond, we conduct user study to test the aging faces of our

method compared with the prior works which reported their

best aging results. Our method uses the same inputs as in

these prior works. Third, cross-age face recognition [5, 40]

and cross-age face verification [8, 39] are challenging in

extreme facial analysis scenarios due to the age gap. A

straightforward way for cross-age facial analysis is to use

the aging synthesis to normalize the age gap. Specifically,

we can render all the faces to their aging faces within the

same age range, and then employ the existing algorithms to

conduct face verification. Inspired by this, we can also use

the face verification algorithm to prove that the pair of aging

face and ground truth face (without age gap) is more similar

than the original face pair with age gap.

4.2. Qualitative Comparison with Ground Truth

We take each photo in FGNET as the input of our age

progression. To well illustrate the performance of the pro-

posed age progression, we compare our results with the

released results in an online fun demo: Face Transformer

demo (FT Demo)4, and also with those by a state-of-the-

art age progression method: Illumination-Aware Age Pro-

gression (IAAP) [13]. By leveraging thousands of web

photos across age groups, the authors of IAAP presented

a prototyping-based age progression method for automatic

age progression of a single photo. FT Demo requires man-

ual location of facial features, while IAAP uses the common

aging characteristics of average faces for the age progres-

sion of all input faces.

Some aging examples are given in Figure 4, cover-

ing from baby/childhood/teenager (input) to adult/agedness

(output), as well as from adult (input) to agedness (output).

By comparing with ground truth, we can see that the aging

results of our method look more like the ground truth faces

than the aging results of other two methods. In particular,

our method can generate personalized aging faces for differ-

ent individual inputs. In terms of texture change, the aging

face of ours in Figure 4(a) has white mustache that is closer

to ground truth; in shape change, the aging faces of ours

in Figure 4(b)(e)(f) have more approximate facial outline to

the ground truth; in aging speed, the faces of FT Demo and

IAAP in Figure 4(c) are aging more slowly, while one of

FT Demo in Figure 4(d) is faster. Overall, the age speed

of IAAP is slower than ground truth since IAAP is based

on smoothed average faces, which maybe loses some fa-

cial textual details, such as freckle, nevus, aging spots, etc.

FT Demo performs the worst, especially in shape change.

Our aging results in Figure 4 are more similar to the ground

4http://cherry.dcs.aber.ac.uk/Transformer/
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(a) Textual change

3 adult 35-44 31-40 39

Input FT Demo IAAP Ours Ground truth
(b) Shape change (c) Aging speed

(e) Shape change(d) Aging speed (f) Shape change

Ground truth

42 older 68-80 61-80 69

Input FT Demo IAAP Ours

Ground truth

21 adult 41-50 41-50 44

Input FT Demo IAAP Ours Ground truthGround truth

5 adult 35-44 31-40 36

Input FT Demo IAAP Ours

18 adult 35-44 31-40 37

Input FT Demo IAAP Ours Ground truth

30 adult 35-44 41-50 41

Input FT Demo IAAP Ours

Figure 4. Comparison with ground truth and other methods. Each group includes an input face, a ground truth and three

aging results of our method and other two methods. The number or word under each face photo represents the age range

(e.g., 61-80) or the age period (e.g., older). For convenience of comparison, black background has been added to each face

photo. For better view, please see ×3 original color PDF.

truth, which means our method can produce much more per-

sonalized results.

4.3. Quantitative Comparison with Prior Works

Some prior works on age progression have posted their

best face aging results with inputs of different ages, includ-

ing [33], [27], [23], [18], [20], [16], [17], [30], [29], [38]

and [13]. There are 246 aging results with 72 inputs in to-

tal. Our age progression for each input is implemented to

generate the aging results with the same ages (ranges) of the

posted results.

We conduct user study to compare our aging results with

the published aging results. To avoid bias as much as pos-

sible, we invite 50 adult participants covering a wide age

range and from all walks of life. They are asked to ob-

serve each comparison group including an input face, and

two aging results (named “A" and “B") in a random order,

and tell which aging face is better in terms of Personality

and Reliability. Reliability means the aging face should be

natural and authentic in the synthetic age, while Person-

ality means the aging faces for different inputs should be

identity-preserved and diverse. All users are asked to give

the comparison of two aging faces using four schemes: “A

is better", “B is better", “comparable", and "neither is ac-

cepted", respectively. We convert the results into ratings to

quantify the results.

There are 50 ratings for each comparison, 246 compar-

ison groups, and then 12,300 ratings in total. The voting

results are as follows: 45.35% for ours better; 36.45% for

prior works better; and 18.20% for “comparable"; 0 for

“neither is accepted". The voting results demonstrate that

our method is superior to prior works. We also show some

comparison groups for voting in Figure 5. Overall, for the

input face of a person in any age range, our method and

these prior works can generate an authentic and reliable ag-

ing face of any older-age range. This is consistent with the

gained relatively-high voting support. In particular, for dif-

ferent inputs, our rendered aging faces have more person-

alized aging characteristics, which further improves the ap-

pealing visual sense. For example in Figure 5, the aging

faces of ours in the same age range in the 1st and the 2nd

group of the 1st row have different aging speeds: the for-

mer is obviously slower than the latter; the aging faces of

prior works with different inputs in the 1st and 2nd groups

of the 3rd column are similar, while our aging results are

more diverse for different individual inputs.

4.4. Evaluation on Cross-Age Face Verification

To validate the improved performance of cross-age face

verification with the help of the proposed age progression,

we prepare the intra-person pairs and inter-person pairs with

cross ages on the FGNET database. By removing unde-

tected face photos and face pairs with age span no more

than 20 years, we select 1,832 pairs (916 intra-person pairs

and 916 inter-person pairs), called “Original Pairs". Among

the 1,832 pairs, we render the younger face in each pair to

the aging face with the same age of the older face by our

age progression method. Replacing each younger face with

the corresponding aging face, we newly construct 1,832

pairs of aging face and older face, called “Our Synthetic

Pairs". For fair comparison, we further define “Our Syn-

thetic Pairs-I" as using the given tag labels of FGNET, while

“Our Synthetic Pairs-II" is using the estimated gender and

age from a facial trait recognition system [15]. To evalu-

ate the performance of our age progression, we also prepare

the “IAAP Synthetic Pairs-I" and “IAAP Synthetic Pairs-

II" by the state-of-the-art age progression method in [13].

Figure 6(a) plots the pair setting.

The detailed implementation of face verification is given

as follows. First, we formulate a face verification model

with deep Convolutional Neural Networks (deep Con-

vNets), which is based on the DeepID2 algorithm [31].

Since we focus on the age progression in this paper, please

refer to [31, 34] for more details of face verification with

deep ConvNets. Second, we train our face verification

model on the LFW database [9], which is designed for face
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6-10 16-20 16-20

21-30 40-50 40-50 21-30 40-50 40-50 11-15 21-30 21-30 0-5 11-15 11-15 0-5 16-20 16-20

21-30 61-80 61-80 0-5 6-10 6-10 6-10 21-30 21-30 6-10 51-60 51-60 6-10 21-30 21-30

21-30 31-40 31-40

41-50 61-80 61-80

6-10 11-15 11-15 0-5 16-20 16-20 0-5 16-20 16-20

20-30 40-50 40-50 6-10 61-80 61-80 21-30 61-80 61-80 0-5 61-80 61-80

Input Ours Prior works Input Ours Prior works Input Ours Prior worksInput Ours Prior works Input Ours Prior works

Figure 5. Comparison with prior works. Each group includes an input face and two aging results of ours and prior works.

The number under each face photo represents the age range. Some worse results from our method are enclosed by blue box.

For convenience of comparison, black background has been added to each face photo. Best viewed in original PDF file.

verification. Third, we test the face verification on Orig-

inal Pairs, IAAP Synthetic Pairs and Our Synthetic Pairs,

respectively.

The false acceptance rate-false rejection rate (FAR-FRR)

curves and the equal error rates (EER) on original pairs and

synthetic pairs are shown in Figure 6. We can see that the

face verification on Our Synthetic Pairs achieves lower ERR

than on Original Pairs and IAAP Synthetic Pairs. This il-

lustrates that the aging faces by our method can effectively

mitigate the effect of age gap in cross-age face verification.

The results also validate that, for an given input face, our

method can render a personalized and authentic aging face

closer to the ground truth than the IAAP method. Since

the estimated age for an individual is more consistent with

human aging tendency, Our/IAAP Synthetic Pairs-II outper-

forms Our/IAAP Synthetic Pairs-I.

5. Conclusions and Future Work

In this paper, we proposed a personalized age progres-

sion method. Basically, we design multiple aging dictionar-

ies for different age groups, in which the aging bases from

different dictionaries form a particular aging process pat-

tern across different age groups, and a linear combination of

these patterns expresses a particular aging process. More-

over, we define the aging layer and the personalized layer

for an individual to capture the aging characteristics and

the personalized characteristics, respectively. We simulta-

neously train all aging dictionaries on the collected short-

term aging database. Specifically, in two arbitrary neighbor-

ing age groups, the younger- and older-age face pairs of the

same persons are used to train coupled aging dictionaries

with the common sparse coefficients, excluding the specific

Age:11 Age:32

Age progression

Age:31-40 Age:32

Original pair

Synthetic pair

(a) Pair setting.
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(b) FAR-FRR curve.

Pair settings Original Pairs
IAAP Synthetic Pairs Our Synthetic Pairs

I II I II

EER (%) 14.89 10.91 10.36 9.72 8.53

(c) Equal error rates (EER) (%).

Figure 6. Pair setting and performance of face verification.

Our Synthetic Pairs use our aging synthesis method, while

IAAP Synthetic Pairs utilize the IAAP method [13]. “I" and

“II" denote using actual age and estimated age, respectively.

personalized layer. For an input face, we render the person-

alized aging face sequence from the current age to the future

age step by step on the learned aging dictionaries. In future

work, we consider utilizing the bilevel optimization for the

personality-aware coupled dictionary learning model.
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