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Abstract

This paper presents a fast, high-performance method for

super resolution with external learning. The first contri-

bution leading to the excellent performance is a bimodal

tree for clustering, which successfully exploits the antipo-

dal invariance of the coarse-to-high-res mapping of natural

image patches and provides scalability to finer partitions

of the underlying coarse patch space. During training an

ensemble of such bimodal trees is computed, providing dif-

ferent linearizations of the mapping. The second and main

contribution is a fast inference algorithm, which selects the

most suitable mapping function within the tree ensemble

for each patch by adopting a Local Naive Bayes formula-

tion. The experimental validation shows promising scala-

bility properties that reflect the suitability of the proposed

model, which may also be generalized to other tasks. The

resulting method is beyond one order of magnitude faster

and performs objectively and subjectively better than the

current state of the art.

1. Introduction

Ongoing research on example-based super resolution has

recently provided large performance improvements in terms

of accuracy and efficiency thanks to the introduction of the

latest machine learning approaches. One possible strategy

is internal learning [10, 8, 29], where the cross-scale self-

similarity property of small (square) natural image patches

is exploited to regress the appearance of high-resolution

patches. Despite the nice properties of these methods,

e.g. their implicit adaptivity to the image contents, an im-

portant practical drawback is the computational cost in-

duced by the required nearest-neighbor search.

In order to alleviate this problem, one possibility is to ex-

ploit the latest and efficient approximate nearest-neighbor

search algorithms [2, 13, 11, 22, 25]. The alternative is the

progressive reduction of the search range for similar patches

presented by the latest best performing internal learning

methods [8, 29]. The evolution from the work of Glasner et

al. [10] to that of Yang et al. [29] is remarkable: The search
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Figure 1. The proposed Naive Bayes Super-Resolution Forest

clearly improves PSNR and runtime in comparison to the state of

the art. (SRCNN uses the public slower implementation.)

on the entire multi-scale pyramid of each intermediate im-

age towards the desired scale in the former is reduced to an

iterated in-place example selection (one of just 9 possible

patches in the immediately lower scale) in the latter thanks

to the incorporation of additional prior knowledge from of-

fline training. The exploitation of this additional prior also

requires a search, which is common to most external learn-

ing approaches as we observe below. An additional lim-

itation in internal learning methods exploiting cross-scale

self-similarity is that the processing must be iteratively ap-

plied in small scaling factors to fullfill the self-similarity

assumption, which translates into a costlier processing.

In contrast, recent external learning approaches [23, 19,

24, 20] cast the super-resolution problem as a mapping from

either low-res or coarse (upscaled by interpolation) patches

to high-res ones in a single step. Since the mapping func-

tion is non-linear, it is beneficious to properly split it into

locally linear mapping functions. During an offline training

stage, low-res or coarse patches can be clustered (e.g. ex-

tracting centroids with K-SVD [1]) under the assumption of

mapping function linearity close to each centroid. This ap-

proach, which contrasts with former efforts in costly sparse

coding-based regression [30, 31, 18], provides a stream-

lined online inference: (1) determine the best cluster (lin-

earization) for each patch; (2) apply the precomputed linear

mapping function; and (3) reconstruct by patch overlapping.
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Contributions. We present a novel example-based super-

resolution method with external learning that provides a

fast, scalable and accurate solution by tackling the most de-

manding problem in the inference stage (i.e. the selection of

the local linearization for each patch) and the correspond-

ing training process. In more detail, the contributions of

this paper are: (1) a hierarchical manifold learning strategy

with bimodal trees that allows grouping antipodal patches

and provides fast local linearization search (Section 3); (2)

an efficient Local Naive Bayes strategy for per-patch tree

selection (Section 4); and (3) the resulting method, namely

Naive Bayes Super-Resolution Forest (NBSRF) that amply

improves speed and both objective and perceived quality in

comparison to the state of the art, as Fig. 1 reflects.

2. Related work

The super-resolution problem is that of estimating a

high-resolution version X of a low-resolution observed im-

age Y generated by the model

Y = (X ∗Hd) ↓ s, (1)

where ∗ denotes image convolution, Hd is a filter preventing

aliasing from appearing in Y and ↓ s is a downsampling

operator with scaling factor s (i.e. the desired upscaling

factor). A common asumption in the example-based super-

resolution literature is that Hd does not introduce additional

blur in Y , so the latter is assumed to be sharp. In [17] a

method is proposed, based on internal learning, to estimate

the overall blur kernel for super-resolving blurred images,

but in the following we keep the no-blur assumption to be

consistent with most recent methods. Both images X and

Y are decomposed into overlapping patches {x} and {y}.

2.1. External learning

Yang et al. [30] proposed introducing additional knowl-

edge about the scaling process by means of Sparse Coding.

During the training stage, a large set of patches extracted

from natural images and their downscaled (low-res) coun-

terparts are used to generate two coupled sparse dictionar-

ies, one for high-res Dh and another one for low-res Dl.

The inference is based on a decomposition of each low-res

patch y as a sparse linear combination of the atoms in Dl,

which results in a costly optimization process for each patch

that can be expressed as

min
α
‖y −Dlα‖

2
2 + λ‖α‖0. (2)

The data term enforces similarity between the observed

patch and the reconstruction, whereas the sparse regular-

ization enforces a small number of non-zero entries in the

decomposition α. The reconstruction of the high-res patch

x is straight-forward once α is known: x = Dhα, and the

full image reconstruction can be accomplished by overlap-

ping all reconstructed patches.

A major improvement on both speed and accuracy was

obtained by [31] with the introduction of K-SVD [1] to train

a coarse dictionary (for coarse patches only, without involv-

ing the high-res ones in the optimization) and Orthogonal

Matching Pursuit (OMP) [26] to solve the decomposition

problem (similar to the one in Eq. 2) during the inference

stage. Despite the improvements, the use of OMP dur-

ing inference is clearly the bottleneck. Consequently, An-

chored Neighbor Regression (ANR) [23] proposed to relax

the sparsity constraint in Eq. 2 and anchor the set of most

similar atoms, resulting in a L2-regularized regression that

can be computed in closed form during training:

min
α
‖y −Nl(y)α‖

2
2 + λ‖α‖22, (3)

where Nl(y) contains just the nearest neighbors within Dl

of one of the atoms. The resulting linear mapping for the

chosen atom in the dictionary is Nh(y)α, where Nh(y) is

the high-res counterpart to Nl(y) and the inference stage is

reduced to a relatively costly exhaustive nearest-neighbor

search, a matrix multiplication (locally linear mapping

function) and reconstruction by overlapping.

The Simple Functions approach of Yang and Yang [28]

proposes an alternative model where clustering is applied

directly onto low-res patches and then a separate mapping

from low-res to high-res patches is learned. Their simple

mapping function of choice is an affine transformation that

can be learned offline for each cluster. Again, a practical

limitation of the method is that the affine mapping for each

patch is determined by an exhaustive search over all possi-

ble clusters.

More recently, [19, 24] have proposed to obtain a dictio-

nary trained with K-SVD like in [23] with the difference

that, instead of learning the linear regression function of

each atom in the dictionary using only other atoms, the en-

tire set of training samples are used. This produces a better

sampling of the coarse manifold and also provides a unifi-

cation of [28] and [23].

2.2. Locally linear map search

As hinted above, perhaps the most affecting practical

bottleneck in many super-resolution approaches relying on

local linearizations of the mapping function is the exhaus-

tive search stage [23, 28, 24]. One possible solution is pre-

sented in [19], where a fast nearest-neighbor search is built

such that the clustering induced by the K-SVD dictionary

atoms can be efficiently exploited in the inference stage,

resulting in large speed-ups. The idea is to construct this

fast search strategy based on Spherical Hashing [11] to get

logarithmic-time access to the anchor points (and their cor-

responding linear mapping functions) obtained by K-SVD.

However, whereas K-SVD usually leads to a good selection
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of the most relevant dictionary atoms for reconstructing all

possible observed data, it also involves a rather slow process

that might be impractical for large training datasets.

An alternative and more uniform solution is to perform

unsupervised hierarchical clustering, e.g. [9, 16], in order to

both determine clusters of similar patches (or features) and

provide an intrinisic logarithmic-time search during the in-

ference stage. This strategy is not new to super-resolution as

the random projections approach [9] (which approximates

[16] without computing the PCA of the elements in each hi-

erarchical cluster) has already been employed for in-place

regression [29]. Very recently, [20, 12] have also proposed

to combine regressions from random tree ensembles to im-

prove the accuracy. Since hierarchical approaches are ca-

pable of solving both the clustering and efficient inference

problems, in the following we explore the applicability on

our fast and accurate super-resolution framework.

3. Hierarchical manifold learning

Our model is in essence related to [28], in the sense that

we aim at providing a direct mapping from coarse to high-

res patches by dividing the input coarse space into clusters

and then learning a locally linear mapping to the high-res

patches, and also to [24, 19], so that our mapping is actu-

ally a correction layer for an initial coarse estimation of the

high-res patch. The coarse estimate of X is thus first ob-

tained via iterative back-projection (IBP) from the low-res

input Y

X̃(n+1) := X̃(n)+Hu ∗ ((Y − (X̃(n) ∗Hd) ↓ s) ↑ s), (4)

where the superscript (n) indicates the iteration and Hu is

an interpolation filter. Typically, a small number of itera-

tions, e.g. 2 or 3, is sufficient to reach convergence. At a

patch level, the reconstruction model continues as

x = x̃+R(x̃− x̄) = x̃+R(x̃0), (5)

where R is a nonlinear regression function and x̃0 is the

mean-subtracted (or floating) version of x̃. Whereas other

approaches (e.g. [31, 23, 24, 19]) use handcrafted features

as input to the regression problem, below we explain how

features can be adaptively computed in order to select one

of the M available local linearizations Ri of R obtained

during training.

We further observe that given a patch x with a certain

structure, the scaled version αx contains the same struc-

ture with different contrast. Since this argument is valid for

both x and x̃0 when they are related by a linear transform,

it makes sense to group all patches with the same structure

by normalizing them (x̂ = x̃0‖x̃0‖
−1
2 ). The result is that all

possible patch structures lie on a unitary hypersphere cen-

tered at the origin akin to the toy example in Fig. 2 top.
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Figure 2. Top, typical unimodal partitions on a normalized-feature

space. The spherical cap (delimited by the solid line) is the frac-

tion of the manifold that can be described with a single principal

direction. Bottom, clustering for antipodal patch grouping with

unimodal and bimodal partitions. Note the more balanced parti-

tions of the (colored) data possible with the bimodal scheme.

Based on the good results in [29] for in-place example

regression one might consider a similar space partitioning

strategy, i.e. using unimodal partition trees: for each node,

split data based on the thresholding of a feature (the re-

sponse to a certain filter). This is the mechanism under-

lying the PCA tree [16], its random projection approxima-

tion [9] and also the faster k-D tree. In the latter, a set

of features is precomputed for all data and the spliting is

based on the thresholding of the most sensitive feature for

each node, whereas the PCA tree and its approximation pro-

vide an adaptive computation of relevant features during the

root-to-leaf tree traversal.

This strategy is valid when data are distributed as a thin

manifold [9]. However, inspecting the configuration of our

problem, depicted in Fig. 2 top (with all data lying on a hy-

persphere), we observe that partitioning data in this fashion

would be rather suboptimal. The resulting partition with

unimodal approaches is rather unbalanced in our setup: the

set of data lying out of the inclusion partition (projection

above threshold) is much more heterogeneus than the one

lying inside (below threshold).

3.1. Antipodal symmetry

In addition to the normalization of data, it is also impor-

tant to observe that antipodal points, i.e. x̂ and −x̂, are also
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representations of the same structure with a scaling factor.

An example of such pair of points is also shown in Fig. 2

top. Hence, an efficient hierarchical partition of the space

in our problem should aim to also keep all antipodal pairs

within the same cluster. In order to do so, the optimal met-

ric is the Absolute Value of the Cosine Similarity (AVCS),

|â · b̂|, where â and b̂ are two data on the unitary hyper-

sphere. In Fig. 2 bottom we illustrate the potentially better

balanced bimodal partitions when combined with the AVCS

metric. Note that the unimodal partitions may yield a rather

compact centered cluster and a surrounding one with high

variance vs. the more uniform bimodal partitions.

3.2. Bimodal regression tree training

During training we build our partition tree such that, for

each node, the splitting criterion is able to discriminate the

two most relevant clusters grouping antipodal data. Given

the AVCS metric, using linear strategies to discriminate

clusters, e.g. PCA, is not suitable (Fig. 2 bottom left). We

therefore need to rely on subspace clustering techniques.

For simplicity and efficiency, we adopt a modification of

k-means [14], which can be interpreted as an antipodally

invariant spherical k-means algorithm1. The modifications

of the two iterative stages of the algorithm for k classes

Ci, 1 ≤ i ≤ k result in the iteration

E-step. C
(n)
i = {x̂ : |x̂ · µ

(n)
i | ≥ |x̂ · µ

(n)
j |∀j, 1 ≤ j ≤ k}

M-step. µ
(n+1)
i = ‖

∑
x̂∈C

(n)
i

σx̂‖−1
2

∑
x̂∈C

(n)
i

σx̂,

where σ=sign(x̂ · µ
(n)
i ). The resulting partition criterion

for a node in the bimodal tree is argmaxi |µi · x̂|, i = 1, 2.

Note that this is fundamentally different from the criteria

found in unimodal trees, where only one projection takes

place. In Section 5 we discuss the advantages of using the

bimodal tree for space partitioning.

Locally linear regressors. Since during training we have

access to coarse patches and their high-res counterparts

(low-res images are generated by downscaling the set of

training images as in Eq. 1), all {x̃0}, {x̃} and {x} cor-

responding to all {x̂} lying in one of the M clusters (tree

leaves) are used to compute the local linearization of R in

the form of the regression matrix Ri, 1 ≤ i ≤ M . Let

X̃0, X̃ and X be the matrices obtained by stacking all these

(vectorized) patches as columns. The regression matrix is

obtained from Eq. 5 as

Ri = (1 + λ)(X− X̃)X̃⊤
0 (X̃0X̃

⊤
0 + λI)−1, (6)

where λ is a small regularization factor, e.g. 10−4, to avoid

numerical stability issues.

1In our experiments with Forgy (random) initialization this choice pro-

vided PSNR performance similar and in some cases even better than the

much costlier K-SVD [1].

μj(N)
 μi(1)

 

… 

Ri
(1)

 

Rj
(N)

 

T(1)
 T(N)

 

Figure 3. The main problem solved by NBSRF. Given a

regression-tree ensemble, select the tree T
(k) providing the best

local linearization of the mapping function for the given datum.

4. Naive Bayes Super-Resolution Forest

Tree ensembles are well-known for many vision applica-

tions [5], but only very recently (after the submission of our

original manuscript) have been employed for super resolu-

tion [20, 12]. In extension to these approaches, we propose

a tree selection strategy inspired by [3]. The rationale is that

combining all trees in the ensemble might not always be the

best possible option. On the one hand, performing a large

number of linear regressions for each datum might become

prohibitively costly when the number of trees in the ensem-

ble is large. On the other, as shown in [3] for classification

tasks, combining a large number of tree decisions does not

necessarily produce better results, since some trees could be

deteriorating the ensemble performance (e.g. the 16 trees

setup for average and our NBSRF in Table 3). For effi-

ciency reasons, we aim at a scheme where just a single tree

is selected from the ensemble. As we shall see in Section 5,

this simple strategy, namely Naive Bayes Super-Resolution

Forest (NBSRF), provides excellent performance. In Fig. 3

we illustrate the advantage of using an ensemble of trees

in this manner. If we are able to quantify the selectivity of

each tree T (k), 1 ≤ k ≤ N with respect to an input da-

tum (x̂, green dot in the figure), we can perform a much

more accurate regression than that attainable by consider-

ing a single tree. A naive solution to this problem would be

to choose that tree for which the AVCS of the datum and

the corresponding leaf mode is maximum. However, this

criterion would discard the precious information about the

space partition that leads to the leaf node in each tree and

provide suboptimal performance, as reflected by the results

of the leaf -based selection experiment in Table 3.

4.1. Data distribution

In first place, we need to model the data distribution in

each node to be able to quantify the selectivity of the tree

with respect to each datum. The Von Mises-Fisher distribu-

tion [7], which models distributions over a unit hypersphere,

is defined as

f(x;µ, κ) = C(κ) exp (κ(µ · x)) , (7)
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where µ is a mean direction, κ is a concentration param-

eter that determines the dispersion from the central mode

and C(κ) is a normalizing constant. Since our clusters are

designed to contain antipodal data by exploiting the AVCS

metric, the Von Mises-Fisher distribution must be corre-

spondingly adapted:

f ′(x;µ, κ) = C ′(κ) exp (κ|µ · x|) , (8)

where C ′(κ) normalizes the modified distribution. We note

that, for each node in the tree, the underlying data distri-

bution is actually seen as a mixture of two antipodal Von

Mises-Fisher distributions. For simplicity, in the following

we shall assume that both components in the mixture have

the same concentration κ, which has been empirically vali-

dated as a reasonable assumption.

4.2. Local Naive Bayes selection

In order to establish the criterion to choose the most se-

lective tree T (k∗) for a given patch x̂, we rely on the Lo-

cal Naive Bayes framework by McCann and Lowe [15] and

conveniently adapt it to the data distribution in our tree en-

semble setup. In [18] this framework was employed to se-

lect suitable image regions for adaptive dictionary learning.

Based on the original Naive Bayes derivation [4], if we

assume a non-informative prior over regressors across all

trees, each patch x̂ is most accurately mapped by regressor

R
(k∗)
i from tree T (k∗) following

R
(k∗)
i = argmax

R
(k)
i

p(R
(k)
i |x̂) = argmax

R
(k)
i

log p(x̂|R
(k)
i ).

(9)

If each tree has M leaf nodes (and regressors), a total num-

ber of L = log2(M) node responses or features f
(k)
l are

computed from patch x̂ in each root-to-leaf tree traversal.

The Naive Bayes assumption of feature independence re-

sults in

R
(k∗)
i = argmax

R
(k)
i

L∑

l=1

log p(f
(k)
l |R

(k)
i ), 1 ≤ k ≤ N. (10)

The problem with this formulation is that it requires com-

puting the likelihoods for all possible paths across the tree.

Fortunately, the alternative formulation by [15] allows us to

progress. The effect of each node response to a patch x̂ can

be expressed as a log-odds update. This is extremely useful

for trees, since it allows us to restrict updates to only those

nodes for which the descriptor gives significant evidence

(i.e. the visited nodes along the root-to-leaf traversal). Let

R
(k)
i be some linear mapping and R̄i

(k)
the set of all other

linear mappings. The odds O for the mapping R
(k)
i with

uniform priors is given by

O(R
(k)
i ) =

p(R
(k)
i |x̂)

p(R̄i
(k)
|x̂)

=

L∏

l=1

p(f
(k)
l |R

(k)
i )

p(f
(k)
l |R̄i

(k)
)
. (11)

The alternative classification rule expressed in terms of log-

odds increments is

R
(k∗)
i = argmax

R
(k)
i

L∑

l=1

log
p(f

(k)
l |R

(k)
i )

p(f
(k)
l |R̄i

(k)
)
, 1 ≤ k ≤ N.

(12)

In the Local Naive Bayes formulation, p(f
(k)
l |R̄i

(k)
) can

be approximated by the likelihood of the alternative (or

discarded) partition in each traversed node. The resulting

method, using the antipodal Von Mises-Fisher distribution

mixture and the bimodal antipodally invariant tree forest,

is described in Algorithm 1. Note that, since we assume

that the concentrations κ are the same for both clusters in

each node, the local term in the sum of Eq. 12 reduces to

|µ1 · x̂| − |µ2 · x̂|, where µ1 is the most suitable mode. In

the pseudocode, the node selection during the root-to-leaf

traversal is implicit and R[µ
(k∗)
L ] represents the regression

matrix of the chosen leaf’s mode in the optimal tree.

Algorithm 1: NAIVE BAYES SR FOREST

Data: Patch x̂, forest {µ
(k)
i,l }, regressors R[µ

(k)
L ]

for each tree k ≤ N do

lodd(k) ← 0
for each level 0 ≤ l < L do

if |x̂ · µ
(k)
1,l | ≥ |x̂ · µ

(k)
2,l | then

lodd(k) ← lodd(k) + |µ
(k)
1,l · x̂| − |µ

(k)
2,l · x̂|

else

lodd(k) ← lodd(k) + |µ
(k)
2,l · x̂| − |µ

(k)
1,l · x̂|

return k∗ ← argmaxk lodd
(k) and R[µ

(k∗)
L ]

Implementation. We would like to remark that the main

performance gain of our method comes from the algorith-

mic choice of using a hierarchical clustering strategy, which

results in a logarithimic cost in comparison to exhaustive

search. Whereas the bottleneck of the approach lies on the

linear regression, this is also kept to a minimum by the

Naive Bayes tree selection approach (only one regression

is to be computed). In order to further exploit the paral-

lel structure of the proposed method, our MATLAB/MEX

implementation makes use of parallelization. One possible

venue for further improvement is to apply feature extraction

and PCA compression of the input as in [31, 23, 19, 24],

which shall result in smaller linear regression matrices.

5. Results

In order to assess the performance of our NBSRF, we

have chosen a selection of the best performing super-

resolution methods presented during the last years: the

sparse coding method based on K-SVD dictionaries by
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Figure 4. Average PSNR (dB) and time (s) vs. varying numbers

of trees (left) and leaf nodes -or clusters- per tree (right) for 2×
upscaling on Set14. The reference configuration is marked in red.

Zeyde et al. [31] (referred to as Sparse), the anchored neigh-

borhood regression model by Timofte et al. [23] (ANR), the

deep learning approach with convolutional networks pro-

posed by Dong et al. [6] (SRCNN), the recently improved

version of ANR [24] (A+) and the very recent ASRF with

15 trees of L = 16 layers [20] using the alternative training

for better PSNR. All the codes have been obtained from the

respective authors. For SRCNN, we have used the public

implementation, which is slower than the one used in their

paper, so the runtime is not meaningful. All methods use the

training dataset of 91 images from [30] and, unless other-

wise stated, the default configurations provided by their au-

thors, including the 12 exponentially decaying scales of the

training images in A+ and ASRF. We use a larger amount of

16 linearly decaying scales with a slope of -0.25. We have

also included bicubic upscaling as a baseline.

The reference configuration of our method is a low-res

patch size of 3 × 3 pixels, which produces progressively

larger coarse inputs with the upscaling factor s (6 × 6 for

s = 2, and so on). The number of trees N is set to 8 and the

number of tree layers L is 11, which translates into M =
2048 regressors per tree. Whereas this configuration has

been chosen without fine tuning, we shall see it suffices to

improve over the state of the art. Despite the large scale of

the parameters, the training is relatively fast, ranging from

around 20 min for the 4× scaling model to around one hour

for the 2× model on the same platform used for testing.

Note that the training time would clearly be the bottleneck

in applications with non-negligible unknown blur.

All methods, including our NBSRF, are run from MAT-

LAB on an Intel Core i7 CPU equipped with 16 GB of

RAM. We use the common benchmark in recent super-

resolution publications [23, 6, 24, 19], consisting of 2×, 3×

and 4× scaling tasks for two sets of 5 (Set5) and 14 (Set14)

images of different resolutions, which we extend with the

Kodak dataset. The latter provides 24 images free of com-

pression artifacts with larger resolution, hence closer to a

real-world scenario. In Table 1 we show the average PSNR

(dB), IFC [21, 27] and runtimes obtained by each method in

all scenarios. We note that our method is by far the fastest

(up to one order of magnitude with respect to the runner-up

A+ in 2× upscaling) thanks to our fast clustering and in-

ference strategy. More detailed results on Set5 are given in

Table 2, where our method is again undisputably the fastest

and the general best performing, especially for images with

sharp edges like butterfly, where the locality of the exam-

ples used to train the regressors is more critical. In Fig. 5

we provide a qualitative comparison on the upscaling results

of the best performing SR methods for some of the images

in the three datasets. In general, we appreciate an enhanced

robustness of our NBSRF to ringing and aliasing artifacts.

Discussion. We have deliberately kept the baseline con-

figuration of N=8 and M=2048 used during the develop-

ment of the proposed method since it suffices to showcase

the excellent performance in comparison to the state of the

art. However, we have also performed testing with different

parameters, the most relevant of which are shown in Fig. 4.

On the left side, we show the runtime and PSNR evolu-

tion of the method with different numbers of trees. We see

that the computational cost of adding more trees is linear,

but with a small slope (regardless of the number of trees,

only one regression takes place). The bottom left chart also

serves to validate the Local Naive Bayes tree selection al-

gorithm. The addition of more trees to the ensemble con-

sistently produces better accuracy, even though just one of

them is actually used to infer the appearance correction for

the coarse patch. Whereas an even larger number of trees

does not seem necessary given the saturation of the curve,

we note the fair improvement obtained by the multitree ap-

proach: Switching from 1 to 8 trees provides a PSNR gain

of around 0.07 dB.

On the right, we see that the addition of finer partitions

in each tree does not produce a significant computational

cost in NBSRF thanks to the hierarchical structure, yet it

provides significant PSNR performance gains. In contrast,

the overall runner-up A+ shows a prohibitive increase of

the computational cost (due to the exhaustive search) and

saturation symptoms when checking scalability in terms of

PSNR. This result confirms the value of the bimodal tree

with antipodal clustering as a powerful tool for classifica-

tion and regression. It would be interesting to check the

generalization to other problems beyond SR.

In Table 3 we show in more detail the effect of the con-

tributions of the paper on 2× scaling on Set14 for increas-

ing numbers of trees with L=11 layers (M=2048 leaves).

330



Bicubic Sparse [31] ANR [23] SRCNN [6] ASRF [20] A+ [24] NBSRF

s PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time

S
et

5

2 33.66 5.859 0.002 35.78 7.479 1.992 35.83 7.658 0.495 36.34 7.268 3.205 36.69 8.075 0.817 36.55 7.994 0.514 36.76 8.257 0.036

3 30.39 3.509 0.002 31.90 4.372 0.934 31.92 4.473 0.340 32.39 4.257 3.364 32.57 4.772 0.624 32.59 4.779 0.328 32.75 4.882 0.053

4 28.42 2.302 0.001 29.69 2.889 0.559 29.69 2.951 0.227 30.09 2.822 3.106 30.20 3.131 0.705 30.28 3.186 0.225 30.44 3.241 0.055

S
et

1
4 2 30.23 5.898 0.002 31.81 7.329 4.015 31.80 7.445 1.101 32.18 7.053 6.515 32.36 7.780 1.427 32.28 7.736 1.105 32.45 7.941 0.061

3 27.54 3.402 0.002 28.67 4.102 1.881 28.65 4.173 0.65 29.00 3.978 6.414 29.12 4.384 1.112 29.13 4.392 0.662 29.25 4.484 0.080

4 26.00 2.211 0.002 26.88 2.672 1.147 26.85 2.725 0.469 27.20 2.592 6.382 27.31 2.854 0.910 27.32 2.895 0.468 27.42 2.931 0.086

K
o

d
a

k 2 30.85 5.457 0.002 32.19 6.625 7.015 32.24 6.743 1.886 32.63 6.451 10.993 32.76 6.938 2.293 32.71 6.928 1.984 32.81 7.222 0.105

3 28.43 3.116 0.002 29.22 3.679 3.300 29.21 3.740 1.139 29.43 3.658 11.065 29.53 3.859 1.728 29.57 3.889 1.154 29.63 4.026 0.138

4 27.23 1.984 0.002 27.83 2.361 2.012 27.80 2.393 0.817 27.94 2.288 11.102 28.06 2.454 1.469 28.10 2.514 0.810 28.17 2.590 0.153

Table 1. Average PSNR (dB), IFC and runtime (s) on Set5, Set14 and Kodak for 2×, 3× and 4× scaling. Best results in bold.

Set5 Bicubic Sparse [31] ANR [23] SRCNN [6] ASRF [20] A+ [24] NBSRF

images s PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time PSNR IFC time

baby 2 37.1 6.15 0.002 38.2 7.43 4.678 38.4 7.64 1.114 38.3 7.23 7.536 38.5 7.74 1.633 38.5 7.73 1.126 38.6 8.02 0.084

bird 2 36.8 6.13 0.002 39.9 7.83 1.433 40.0 8.10 0.368 40.6 7.57 2.214 41.2 8.43 0.649 41.1 8.38 0.394 41.2 8.61 0.030

butterfly 2 27.4 5.88 0.001 30.6 8.16 1.144 30.5 8.31 0.292 32.2 8.06 1.953 32.7 9.49 0.556 32.0 9.15 0.309 32.8 9.56 0.020

head 2 34.9 5.47 0.001 35.6 6.65 1.354 35.7 6.74 0.350 35.6 6.37 2.161 35.7 6.84 0.619 35.8 6.87 0.374 35.8 7.04 0.023

woman 2 32.1 5.68 0.001 34.5 7.33 1.354 34.5 7.49 0.348 34.9 7.12 2.159 35.3 7.88 0.628 35.3 7.84 0.367 35.5 8.05 0.022

baby 3 33.9 3.70 0.004 35.1 4.40 2.200 35.1 4.50 0.801 35.0 4.16 7.589 35.2 4.58 1.232 35.2 4.59 0.762 35.3 4.68 0.133

bird 3 32.6 3.77 0.001 34.6 4.72 0.678 34.6 4.86 0.236 34.9 4.50 2.219 35.4 5.07 0.504 35.5 5.12 0.237 35.5 5.17 0.048

butterfly 3 24.0 3.51 0.002 25.9 4.58 0.517 25.9 4.70 0.185 27.6 4.91 1.901 27.4 5.45 0.420 27.2 5.37 0.186 27.9 5.61 0.025

head 3 32.9 3.15 0.001 33.6 3.76 0.631 33.6 3.85 0.264 33.5 3.50 2.280 33.8 3.95 0.489 33.8 3.98 0.235 33.8 4.05 0.029

woman 3 28.6 3.40 0.001 30.4 4.39 0.643 30.3 4.46 0.216 30.9 4.22 2.832 31.1 4.80 0.475 31.2 4.84 0.219 31.3 4.90 0.029

baby 4 31.8 2.47 0.002 33.1 2.98 1.336 33.0 3.05 0.545 33.0 2.78 7.412 33.2 3.08 1.106 33.3 3.14 0.533 33.4 3.21 0.155

bird 4 30.2 2.47 0.001 31.7 3.10 0.397 31.8 3.21 0.162 32.0 2.95 2.150 32.3 3.31 0.636 32.5 3.39 0.161 32.6 3.42 0.032

butterfly 4 22.1 2.33 0.001 23.6 3.05 0.312 23.5 3.09 0.125 25.1 3.39 1.842 24.6 3.55 0.570 24.4 3.52 0.124 25.0 3.72 0.028

head 4 31.6 2.01 0.001 32.2 2.42 0.371 32.3 2.47 0.151 32.2 2.21 2.049 32.4 2.52 0.600 32.5 2.61 0.153 32.5 2.61 0.031

woman 4 26.5 2.24 0.001 27.9 2.89 0.381 27.8 2.94 0.152 28.2 2.78 2.075 28.5 3.20 0.904 28.6 3.27 0.154 28.7 3.26 0.031

Table 2. PSNR (dB), IFC and runtime (s) on Set5 for 2×, 3× and 4× scaling. Best results in bold.

The first columns of SRF [20] and NBSRF essentially show

the improvement of our bimodal clustering strategy. In the

bicubic experiment we use NBSRF with bicubic interpola-

tion instead of IBP to show the relative impact of the latter.

With the random experiment we show that the Local Naive

Bayes criterion of NBSRF is clearly better than a random

tree choice (note that the latter is practically equivalent to

having 1 tree), and with the leaf experiment we show that it

is not sufficient to just observe the similarity between data

and leaf modes, as pointed out in Section 4 (note that the

performance is only slightly better than that achieved with

a single tree). In other words, we need to exploit all the

root-to-leaf computed features, as in NBSRF, to choose the

optimal tree. Finally, the average experiment shows that

carrying out all the regressions and averaging (classical ran-

dom forest) provides in practice the same accuracy, yet it is

costlier. The last column of this comparison shows that tree

selection can even outperform averaging.

6. Conclusions

In this paper we present a novel method for example-

based super resolution, which we name NBSRF (Naive

Bayes Super-Resolution Forest), aiming to high perfor-

mance in both quality and runtime. NBSRF exploits a

1 tree 2 trees 4 trees 8 trees 16 trees

SRF [20] 32.11 32.16 32.21 32.21 32.22

bicubic 32.28 32.32 32.34 32.35 32.35

random 32.38 32.39 32.40 32.39 32.39

leaf 32.38 32.40 32.40 32.41 32.40

average 32.38 32.43 32.45 32.46 32.45

NBSRF 32.38 32.42 32.44 32.45 32.46

Table 3. PSNR (dB) for 2× scaling with L=11 on Set14.

new interpretation of the coarse-patch space, where antipo-

dal normalized patches (i.e. pairs of patches with the same

structure but different sign) are actually part of the same

clique. This observation is exploited by a hierarchical man-

ifold learning strategy based on a partition tree with bimodal

nodes, where antipodal patches are effectively clustered to-

gether and both children subnodes have comparable homo-

geneity, thus leading to an overall better space sampling. In

order to further extend the accuracy of the local lineariza-

tions of the coarse-to-fine mapping, we further propose to

use tree ensembles and select the optimal regression tree

based on a Local Naive Bayes criterion. NBSRF is tested

on common benchmarks and shown to improve by up to 0.9

dB in PSNR over a recent method like ANR and 0.1-0.3

dB over recent state-of-the-art methods like ASRF, A+ and

SRCNN while being beyond one order of magnitude faster.
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Bicubic SRCNN [6] ASRF [20] A+ [24] NBSRF Groundtruth

Figure 5. Close-ups of results obtained with images from Set5, Set14 and Kodak for 4× scaling. Best viewed on display.
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