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Abstract

Dynamic textures (DTs) are video sequences with sta-
tionary properties, which exhibit repetitive patterns over
space and time. This paper aims at investigating the sparse
coding based approach to characterizing local DT patterns
for recognition. Owing to the high dimensionality of DT
sequences, existing dictionary learning algorithms are not
suitable for our purpose due to their high computational
costs as well as poor scalability. To overcome these obsta-
cles, we proposed a structured tensor dictionary learning
method for sparse coding, which learns a dictionary struc-
tured with orthogonality and separability. The proposed
method is very fast and more scalable to high-dimensional
data than the existing ones. In addition, based on the pro-
posed dictionary learning method, a DT descriptor is de-
veloped, which has better adaptivity, discriminability and
scalability than the existing approaches. These advantages
are demonstrated by the experiments on multiple datasets.

1. Introduction

Dynamic texture (DT) refers to texture with motion [38],
and DT sequences are often regarded as video sequences of
moving scenes that possess certain stationary properties in
both space domain and time domain [12]. People see DT
in familiar forms like video clips of boiling water, bursting
flame, windblown vegetation, meandering coastlines, grow-
ing crystals, and swirling galaxies. The automatic recogni-
tion on DT sequences has a broad spectrum of applications,
such as scene classification, video segmentation, emergency
detection, facial expression analysis, biometrics, and astro-
nomical phenomena prediction; see e.g. [13, 21, 37, 46].

Plenty of existing methods for DT recognition, e.g. [ 14,

, 26, 39], quantitatively model the underlying physical
dynamic systems that generate DT sequences, whose dif-
ficulty lies in the construction of universal models that are
able to cover a wide range of DT sequences [42] (e.g. linear
models [38, 35] could not be well generalized to the DTs
generated by nonlinear processes). A promising alternative

is to compute some invariant statistics of local features over
a DT sequence. However, the development of local features
is challenging, as both the discriminability and the relia-
bility should be granted in designing local features. While
handcrafted features have been exploited in many previous
studies [46, 19, 10, 44], adaptive features learned from data
have yielded better performance [39, 31]. In this paper, we
focus on investigating feature learning for DT recognition.

It is observed that there exist strong spatial homogeneity
and temporal periodicity in DT [28, &, 17, 6], which implies
that local DT patterns are repetitive and could be sparsely
represented under some suitable dictionary. This motivates
us to develop a sparse coding based framework for DT
recognition, i.e. representing repetitive local DT patterns as
sparse linear combinations of learned spatio-temporal prim-
itives. Many existing sparse dictionary learning methods
have been proposed to deal with data of low dimensional-
ity, e.g. K-SVD [1]. However, a direct call of these meth-
ods would be computationally infeasible when scaling to
high-dimensional data such as DT sequences. In addition,
most of these methods handle visual data by vectorization,
which is likely to destroy the inherent ordering information
in data [24, 36] and reduce both the discriminability and the
expressibility of the resulting representation [45, 48].

Aiming at tackling the computational challenges when
applying sparse coding to tensor data processing, we pro-
pose a tensor dictionary learning approach which learns a
dictionary structured with separability and orthonomality.
The separability of dictionary atoms makes the resulting
method highly scalable. The orthonomality among dictio-
nary atoms leads to very efficient sparse coding computa-
tion, as each sub-problem encountered during the iterations
for solving the resulting optimization problem has a sim-
ple closed-form solution. These two characteristics, i.e. the
computational efficiency and scalability, make the proposed
method very suitable for processing tensor data.

Based on the proposed dictionary learning method, we
develop a powerful descriptor for DT classification, which
is constructed by regarding the distribution of sparse codes
generated from DT sequences under the learned dictionary.
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In addition to the computational advantage introduced by
the proposed orthogonal tensor dictionary learning method,
the developed DT descriptor exhibits strong discriminabil-
ity for classification, which is demonstrated with the exper-
iments on multiple benchmark datasets.

In short, the contribution of this paper is two-fold. For
DT classification, we develop a powerful tensor sparse cod-
ing based DT descriptor, and it shows noticeable improve-
ment over the state-of-the-art DT classification methods in
terms of both classification accuracy and computational ef-
ficiency of feature extraction. For sparse coding, we pro-
pose a structured tensor dictionary learning method for
high-dimensional data, with a particular focus on computa-
tional efficiency and scalability. By introducing orthogonal-
ity constraints on dictionary atoms, the proposed method is
more computationally efficient than the generic dictionary
learning methods, while the performance in applications,
e.g. DT classification, remains very competent.

2. Related work

Dynamic texture classification. Considering a DT se-
quence as the realization from some stationary stochas-
tic process with spatially and temporally invariant statis-
tics, most existing methods for DT recognition charac-
terize DT sequences either by quantizing the underlying
process or calculating the invariant statistics over DT se-
quences. The former is often referred as the generative
methods while the latter referred to as the discriminative
ones [44]. The generative methods are built upon some
prior stochastic models, e.g. the spatio-temporal autoregres-
sive model [38, 39] and its multi-scale version [14], the lin-
ear dynamical system (LDS) [35, 41] and its kernelized ver-
sion [5], the phase-based non-parametric model [ 18], the hi-
erarchical model [22], etc. The main disadvantage of gener-
ative methods is that they cannot be well generalized to the
DT sequences which are generated by the irregular physical
processes with complexities beyond the freedom degree of
prior models.

To bypass the challenges of modeling and inferring gen-
erative systems, the discriminative methods directly cal-
culate the statistics (e.g. histogram [46] or fractal spec-
trum [44]) on local DT features, which empirically exhibit
better performance and show advantages in the robustness
to environmental changes and viewpoint changes. The suc-
cess of discriminative methods is largely determined by the
discriminability and reliability of the local features used for
statistics. Existing approaches mainly rely on handcrafted
features extracted by spatio-temporal filtering [40, 44, 25,

], local binary pattern encoding [46, 47, 22], optical flow
estimation [7, 28, 30, 44], or space-time orientation analy-
sis [10, 11, 9]. Itis worth mentioning that generative models
can be integrated into discriminative methods by using the
parameters inferred from generative systems as local fea-

tures; see e.g. [32, 19, 20].

While handcrafted features often allow fast computa-
tion (e.g. using convolution [25], lookup table [46], or in-
tegral image [44]), learned features, as shown in an abun-
dant of literature (e.g. [1]), have exhibited superior perfor-
mance in many applications due to their better adaptivity
to the classes of target signals. This is also demonstrated
in DT classification by [39], where noticeable improvement
has been observed by transferring the local features learned
from images to the frames of DT sequences. However, such
transferring is not optimal as it does not consider the space-
time correlation in DT. In comparison, our method directly
learns features from DT data to fully exploit the inherent
spatiotemporal DT characteristics.

To learn informative features from DT data, several ap-
proaches have been proposed based on sparse representa-
tion and dictionary learning. In [20], the coefficients of
LDS are calculated by sparse coding, and the LDS is further
learned in [39] by considering it as a dictionary. Both are
generative methods. The discriminative methods [32, 22]
employ dictionary learning either for forming codebooks
for handcrafted local features [32] or for sample-level fea-
ture refinement [22], which are different from ours as we
focus on local DT feature learning via sparse coding.

Sparse tensor dictionary learning. Producing sparse rep-
resentation in terms of a learned dictionary has emerged as
a powerful way to create image features for a wide range
of applications. However, a vast majority of existing dictio-
nary learning methods deal with vectors, which might lose
the structure of data (e.g. spatial correlation of image pixels)
and lead to poor representation in the vectorization process.
To overcome this problem, the so-called tensor dictionary
learning methods [24, 8, 15, 45] have been proposed for var-
ious sparsity-based restoration and recognition tasks, which
treat input data as tensors instead of vectors and learn dic-
tionaries by tensor decomposition. The resulting dictionar-
ies can preserve the original layout of data in representation
with better compression ratio than the matrix case [24], and
this benefit has been demonstrated in DT synthesis [8].

To deal with high-dimensional data, most existing tensor
dictionary learning methods [23, 33, 27, 34] structure dic-
tionaries with separability (e.g. each dictionary atom is the
product of 1D components), which significantly reduces the
computational burden and improves the scalability of algo-
rithms. In [23], separable dictionaries with minimized mu-
tual coherence are learned from images for denoising by a
complicated algorithm. In [34], the K-SVD algorithm is
extended to the tensor form by directly replacing the SVD
step with a higher-order version. The resulting algorithm is
still time-consuming. In [33], a low-rank separable synthe-
sis filter learning model is developed, which is challenging
to solve. It is also recommended in [33] to approximate the
learned non-separable filters by the separable ones. How-
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ever, such a scheme only accelerates the filtering process
and does not reduce the computational cost in dictionary
learning. Compared with these methods, the proposed one
structures the dictionary with not only separability but also
orthogonality. The resulting subproblems on dictionary up-
date and sparse coding both have simple explicit solutions
whose computation is scalable. In addition, the orthogonal-
ity of dictionary benefits the design of a fast DT descriptor,
while not sacrificing the performance in recognition.
Finally it is noted that the idea of orthogonal dictionary
has been exploited in [2] for processing 2D images, as well
as the constructions for data-driven wavelet tight frames [3,
]. These methods neither deal with tensor data nor enforce
separability of dictionary.

3. Preliminaries
3.1. Notations and definitions

Throughout the paper, scalars are denoted by light-faced
letters (a,b,..., A, B,...), vectors are denoted by lower-
case bold-faced letters (a, b, . .. ), matrices are denoted by
upper-case bold-faced letters (A, B, ... ), sets are denoted
by light-faced calligraphic letters (A, B, ...), and tensors
are denoted by bold-faced calligraphic letters (A, B,...).
For an R-dimensional tensor A € RM1xMax--XMr the p.
mode unfolding [A](,) € RM-X(My--MeaMrga-Mr) rep.
resents a rearrangement of A in a matrix where the r-th in-
dex is used as a row index and all other indices are aligned
along the columns in reverse cyclical ordering. The i-th
row of [A](,y is denoted by [A](y(;). The r-mode fold-
ing, denoted by [.A] (j%, is the inverse operation of the r-

mode unfolding, i.e. [[A}(T)](;% = A. The r-mode product
between a tensor A € RMix-xMrx-XMr and a matrix
U € RN»*Mr is defined as follows:

A x, U = [U[A] ],y € RMoxNmedin ()
The ¢ norm of a tensor A is denoted by ||.4||o and defined
as the number of nonzero elements in the tensor. The Frobe-
nius norm of a tensor A is denoted by ||.A|| r and defined
as the square root of the sum of the squares of its elements.
Identity matrices of size m x m are denoted by I,,, and
ignoring m means I is of appropriate size.

3.2. Sparse coding and dictionary learning

Given a set of input patterns, sparse coding aims to find a
small number of atoms (i.e. representative patterns) whose
linear combinations approximate those input patterns well.
More specifically, given a set of vectors {y1, Y2, ..., Yp} C
R"™, sparse coding is about determining a set of atoms
{dy,ds,...,d,,} C R™ together with a set of coefficient
vectors {ci,...,¢,} C R™ with most elements close to
zero, so that each input vector y; can be approximated by

the linear combination y; =~ Y.,~, ¢;({)dy. The typical
sparse coding method, e.g. K-SVD [ 1], determines the dic-
tionary D = [dy, ..., d,,] via solving

P
argmin Z |ly; — Dci)3, ()
D {ei}/1 i=1

subject to |lc;llo < T, ||djll2 = 1, 1 < j < m, which
can be solved by alternating OMP (Orthogonal Matching
Pursuit) for sparse coding and SVD (Singular Value De-
composition) for dictionary update. It is noted that when
applying (2) to visual data, the image or video patches need

to be unfolded onto vectors as input.

4. Our method

We model a DT sequence by a set of space-time elements
with certain distribution. Such elements are formulated as
a tensor and represented by a separable dictionary with or-
thogonal components learned from a set of local DT patches
via sparse representation. The learned dictionary atoms are
used to extract local DT features via sparse coding. Finally
the distribution of space-time elements in DT sequences are
characterized by the histograms of sparse codes over both
the whole sequence and each DT slice. In the following, we
will detail each step of our method.

4.1. Structured tensor dictionary learning

The first step of our method is to learn a dictionary con-
taining joint spatial and temporal patterns for representing
local structures of DT. Instead of directly learning a dic-
tionary by (2), we learn a structured tensor dictionary with
separability and orthogonality. More concretely, given a set
of gray-scale DT sequences for training, totally N volume
patches of size My x My x My are randomly sampled from
the sequences and stacked as a 4-dimensional tensor de-
noted by ) € RMuxMvxMrxN ' Define Sy, to be the set
containing all orthogonal matrices of size M x M:

Sy ={DcR™M: DD =13}. 3)

Our goal is to learn a set of orthogonal dictionaries { Dy €
Sy, Dv € Sary, Dr € Sy, } by the following model:
argmin ||))7C X1 DH X9 DV X3 DT”% (4)
Dy €Sy, DvESny ,DTE€S My
CeRMu XMy x My x N
subject to ||[C](4)(i)llo < T for all possible i, where C is the
corresponding sparse coding tensor.
The separated dictionaries are learned to represent DT
sequences from different perspectives:

e The spatial dictionaries Dy and Dy jointly character-
ize the spatial appearances in DT frames. Most often-
seen spatial patterns in DT sequences, including homoge-
neous textured patterns (e.g. windmill), deformable tex-
tured patterns (e.g. grass and leaves) and discrete textures
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(e.g. insect swarm and human crowd), are likely to lie in a
union of low-dimensional subspaces due to the intra-class
similarity in appearance, which can be well captured by
Dy and Dy via sparse representation.

e The temporal dictionary Dt summarizes the motion pat-
terns and encodes intrinsic temporal coherence between
DT frames. There are mainly two types of motion in DTs,
i.e. deterministic motion like movement of escalators and
stochastic motion like propagation of smoke. The former
often shows periodicity and the latter are statistically sim-
ilar, both of which can be captured by Dr.

Algorithm 1 Tensor dictionary learning

INPUT: Training data Y
OUTPUT: Learned dictionaries Dy, Dy, and Dt
Main procedure:

1. Initialization: Set dictionaries DI(_IO), D&,O), Déo).
2. Fork=0,1,..., K —1
(a) Sparse coding by thresholding:
™ = Sp(¥ x3 DT x, DPT 5, DPT)

(b) Run SVD on the r-mode unfolding of tensors:

PTEQr? = [y](g)) [C X1 DI(_Ik) X9 Dg,k)]z;))

PyxQ) =¥ x5 D1 V)€ x1 D,
PaxQ) = [¥ x3 D1V %, Dy €]
(c) Update dictionaries by

DY = PQf. Dy = QY

D](_[k-&-l) _ PHQE
3. Dy:= DY, Dy := DY), D;:= D).

4.2. Learning algorithm

An alternating iterative scheme is used to solve (4). The
resulting algorithm is summarized in Alg. 1. More specif-
ically, let DI({O), Dg}o)’ and D%O) be the initial dictionaries.
Fork =0,1,..., K — 1, we loop the following process:

1. Sparse coding: Given the orthogonal dictionaries Dl(f),

Ds,k), and D%k), we find the sparse tensor ¢™ via solving

¢ .= argmin | Y —C x4 Dl(f) X9 Ds,k) X3 D%k) 1% (5)
c

subject to ||[C](4)(s)llo < T for all possible i. This problem

has an explicit solution given by the following proposition.

Proposition 4.1 Given Yy € RMixMvyxMxN Dy, S,/
Dy € Sy, and Dt € Sy, the minimization problem

argmin ||y — C x; Dy x5 Dy x3 Dr|/% (6)

CGRI\/IHXJVIVX MrxXN

subject to ||[C](4)()llo < T for all possible i, has an explicit
solution given by

C* = [Sz([¥ x3 Dy x2 Dy x1 Dlw)lg), (D)

where St (-) denotes the operator that keeps the largest T
elements of each row of the matrix in terms of magnitudes
while setting the rest to be zero.

[Sketch of proof] As the Frobenius norm is invariant under
orthonormal transform, the functional ||y — C x1 Dy X2
Dy x3 Dr||% can be re-written as |V x3 D] x2 Dy x1
D, — C||%, which is a separable function such that each
variable can be independently solved. A single-variable ¢,
norm relating problem in the above form can be solved via
thresholding. See Appendix A in the supplementary mate-

rial for the complete proof.
2. Dictionary update: Given the calculated sparse coding
tensor C(k), we update the dictionaries D%’Hl), D\(,Hl),

and DI(_IkH) via solving

DY .= argmin | — € x1 DY xo D x5 D|%

DESyp,
DY .= argmin ||y — € x1 D x5 D x5 DI|%
DESy,
DY .= argmin |y — € x1 D x2 DY x5 DP|1%
DESa,

Each of the three problems above has a unique solution
given by Proposition 4.2.

Proposition4.2 Let {D, : D, € S M7-}§:]wbe a set of
orthogonal matrices. Given Y,C € RMixMarxMpxN
the minimization problem

. 2
argmin Hy—c><1D1 . -><7«_1D7«_1 XTAXT+1D7«+1 .. 'XRDRHF
A€ES)yy,.

has an explicit solution given by A = PQT , where P and
Q denote the orthogonal matrices defined by the following
SVD:

[VxrDj xr-1 D1+ Xri1 D] ®
[C X1 D1 X9 D2 cee Xpo1 Drfl];) = PZQT.

[Sketch of proof] Using r-mode unfolding and the length-
preserving property of orthonormal transform, the problem
can be re-formulated as argmin s, U — AV % st
AT A = I, which is a classical matrix nearness problem
with explicit solution given by SVD. See Appendix B in the
supplementary material for the complete proof.

4.3. Feature extraction

Given a DT sequence YV € R X"™X™MT we sample all
the patches of size My x My x My in V by a sliding win-
dow, then stack them into a tensor X € RMuxMyxMrxZ 1

'Z = my - my - mp by a proper boundary extension.
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and compute the corresponding sparse representation C €
RMuxMyxMrxZ by the following minimization:

argmin || X — C x1 Dy x2 Dy x3 Dr[|7 + 8%(|Cl|o
CeRJ\/IHXIVIVXZMTxZ
)

which has an explicit solution given by’

C* =Ty(X x5 Df x3 Dy x1 Dy), (10)

where (3 is the threshold which is set small to retain discrim-
inability of code, and T'5(+) is the element-wise hard thresh-
olding operator which keeps the elements whose magni-
tudes are larger than S while setting the rest zeros.

The calculation of (10) can be implemented in a series
of separated 1D convolutions, which is very efficient and
scalable. To see this, we consider the case of calculating
X x3D{ =D} [X](g)]é;. Let w; denote the j-th column
of Dr. As columns of [X]3) correspond to the patches of
size 1 x1x Mt sampled by a sliding window in V, the calcu-
lation of w; X amounts to the convolution between w; and
V. Thus, the calculation of X’ x5 DTT can be implemented
by convoluting V with Mt 1-dimensional filters defined by
columns of Dr. This trick is also applicable to the cases of
DH and Dv.

Based on the sparse codes, we construct a set of feature
maps as follows:

{Mj € R Mg = R(C(L )k, 1)} (1D

fore =1,...,. My, 5 =1,...,.My,and k = 1,..., M,
where R denotes the operation reshaping the vector back to
the volume which is of the same size as the input sequence.
Then, to describe to DT sequences from different views,
four types of normalized histograms are computed on each
feature map regarding the coefficient magnitudes:

e Hyuyr(M): The histogram is computed on the whole
feature map M, characterizing the global distribution
of local DT features by regarding M as a 3D volume.

o Hjy(M) and HZ(M): These two histograms are
computed on the r-th 2D slice along the horizontal
axis and on the s-th slice along the vertical axis
respectively, which jointly characterize the temporal
changes of spatial appearance.

o HL(M): To encode the stationary spatial appearances
of a DT sequence, the histogram is computed on the
t-th 2D slice along the temporal axis.

As shown in many previous studies (e.g. [47, 44]), local DT
patterns are distributed in similar ways on the slices along
the same axis. Thus, we compute three mean histograms by

Hu(M) = 3™ Hiy(M) /mu
Hy(M) =370 Hy (M) /my
Hr(M) = X1 Hy(M)/mr

12)

2See the proof in the supplementary materials.

Finally, the proposed DT descriptor is constructed by con-
catenating Hyvrt, Hu, Hv, and Hr over all feature maps:

W v (M), Hin (M), Hy (M), He(Miji)]-

.5,k

Remark 1 Considering the length of our descriptor, only a
subset of dictionary atoms are selected to construct the fea-
ture maps and descriptor. The atoms are selected according
to their discriminability measured by the Fisher criterion on
the corresponding sparse codes generated in learning.

5. Experiments

In this section, our method is applied to DT classification
and compared to the state-of-the-art approaches in terms of
classification accuracy.

5.1. Implementation details

Datasets. Due to the difficulties in collecting DT se-
quences, only a limited number of DT datasets are available.
There are mainly two DT databases that have been widely
used for DT analysis: the UCLA-DT database [12] and the
DynTex database [29]. With the development of classifica-
tion techniques, the performances on the original databases
have saturated. Thus, both these two databases have been
refined, recompiled and enriched by many previous studies
to generate extra datasets with different protocols for eval-
vation. The details of these datasets are given in the next
subsections. As the color information is not our focus, it
is discarded in our experiments by converting all frames to
gray-scale images.

Parameter setting. Throughout all the experiments, only
the 27 most discriminative dictionary atoms are used for
local feature extraction. The bin numbers of Hy, Hv, Hr
and Hyyr are set equally to be 25. The dimension of the
resulting descriptor is 27 x 3 x 25 + 27 x 25 = 2700.
In dictionary learning, we sampled 2000 patches from each
category to stack Y. The patch size is set according to the
size as well as the resolution of training sequences, ranging
from 4 x4x4to7x7x7. The sparsity degree T is set 4. The
dictionary is initialized by a set of wavelet filters. In feature
extraction, the thresholding parameter 3 is set 1 x 574,

5.2. Evaluation on the UCLA-DT database

The UCLA-DT database originally contains 200 DT se-
quences from 50 categories, and each category contains four
video sequences captured from different viewpoints. All the
videos sequences are of the size 160 x 110 x 75. There are
mainly five different breakdowns when the database is used
for evaluating DT classification algorithms:

e UCLA-DTS50 [5, 10]: The original 50 categories of DT
are directly used for evaluation, with three samples per
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category for training and the rest for test. As the details
of sequence cropping used in [5] are unavailable, only the
uncropped sequences in [ 1 0] are used in our experiments.
This breakdown tests the performance of “viewpoint spe-
cific recognition” in that samples from the same class are
sequences of the same scene from the same view.

e UCLA-DT9 [19]: This breakdown is for evaluating the
robustness to viewpoint changes. By combining the se-
quences from different viewpoints, the original 50 cate-
gories are merged to 9 categories, with number of sam-
ples per category varying from 4 to 108. We trained on
50% of samples per category and tested on the rest.

e UCLA-DTS [32]: The aforementioned 9 categories are
further reduced to 8 categories by removing the one con-
taining too many sequences with large ambiguities. One
half of samples per category are used for training.

e UCLA-DT7 [10]: This breakdown is for the “semantic
category recognition”, where the 400 sequences obtained
by cutting the original sequences into non-overlapping
halves are grouped into seven semantic categories. The
resulting dataset is very unbalanced, with number of sam-
ples per category varying from 8 to 240. One half of sam-
ples per category are used for training.

e UCLA-SIR [41, 10]: This breakdown is generated for
the “shift-invariant recognition (SIR)”, which evaluates
the shift-invariance of descriptors. Each of the original
video sequences is cut into non-overlapping left and right
halves, where one half is used for training and the other
half for test. There are two settings for this breakdown -
using cropped samples from 39 categories [41] and using
all 50 categories with careful panning [10]. The latter is
adopted as it is more challenging

Following [43, 26], both the support vector machine (SVM)
and nearest-neighbor (NN) classifier are used for classifi-
cation. In the case where the size of training set is insuffi-
cient large for reliable cross validation, we empirically de-
termined the parameters of SVM by setting the penalty co-
efficient to a multiple of the number of categories.

We compared our method with eight recent methods,
including Kernel Dynamic Texture (KDT) [5], Bags of
Systems (BoS) [32], Maximum Margin Distance Learn-
ing (MMDL) [19], Dynamic Fractal Spectrum (DFS) [44],
Space-time Oriented Representation (SOR) [ 1 1], Hierarchi-
cal Expectation Maximization (HEM) [26], Oriented Tem-
plate Features (OTF) [43], and Wavelet Multifractal Spec-
trum (WMFS) [25]. The results are summarized in Tab. 1,
in which our method exhibits competitive performance to
the compared ones. In particular, our method performs the
best in DT9 and SIR, which demonstrates the superior ro-
bustness of our method to viewpoint changes. The most no-
ticeable improvement of our method is observed on the SIR

3The results of HEM in UCLA-SIR are obtained using 39 categories.

dataset, the classification on which is much more challeng-

i

ng than other datasets due to the significant difference in

appearances between the training videos and the test ones.

The performance gaps between the best ones and our

method in DT50, DT8, and DT7 are marginal. In DT50,
the performance of our method using NN is superior to
the other compared methods except MMDL. Notice that
MMDL focuses on feature weighting instead of extraction.
We observed that the performance of our descriptor could
outperform MMDL by a careful weighting on the four his-
tograms in the descriptor. In DT7, our method is inferior to
HEM which is a generative method built upon BoS.

Table 1. Classification accuracies (%) on the UCLA database.

| DTs0 | DT9 | DT8 | DT7 | SIR
Method

| NN |SVM| NN |SVM| NN |SVM| NN | SVM | NN | SVM
BoS | - | - | -] - |700|8.0| - | - | - | -
SOR (810 - | - | - | - | - |923] - [423] -
MMDL|99.0| - (956 - | - -
KDT (895975 - | - | - | - | - | - | -] -
HEM [95.6]96.5 (965|973 | - | - |98.7|99.7 |56.4| 58.0
DFS | - | 100 975 - | - | 990|985 - | - |738
OTF | - |97.2(96.3|97.2/95.8|99.5|96.1| 98.3 |67.4| -
WMFS | - |99.7(96.9|97.1 |97.2| 96.9 |96.8| 98.4 |61.2

Ours |98.5| 99.8 |97.5]| 98.2 {97.0] 99.5 |98.6| 99.5 |68.6| 75.2

5.3. Evaluation on the DynTex database

The DynTex database is a large pool of DT sequences,

which originates from [28] and has been enriched in recent
years. There are totally five datasets used in the previous
studies on DT classification:

e DynTex-35 [28]: This dataset consists of 35 DT cate-

gories, each with 10 video sequences panned from the
original sequences. The leave-one-out scheme (i.e. one
sample per category is picked up to form the test set and
the rest are for training) is used for evaluation with two
types of classifiers: the NN classifier [22] and the “Near-
est Class Center (NCC)” classifier [47] that classifies
each test sample based on its distance to each class cen-
ter. The NCC emphasizes the invariance of descriptors
while NN emphasizes the discriminability of features.

o DynTex++ [19]: This is a well-designed dataset with

36 DT categories, each with 100 video samples of size
50 x 50 x 50 cropped from the original sequences. An
SVM with the RBF kernel is trained on 50% samples per
category and tested on the rest. The parameters of SVM
are determined by five-fold cross-validation.

e DynTex-Alpha [29]: This dataset is composed of 60 DT

sequences divided into three categories, i.e. sea, grass,
and trees. Each category contains 20 samples.

e DynTex-Beta [29]: This dataset contains 162 DT se-
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e DynTex-Gamma [29]: There are 275 DT sequences as-
signed to 10 categories in this dataset. The number of
samples per category varies from 7 to 38.

All the samples of the Alpha, Beta and Gamma datasets are
of the size 720 x 576 x 250. These three datasets share the
same protocol in [16], which is the same as the leave-one-
out scheme using NCC in DynTex35. Note that a similar
protocol using the NN classifier is presented in an arXiv pa-
per [31], which is not adopted as it is less challenging with
results tending to be saturate, e.g., 100% classification ac-
curacies are achieved on Alpha by both the approach of [31]
and our method. To provide a diverse evaluation, we addi-
tionally adopt a new protocol, in which a SVM is trained on
five samples per category and tested on the rest.

The classification results are summarized in Tab. 2. Be-
sides the MMDL, HEM, DFS, OTF, and WMFS methods,
we compare our method with the LBP-TOP (Local Binary
Patterns on Three Orthogonal Planes) [46], KGDL (Kernel-
ized Grassman Dictionary Learning) [22], 2D+T (2D-plane
and Temporal curvelets) [16]. To show the improvement of
the learned dictionary over the random ones, we tested the
performance of using OMP on random dictionaries, which
is denoted by 'Rand’. The results in Tab. 2 have demon-
strated the power of our method. On all the datasets, our
method achieved the best performance. In DynTex35, the
improvement of our method over others is marginal as the
performances of the compared methods tend to be saturate.
In DynTex++, noticeable improvement (around 5%) over
DFS, OTF, WMFS and LBP-TOP is observed. The WMFS
is a wavelet-based approach using similar filters to our ini-
tial dictionary, and its inferior performance to ours demon-
strates the benefits of the dictionary learning in our method.
The most competitive method to ours is KGDL, which in-
deed is a feature refinement method instead of a DT de-
scriptor. It is combined with the LBP-TOP descriptor and
can also be applied to our method. In fact, it is empirically
observed that our method can be further improved by using
K-SVD for post feature refinement.

In Alpha, Beta and Gamma, the performance improve-
ment of our method over 2D+T are 1.2%-2.0%. The 2D+T
method is developed based on curvelet which is more ex-
pressible than our initial dictionary. However, after dictio-
nary learning, our descriptor achieved better performance
than 2D+T. The performance improvement of our method
over others using SVM in Alpha is larger than that in Beta
and Gamma. One reason is that the scale changes in Beta
and Gamma are more significant (e.g. flags from far away as
well as nearby). This is challenging to our method as single-
size patches are used in feature extraction. We also tested
the combination of our descriptors generated by different
patch sizes on the Beta and Gamma datasets. Around 2%
performance improvement was observed. However, such
a scheme is not suitable for the real cases where computa-

tional resources are limited and feature length is considered.

Table 2. Classification accuracies (%) on the DynTex database.

Method |DynTex35[DynTex++| Alpha [ Beta [ Gamma
INCC|NN| SVM |NCC|SVM|NCC|SVM|NCC|SVM
MMDL | - | - 63.7 S N e e
HEM | - |98.6 - S T N R
DFES |976] - 89.9 [83.6|84.9|652|765|60.8|745
OTF |96.7| - 89.2 - 828 - |754| - | 735
WMFS |96.5| - 88.8 SO R N I R
LBP-TOP|97.1 | - 89.8 833 734 72.0
KGDL | - | - 92.8 S N N N
2D+T | - | - - 850 - |67.0| - |630| -
Rand [84.7(83.8| 825 |78.173.9|47.2|52.3|37.6|46.6
Ours |97.8(99.0| 947 |86.6|87.8|69.0|76.7|64.2|74.8

Remark 2. We also tested the performance of using only
100-dimensional Hyyr for classification. The performance
decrease is around 3.5% in DynTex++, which is still accept-
able for the applications where feature length is considered.

5.4. Computational efficiency

The computational efficiency of our method is evaluated

regarding both the time cost of the dictionary learning mod-
ule and the time cost of the feature extraction process. The
tests were conducted in MATLAB on a PC with an Intel i5
CPU and 32G memory.
Dictionary learning. Algorithm 1 is compared with the
K-SVD algorithm for solving (2) and its tensor extensions
including K-HOSVD [34] and K-CPD [ 1.* The running
time is measured on 7.2 x 10 patches sampled from the
DynTex++ dataset. The results w.r.t. different patch sizes
are plotted in Fig. 1(a). It can be seen that our method is
more efficient than K-SVD, K-HOSVD and K-CPD and is
scalable to larger patches. Compared with the OMP algo-
rithm used in K-SVD for sparse coding, the thresholding in
our method is much more efficient. Meanwhile, the sepa-
rability of dictionary in our method permits to break down
the original problem into three subproblems with reduced
dimensions and less variables, which is more computation-
ally efficient and scalable.

It is noted that the convergence of Alg. 1 cannot be guar-
anteed due to the non-convexity of the problem (4). For
further understanding the behavior of Alg. 1, we show the
objective function value decay over the iteration in Fig. 1(c).
Feature extraction. The running time of extracting the pro-
posed descriptor using patch size 7 x 7 is compared to sev-
eral competitive methods using default parameters, includ-
ing LBP-TOP, DFS, OTF, and WMFS. Besides, for simu-
lating the case where K-SVD instead of the proposed tensor
dictionary learning model is used in our framework, we re-
place the sparse coding module in our feature extraction by

4The K-HOSVD and K-CPD methods are implemented in Matlab with the
TPTOOL and PROPACK toolboxes. The code of K-SVD is available on
http://www.cs.technion.ac.il/ ronrubin/software.html.

79



OMP (Orthogonal Matching Pursuit) under the dictionary
learned by K-SVD and report the resulting time cost.

The results w.r.t. different sizes of sequences are shown
in Fig. 1(b) under the Logarithm coordinate. Obviously,
our method is more efficient and scalable than other com-
pared methods. Such advantages come from both the use of
separated 1D convolutions and the use of histogram. The
WMEFS, OTF, and DFS methods are also filter-based meth-
ods, but they compute fractal spectra instead of histograms
of filter responses to improve discriminability, which is
much more time-consuming. Regardless of the cost of com-
puting fractal spectra, our method still has advantages in
computation over OTF, as it employs non-separable 3D fil-
ters. The LBP-TOP method is a histogram-based method,
in which the computation of local features is accelerated by
lookup table. Although it is comparable to our method in
computational time, LBP-TOP is inferior regarding accu-
racy.

Remark 3. We replaced our dictionary learning and sparse
coding modules by K-SVD, K-HOSVD and K-CPD respec-
tively, and tested the resulting performances on DynTex++.
The results are slightly inferior to ours with performance
gaps around 0.81%-1.52%. It is also found that using OMP
for sparse coding in feature extraction achieved better re-
sults than direct filtering with the atoms learned by K-SVD.
This is mainly due to the inconsistency between filtering
and the K-SVD learning model.
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Figure 1. Time costs and decay behavior (a) Time cost of dictio-
nary learning; (b) Time cost of feature extraction; (c) Decay be-
havior of objective function value.

6. Conclusion

This paper aims at exploiting sparse representation for
DT recognition. We proposed a structured tensor dictionary
learning method for extracting local DT patterns, which
learns a separable dictionary with orthogonal components
from a stack of DT volume patches. The learned atoms are
able to characterize the patterns of spatial appearance and
temporal dynamics in DT sequences. Benefiting from the
separability and orthogonality of dictionary, a fast and scal-
able numerical algorithm for learning as well as a discrimi-
native and scalable DT descriptor for DT recognition is de-
veloped. In the experiments, the proposed DT descriptor

shows noticeable performance improvement in both classi-
fication accuracy and time cost over the existing ones.

One limit of our method is that the learned atoms can-
not be used for multi-scale analysis compared with the
multi-scale geometry analysis approaches. Learning mul-
tiple dictionaries with different atom sizes can be helpful
but is not computationally efficient. In future, we would
like to investigate structured dictionary learning under a
multi-scale analysis framework. Furthermore, our method
can be applied to dynamic scene recognition by combining
the learned features into state-of-the-art feature integration
frameworks. For example, the sparse coding and dictionary
learning can also be applied to global feature integration,
sample-level feature refinement, and even classification. By
this way we can construct a multi-layer sparse learning ar-
chitecture for recognizing dynamic scenes, which is also
what we would like to pursue in the future.
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