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Abstract

We address the problem of automatic extraction of fore-

ground objects from videos. The goal is to provide a method

for unsupervised collection of samples which can be fur-

ther used for object detection training without any human

intervention. We use the well known Selective Search ap-

proach to produce an initial still-image based segmentation

of the video frames. This initial set of proposals is pruned

and temporally extended using optical flow and transduc-

tive learning. Specifically, we propose to use Dense Trajec-

tories in order to robustly match and track candidate boxes

over different frames. The obtained box tracks are used to

collect samples for unsupervised training of track-specific

detectors. Finally, the detectors are run on the videos to ex-

tract the final tubes. The combination of appearance-based

static ”objectness” (Selective Search), motion information

(Dense Trajectories) and transductive learning (detectors

are forced to ”overfit” on the unsupervised data used for

training) makes the proposed approach extremely robust.

We outperform state-of-the-art systems by a large margin

on common benchmarks used for tube proposal evaluation.

1. Introduction

The main motivation behind this work is to develop a

method for automatic extraction of samples from videos

which can then be used for unsupervised training of object

detectors. In fact, the impressive progress recently obtained

in object classification and object detection, e.g., using Con-

volutional Neural Networks [15, 11], heavily relies on huge

datasets for training. While there exist huge supervised

datasets for object classification (e.g., Imagenet), common

datasets for object detection are much smaller, due to the

additional effort which is necessary to produce bounding

Figure 1. Optical Flow between two consecutive frames can be

used as a ”voting” mechanism for matching Bonding Boxes. The

blue lines are dense trajectories in common between the two boxes,

while the red lines are trajectory starting from the first box but not

included in the second.

box (BB) annotations. However, there is a source of infor-

mation which is not sufficiently taken into account, which

can be used as a sort of surrogate of manual annotation,

and this information is motion. In a given video, many ob-

jects of interest (persons, animals, vehicles, common tools,

etc.) usually have a relative movement with respect to the

camera viewpoint. This movement can be exploited to au-

tomatically segment such objects and provide BBs without

human intervention.

One of the first attempts in this direction is the work of

[19], in which Prest et al. extract tubes from a video clip

which are used to train an object detector. A tube is defined

as a sequence of BBs which (tightly) encloses the object of

interest over different frames. This definition can be seen as

a temporal extension of the ”objectness”, the property of an

image window to likely contain an object instead of unin-

formative background. Objectness in still images has been

studied in many works [24, 1, 5, 7]. For instance, Selective

Search [24] is widely used in the object detection commu-

nity in order to select a subset of windows in a still image

which are then input to the classifier. However, it is worth

noticing that the main goal of Selective Search and similar

approaches is to speed up the testing phase, i.e., to replace

the ”old” sliding window approach with an initial selection
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of boxes that most likely contain the objects. Hence, these

techniques have as a primary goal to be conservative with

respect to recall (BBs containing objects should not be dis-

carded). Vice versa, our main goal in this paper is to achieve

a sufficiently high precision, since the selected BBs need to

contain few false positives to make the subsequent training

of a detector feasible.

In this paper we do not directly deal with category-

specific object detection, but we only focus on extending

the objectness property from still images to videos (the out-

come of our method being a set of BBs that can be used

by common object detection methods for their training ne-

cessities). Other recent works which deal with automatic

tube proposals address this extension of objectness to the

temporal domain. However, most of the state-of-the-art ap-

proaches have the same limitation: they need a lot of tubes

(usually hundreds or thousands per video clip) to achieve a

sufficiently high recall [13, 12] which makes these methods

reliable to speed up the testing phase but not sufficiently

precise to allow for weakly supervised or unsupervised

training. Using two common benchmarks (UCF Sports and

YouTube Objects) we will show that we are able to achieve

high recall with few tubes. For instance, in UCF Sports we

achieve more than 30% relative improvement with respect

to the state-of-the-art when using only one tube (Fig. 5).

These results have been achieved by combining differ-

ent ideas. First, we use Selective Search in order to pro-

duce an initial set of candidate BBs. Then we propose to

use Dense Trajectories [25, 26] in order to match BBs in

different frames and to discard static BBs. This method

allows us to collect initial tubes that we call optical flow

tubes as they are based on the optical flow computed with

Dense Trajectories. In order to avoid drifting (a common

problem in all tracking algorithms), optical flow tubes are

usually quite short and do not cover the whole video clip.

For this reason we propose using the optical flow tubes in

order to collect positive samples of the moving objects and

train tube-specific detectors. We highlight that no class la-

bels or other human-provided information is used for train-

ing. Conversely, tube-specific object detectors are learned

in a transductive framework, i.e., we do not need these de-

tectors to generalize to other videos, except the same video

in which they have been trained. In fact, once trained, we

run the detectors on the input videos in order to extract

the final tubes (detection tubes). Using this strategy, we

are able to extract BBs even in frames in which the object

is static, while common tube-proposal approaches usually

need movement in all the frames. To summarize, our con-

tributions are:

• We use Dense Trajectories to robustly match BBs pre-

selected by means of Selective Search.

• We use tube-specific, class agnostic detectors, trained

in a transductive learning framework, to extract the fi-

nal tubes.

The code for the proposed approach is available1.

The rest of the paper is organized as follows. In Sec. 2

we briefly review the literature and in Sec. 3 we introduce

some useful notation which will be used in the other sec-

tions. In Sec.s 4 and 5 we present our method. Experimen-

tal results are shown in Sec. 6 and we conclude in Sec. 7.

2. Related Work

In [19], Prest et al. extract tubes from a video clip ex-

ploiting homogeneous clusters of dense point tracks. The

tubes are then used to learn a detector, together with video-

level-based labels and based on the assumption that there is

one dominant moving object per video. It is worth noticing

that, in the approach we propose, the detectors are class-

agnostic classifiers which are learned for every optical flow

tube and then used to extract the final tubes. Conversely,

in [19] the detectors are class-specific object detectors (fus-

ing the segmentation phase with the final, unsupervised ob-

ject classification phase). One drawback of this approach is

that tubes are selected using inter-tube similarity, which is

a fragile assumption when more than one moving object is

present in the video clip and/or when a single object has a

high variability of appearance.

Clustering dense tracks, obtained with optical flow, is a

strategy adopted by many other authors. For instance in [4]

point tracks are clustered using an affinity matrix based on

the maximum translational difference between two tracks.

Even if encouraging results can be obtained with this tech-

nique, articulated motion makes it hard to group tracks be-

longing to non-homogeneously moving objects. Optical

flow is also used in [18], where objects are segmented us-

ing motion boundaries and then refined using a dynamic

appearance model of the RGB foreground pixels. In [16]

and in [2] optical flow and other appearance and saliency

cues are used to extract coherent segments corresponding

to moving objects.

In [13] the Selective Search [24] criteria for merging pix-

els in superpixels are extended into the time domain to ob-

tain supervoxels. Supervoxels are used also in [12] with

a hierarchical graph-based algorithm and in [17], where,

instead of using heuristics, merging is performed using a

classifier. In [10] motion boundaries are used in order to

generate an initial set of moving object proposals, which is

then ranked using a Convolutional Neural Network (CNN),

trained using ground truth object BBs. It is worth noticing

that both [17] and [10] are supervised methods, in which

there is an important learning phase based on manually pro-

vided examples of ground truth objects and it is not clear

what is the cross-dataset generalization capabilities of these

1https://github.com/mihaipuscas/unsupervised-tube-extraction.git
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systems (when tested on datasets different from the ones

used for training), while our approach is completely unsu-

pervised. A similar limitation holds in [8, 23], where a CNN

is trained in order to regress multiple boxes likely contain-

ing objects. The idea behind [8, 23] is that static objectness

can be learned using ground truth BBs contained in large

datasets (Pascal and ILSVRC 2012). However, a dataset

bias does exist [14], since the cross-dataset experiments pre-

sented by the authors show a drastic drop of performance

of the net when trained with Pascal and tested on ILSVRC

2012 and a minor drop vice-versa.

3. Static Objectness and Notation

Given a video with T frames, we apply Selective Search

[24] to each frame Ft in order to extract the set of box can-

didates Bt = {bt1, ...b
t
n} (we drop the superscript t when

not necessary), and bti = (ymini, xmini, ymaxi, xmaxi).

Note that we rely on Selective Search to model static

objectness. In other words, we do not manage pixel-level

information, and we leverage on Selective Search for the

pixel merging task in a single image. In fact this method is

widely adopted and it has been proven to have a high recall:

for instance, with n = 2000, the probability of an object to

be highly overlapping with any bti ∈ Bt is around 0.9 [24].

All our efforts will be focused on pruning Bt (1 ≤ t ≤ T )

using movement information in order to end up with a much

smaller subset of boxes containing the moving objects of the

video.

For simplicity, we also do not explicitly model the

dynamics of the tracked boxes (which is difficult es-

pecially with ”random” movements of biological ”ob-

jects”). However, we use Intersection-over-Union (IoU) and

Intersection-over-Min (IoM) in order to check spatial co-

herence between boxes of different frames and in the same

frame:

IoU(b1, b2) = A(b1 ∩ b2)/A(b1 ∪ b2), (1)

IoM(b1, b2) = A(b1 ∩ b2)/min{A(b1), A(b2)}, (2)

where A(b) is the area of b. Both IoU and IoM are widely

adopted metrics in the object detection literature [6, 9, 11, 3]

to assess spatial coherence (IoU) and/or to merge small BBs

in a larger rectangle (e.g., see the Non-Maxima-Suppression

algorithm, NMS, used in [6, 3] and based on IoM).

Finally, we use Dense Trajectories [26] to extract dense

trajectories of moving points. In [26] the authors use opti-

cal flow in order to track points over different frames. They

also improve over [25] by estimating the camera motion and

deleting those trajectories whose movement is similar to the

camera motion. The final trajectories cluster over the actual

moving objects most of the times (but unfortunately cam-

era motion compensation is not able to delete all the noisy

trajectories in the background). Trajectories are continu-

ously created and terminated over the video frames and are

usually very short (max 15 frames [25]), thus there are no

trajectories spanning the whole video. Given two consec-

utive frames Ft and Ft+1, we define the (camera motion

compensated) optical flow between Ft and Ft+1 as:

O(t, t+ 1) = {o1, ..., om}, (3)

where oj = (pj , qj) is a local translational offset belong-

ing to one of the active trajectories between frames Ft and

Ft+1, pj is the starting point (pj ∈ Ft) and qj the ending

point (qj ∈ Ft+1).

For both Selective Search and Improved Trajectories we

have used the publicly available code.

4. Optical Flow Tubes

The first step of our pipeline consists in matching boxes

in Ft with boxes in Ft+1 using optical flow information and

spatial coherence. Given Bt and Bt+1, for each bi ∈ Bt

and bj ∈ Bt+1 we define:

OV (i, j) := IoU(bi, bj) ≥ 0.5, (4)

where the threshold 0.5 is commonly adopted in object de-

tection (e.g., in the Pascal and ImageNet detection tasks) to

assess the spatial similarity of two BBs. Even if here the

context is completely different (we use OV to prune BBs

too far apart from each other in two different frames), we

adopt the same threshold because it somehow guarantees

that bi and bj can be matched only when the difference in

scale and/or aspect ratio is not that large. This constrains

a (possibly articulated) movement of the object between Ft

and Ft+1 to produce a small translational difference and a

moderate deformation. If n1 = |Bt| and n2 = |Bt+1|, then

OV is an n1 × n2 Boolean matrix.

For each bi, bj such that OV (i, j) = true, we compute

the optical flow-based matching density between bi and bj ,

defined as:

D(i, j) :=
mij

A(bi) +A(bj)
, (5)

where mij is the number of optical flow offsets in O(t, t+1)
whose starting point is in bi and ending point in bj . The

intuitive idea behind Eq. (5) is straightforward. The nomi-

nator represents the number of ”votes” that can be accumu-

lated in matching bi and bj , being each vote an element in

O(t, t+1). The denominator normalizes this number by the

sum of the areas of the two BBs. This normalization is nec-

essary because of noisy trajectories (e.g. trajectories laying

on the background, despite camera motion compensation).

In fact, maximizing mij without area normalization leads to
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Figure 2. Adaptive threshold in matching density. Two consec-

utive frames with their initial set of BBs. Both optical flow and

BBs cluster around the moving object (left). In turn, clusters cor-

respond to plateaus in f , the sorted distribution of D (right-top).

The smoothed gradient of f is used in order to detect peaks and to

set the density threshold (right-bottom).

matching bi with that bj in Bt+1 which is the largest pos-

sible, i.e., not a BB tight on the moving object but a BB

usually including undesired background (e.g., see Fig. 1).

Using Eq. 5 we match bi with b∗j (and we write Mt(bi) =
b∗j ) such that:

b∗j = max
bj∈Bt+1

D(i, j), (6)

subject to:

D(i, j) ≥ θt. (7)

In Eq. (7) θt is a threshold which is used to reduce the

risk of drifting in tracking a BB. Instead of using a fixed

threshold, which is difficult to set, we adaptively compute

θt for every pair of frames Ft and Ft+1, based on the obser-

vation that BBs produced by Selective Search usually clus-

ter around true objects and dense trajectories tend to clus-

ter around moving objects due to the camera motion com-

pensation process. Looking at Fig. 2 (left), BBs b1 and b2,

lying on the moving object, also belong to two correspond-

ing clusters of BBs, respectively in frame Ft and Ft+1 (de-

picted with red and yellow). The density value of those

BB pairs belonging to these two clusters, computed using

Eq. 5, is roughly constant for all the possible pairs. Con-

versely, matching b1 with a background BB b3, the corre-

sponding density value is usually drastically different. In

Fig. 2 (right-top) we plot the value of D, where the x-axis

represents pairs of BBs sorted in ascending order with re-

spect to D. Let f() be the sorted distribution of D. Plateaus

in f() correspond to pairs of BBs belonging to clusters in

Ft and Ft+1, and these clusters usually correspond to mov-

ing objects detected by Selective Search. We exploit this

observation selecting θt as one of the steepest slopes in f .

In Fig. 2 (right-bottom) we show the (smoothed) gradient of

f , where peaks correspond to high variations in f before a

plateau. We set θt to be the value of f corresponding to the

median peak. Preliminary experiments with θt equal to the

last peak (higher density) gave slightly lower results.

Using Eq.s (4)-(7) we can compute single frame match-

ings Mt() for all the BBs in Bt, where Mt(bi) is not defined

(Mt(bi) = ∅) when there is no bj ∈ Bt+1 such that (bi, bj)
satisfies both constraints in Eq.s (4) and (7). We can then

concatenate BBs in different frames forming a set of chains

CH = {ch1, ch2, ...}, where a chain ch is computed start-

ing from a given BB b0 in frame t (bo ∈ Bt) and:

ch = (b0, b1, ..., bi, bi+1, ..., bnc
), (8)

where:

bi+1 = Mt+i(bi), (9)

Mt+nc
(bnc

) = ∅. (10)

Chains are, on average, quite short (E(nc) ≈ 6 in our

experiments). For this reason we further merge chains

in optical flow tubes. We deal with the elements in CH
as nodes in a graph, where an edge between two chains

ch1, ch2 ∈ CH is added when there is at least one frame

in common between ch1 and ch2 such that the correspond-

ing BBs in the two chains, b1 ∈ ch1 and b2 ∈ ch2, satisfy:

IoM(b1, b2) ≥ 0.5. Using IoM for measuring overlapping

(instead of IoU) has the advantage that small BBs lying on

subparts of the object of interest are clustered (e.g., [6, 3])

Hence, connected components of this graph correspond to

chains with a sufficient spatial overlap in at least one frame.

We compute an optical flow tube (ot) for each of these con-

nected components:

ot = (r0, r1, ..., rno
), (11)

where each ri ∈ ot is obtained by simply averaging the co-

ordinates of those BBs b1, b2, ... corresponding to the same

frame Ft (i.e., b1, b2, ... ∈ Bt) and respectively belonging

to the merged chains ch1, ch2, ... (i.e., b1 ∈ ch1, b2 ∈ ch2,

etc. ...).

The final optical flow tubes are relatively accurate. Still

they only rely on two elements: the initial set of BBs pro-

vided by Selective Search and the matching pipeline de-

scribed in this section, which is purely based on optical flow

information. What is missing is a statistical model of the ap-

pearance of the tracked BBs, which can improve the result.

We show in the next section how this model is computed.

5. Transductive learning

Let OT = {ot1, ot2, ...} be the set of optical flow tubes

computed as described in the previous section. For every
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ot ∈ OT we build a specialized classifier. We extract posi-

tive samples from the BBs in ot and negative samples from

other BBs in the video frames in which ot is defined and we

train a linear SVM. The classifier obtained is then run on the

whole video to obtain a new tube, that we call a detection

tube.

This is a special case of transductive learning, since the

training samples are extracted, in an unsupervised manner,

from the same video in which the classifier is tested. In

other words, the aim of each classifier is to model the ap-

pearance of a tube and then use this model to refine the tube.

We do not need that the classifier is able to generalize to

other videos because it is only used for our tube extraction

task.

The idea we propose is similar to tracking by detection

approaches, and it is exploited, for instance, in [22]. The

main difference of our approach with respect to [22] and

other tracking by detection approaches is that our method is

completely unsupervised, while in [22] a few positive BBs

on the initial video frames need to be provided.

In more detail, given an optical flow tube ot =
(r0, r1, ..., rno

), we include all of its BBs in the positive set

P . Moreover, if (Ft0 , ..., Ftno
) is the sequence of frames

in which ot is defined, we also include in P all those BBs

which sufficiently overlap with one of the rectangles r ∈ ot
in one of these frames, using the IoU criterion in Eq. (4).

The negative set starts with an initial set N0 which is built

including BBs b randomly extracted in the first frame Ft0

and such that IoU(b, r0) ≤ 0.3. The threshold 0.3 is widely

adopted in the object detection literature for collecting neg-

atives (e.g., see [11]). The negative set is iteratively pruned

of the ”easy negatives” and increased including new ”hard

negatives” by iteratively testing the current detector on the

other frames while learning, following the well known hard

negative mining approach proposed in [9]. Specifically, in

a given frame Ft ∈ (Ft0 , ..., Ftno
), given P (which never

changes) and Nt, we train a classifier ct = [wt, at] by min-

imizing:

wt, at = argmin
w,a

∑

r∈P

max(0, 1−wφ(r)− a) + (12)

∑

r∈Nt

max(0, 1 +wφ(r) + a) + λ||w||22,

where φ(r) is a feature representing the BB r. Different

kinds of features can be used. For instance, HOG features

are quite fast to be extracted from a rectangular patch of an

image. In our experiments we used CNN features: φ(r) is

the 4096-dimensional feature vector extracted from the last

fully-connected layer (FC7) of the ImageNet trained net de-

scribed in [15]. Note that we do not perform fine tuning of

the net’s parameters. In principle we could use all the sets

of positives P , extracted using all the optical flow tubes,

in order to fine-tune the network before extracting our fea-

tures. However, since the number of these tubes is small

(on average, about 3 per video) and they are short, fine-

tuning a network with millions of parameters [15] would

probably lead to overfitting phenomena. Hence, we just use

the net as a feature extractor, relying on the widely proven

high discriminative skills of these features [21]. Following

[11] we also add some padding around each r to include

context. Finally, the value of λ, which controls the influ-

ence of the regularization term, is chosen according to [11]:

λ = 10−4 and the feature values are normalized as sug-

gested in [11]. Following a consolidated object detection

pipeline and adopting the parameters suggested in [9, 11]

allows us to avoid the necessity of tuning the parameters of

our classifiers. We believe that this is of primary importance

for the success of an unsupervised method because it does

not force one to collect data to tune the parameters when the

method is applied to a new domain.

Once trained, ct is tested on the BBs of the subsequent

frames in which ot is defined, new hard negatives are added

and training is repeated (Eq. (12)). We refer to [9] for details

on the hard negative mining procedure. The final classifier

is given by the parameters computed in the last frame of the

tube: c = ctno
.

5.1. Detection Tubes

Once collected a set of classifiers C = {c1, ..., ck} from

a given video, the final part of our pipeline concerns the

extraction of detection tubes using these classifiers. Given

a frame Ft and a classifier ci = [wi, ai] ∈ C, the highest

scoring detection BB dit of ci in Ft is obtained maximizing:

dit = argmax
b∈Bt

w
iφ(b) + ai. (13)

Note that we use all the BBs in Bt when ”testing” the

classifier. We then build a detection tube dti for each clas-

sifier ci linking dit over all the T frames of the video:

dti = (di1, ..., d
i
t, ...d

i
T ). (14)

In this way we collect a set k detection tubes, one per

classifier. Note that the cardinality of C, k, is not fixed a

priori, and it depends on the number of optical flow tubes

constructed in the previous phase (see Sec. 4). In our exper-

iments, k is usually very small (E(k) ≈ 3).

When many tubes are desired (e.g., to increase recall),

we repeat training. More specifically, we split a detec-

tion tube dt in dt1, dt2 using the criteria of the first stage

(Sec. 4). Given two consecutive detections dt and dt+1 in

dt, we split dt in dt1 = (d1, ..., dt) and dt2 = (dt+1, ..., dT )
when: IoU(dt, dt+1) < 0.5 or D(dt, dt+1) ≥ θt, where,

with a slight abuse of notation, D(dt, dt+1) is the match

density defined in Eq. (5) and θt the adaptive threshold pre-

computed in the optical flow tube construction phase. After
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Figure 3. Flow chart of the proposed approach.

splitting the optical flow tubes, we use each tube to train

a second set of classifiers C ′ repeating the procedure de-

scribed in Sec. 5.

The final set of tubes for a given video is the set of the

detection tubes obtained using all the detectors in C and C ′.

For a given video v, let DTv = {dt1, dt2, ...} be the set of

all the detection tubes obtained using all the classifiers in

C and C ′. In Fig 3 we show the flow chart of the whole

procedure.

6. Experiments

We evaluate our method using two common benchmarks

and evaluation metrics for tube-proposal algorithms and we

compare with the state-of-the-art approaches in this field.

6.1. Experimental Setup

Datasets We use for evaluation the UCF Sports dataset

[20] and the YouTube Objects dataset [19]. UCF Sports is

composed of 150 videos of 10 sports (e.g., diving, running,

golf, kicking, etc.). For evaluation we used the ground truth

annotation provided in [17]. Moreover, in order to allow

a comparison with the results reported in [17], we adopted

the same train/test split proposed in that article, where 100

videos are used for testing2. Note that in [17] the train split

is used to train the proposed supervised method, while in

our unsupervised approach we only used this ”train” subset

of 50 videos in the development stage to do all our design

choices. We also do not have dataset-dependent parameters

which need to be set (since all our parameter values are set

using a consolidated object detection pipeline, see Sec.s 4-

5), thus there is no training or parameter tuning phase in

our approach, which makes the comparison with other su-

pervised methods such as [17] disadvantageous for us since

we do not exploit any dataset-specific information.

YouTube Objects is a large dataset composed of 1400

short shots obtained from videos collected on YouTube. As

in the case of UCF Sports, many videos have large cam-

era movement, illumination changes and cluttered back-

grounds. However, the moving objects in this dataset usu-

ally occupy a larger portion of the frame, thus they are easier

to detect. Differently from UCF Sports, in YouTube Objects

there is only one annotated frame per shot but some frames

2The train/test split of the dataset and the annotations are provided at:

http://lear.inrialpes.fr/oneata/3Dproposals

are annotated with multiple objects. The dataset is split in a

”train’ and a ”test” subset. We used the ”test” shots to test

our system (346 shots). Note that the ”train” shots are usu-

ally easier, thus testing on the whole dataset would probably

get higher accuracy results.

Metrics Following [17] we use two metrics: mBAO and

CorLoc. Both metrics are based on the Best Average Over-

lap (BAO) of a set of tube proposals with ground truth ob-

jects. In UCF Sports dataset there is only one moving object

annotated per video (but the dataset contains some videos

with more than one moving object, being only the predom-

inant object provided of ground truth annotations). Using

this assumption, for a given video v and a set DTv of tube

proposals for v, BAO is defined as follows [17]:

BAO(v) = max
dt∈DTv

1

|Tv|

∑

t∈Tv

IoU(dt, gt), (15)

where |Tv| is the set of frames of video v with ground truth

annotation, dt is the BB in tube proposal dt at frame t, and

gt is the ground truth at frame t. Note that in case of multi-

ple annotated objects per video (YouTube Objects dataset),

Eq. (15) is applied separately to each object using the same

set of proposals Tv [17]. mBAO is the mean BAO across all

the videos, while CorLoc is the fraction of videos for which

the BAO is greater or equal to 0.5.

6.2. Comparison with State of the Art

UCF Sports. In Fig.s 4-5 we show the experimental re-

sults obtained on the ”test” part of UCF Sports dataset (100

videos). The methods we compare to are: (1) the Spatio-

Temporal Object Detection Proposals (STODP) proposed in

[17], (2) The Graph-Based Hierarchical segmentation pro-

posed in [12] and its variant (2) GBH-Flow presented in

[17]. All the plotted results, except ours, have been obtained

from [17].

Fig. 4 shows the mBAO plotted with respect to the num-

ber of average tube proposals per video and, similarly, Fig. 5

shows the CorLoc-based evaluation. In case of one tube per

video, we obtain 0.374 mBAO and 0.37 CorLoc versus 0.3

and less than 0.3, respectively, of the state-of-the-art system

on UCF Sports [17], with a relative CorLoc improvement

of more than 30%. Once more we highlight that [17] is

a supervised method, trained on the ”train” split of UCF

Sports, hence, most likely positively affected by a dataset
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Figure 4. mBAO computed over the UCF Sport dataset.

bias, while our method is completely unsupervised. We

achieve the highest reported value of CorLoc (0.82) on UCF

Sport with 188 tube proposals (quite close to 0.8, obtained

with only 36 tubes). Moreover, our system achieves 0.7

CorLoc with only 18 tubes: a value of recall which is not

achieved by the other methods even when using 1000 pro-

posals.

YouTube Objects. Fig. 6 shows the results obtained

with the YouTube Objects dataset. In this case we com-

pare with two different parameter settings of STODP (we

refer the reader to [17] for details), the unsupervised method

proposed by Papazoglou et al. [18], the weakly supervised

method of Prest et al. [19] and the result for the best tube

among the proposals of the unsupervised method proposed

by Brox and Malik [4]. All the plotted results, except ours,

have been obtained from [17] (mBAO is not provided by the

other authors).

As Fig. 6 clearly shows, we outperform all the competi-

tors, both the supervised and the unsupervised methods.

The only approach which achieves a CorLoc value better

than our system is [18], which only outputs a single pro-

posal per shot. However, we obtain a CorLoc higher than

[18] with only 4 proposals. Compared with Oneata et al.

[17], which obtained 0.461 when using 10 proposals, with

the same number of tubes we obtain a CorLoc of 0.596, a

relative improvement of 29%. Our largest value of CorLoc

on this dataset is 0.927, obtained with 258 tubes, a recall

much higher than any other published result.

6.3. Qualitative Results

In Fig. 7 we show some example results of our detec-

tion tubes using UCF Sports and Youtube Objects images.

Most of the times our system is able to accurately detect

the moving object even when it stops for a while (e.g., the

dog, which is still with respect to the background, despite

there is camera movement), unlike most of the state-of-the-

art methods which require movement in all the frames.
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Figure 5. CorLoc computed over the UCF Sport dataset.
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In Fig. 8 we show some incorrectly detected tubes. In the

middle row the misalignment between the ground truth and

the detections is probably due to the difference in speed of

the upper part and the lower part of the person, which pro-

duced detectors only for the fastest part (the upper body).

In the first row our system is actually able to accurately

track most of the moving persons but, unfortunately, the

UCF Sport dataset contains annotation for only one object

(person) per video, penalizing the extraction of multiple-

objects.

7. Conclusions

We proposed a method for the extraction of tubes from

videos which is based on a first pipeline in which optical

flow obtained with Dense Trajectories is used for matching

BBs and a second pipeline in which the initial tubes are used

to collect positive training samples for training tube-specific

detectors. The final tubes are given by the detections of the

trained classifiers, used in a transductive framework. The

method was evaluated on UCF Sports and YouTube Ob-

jects, showing state-of-the-art results.

Our approach is completely unsupervised and all the crit-

ical parameters and thresholds have been set by adopting the

values commonly used in a consolidated object detection
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Figure 7. Some examples of detection tubes. In each row we show a tube taken from a different video. 1-st and 2-nd row: UCF Sports

dataset, 3-rd and 4-th row: YouTube Objects dataset. Red rectangles are BBs of the tube, while blue rectangles are ground truth annotations.

Note that in YouTube Objects, only one frame is provided with ground truth (3-rd column).

Figure 8. Some examples of errors of the proposed method. 1-st and 2-nd row: UCF Sports dataset, 3-rd row: YouTube Objects dataset.

pipeline [9, 11, 6, 3] which makes the final system indepen-

dent of specific datasets. Other important characteristics of

the proposed technique are the possibility to detect the ob-

ject in frames in which there is no movement (thanks to the

detection-based approach) and the fact that we do not need

to assume that only one moving object is present in a video

clip.
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