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Abstract

A new method is introduced for stereo matching that op-

erates on minimum spanning trees (MSTs) generated from

the images. Disparity maps are represented as a collection

of hidden states on MSTs, and each MST is modeled as a

hidden Markov tree. An efficient recursive message-passing

scheme designed to operate on hidden Markov trees, known

as the upward-downward algorithm, is used to compute the

maximum a posteriori (MAP) disparity estimate at each

pixel. The messages processed by the upward-downward al-

gorithm involve two types of probabilities: the probability of

a pixel having a particular disparity given a set of per-pixel

matching costs, and the probability of a disparity transition

between a pair of connected pixels given their similarity.

The distributions of these probabilities are modeled from a

collection of images with ground truth disparities. Perfor-

mance evaluation using the Middlebury stereo benchmark

version 3 demonstrates that the proposed method ranks sec-

ond and third in terms of overall accuracy when evaluated

on the training and test image sets, respectively.

1. Introduction

Stereo matching, used to extract the positional offsets

relating corresponding points in two views of a scene, re-

mains one of the most studied problems in computer vi-

sion. These offsets, otherwise known as disparities, can be

easily converted to per-pixel depths representing the three-

dimensional properties of the scene. Depth information

is critical in applications such as robotic navigation, aug-

mented reality, image-based rendering, advanced human-

computer interfaces, and visual metrology.

As an inverse computer vision problem that aims to re-

cover depth from two-dimensional projections of the scene,

stereo matching must overcome a variety of challenges re-

sulting from both scene properties and the image acquisition

process. The challenges associated with scene properties in-

clude reflections, occlusions, and repeating patterns; while

those arising from the image acquisition process include the

effects of quantization, noise, and image blur. Furthermore,

since increasing the product of the image dimensions and

the number of disparity hypotheses causes a proportional

increase in the complexity of matching, devising efficient

algorithms is an ongoing challenge that has become even

more difficult due to increasing video and image resolu-

tions.

The process of stereo matching generally includes the

following four steps: computation of per-pixel matching

costs, spatial aggregation of costs, disparity assignment, and

refinement of disparities. Scharstein and Szeliski [20] rec-

ognized that stereo matching algorithms can be classified as

either local or global, depending on how the cost aggrega-

tion and disparity assignment steps are performed. Local

algorithms choose disparities that minimize the dissimilar-

ity between small regions in the images, while global al-

gorithms attempt to minimize an energy function that ex-

plicitly enforces pixel similarity and smoothness over the

entire image. While region-based methods allow for effi-

cient matching, their inherent locality makes them unsuit-

able for large textureless regions. Global algorithms are ca-

pable of overcoming these limitations, however they often

rely on computationally complex optimization schemes. To

reduce computational complexity, recent methods have ex-

ploited tree structures in order to accelerate the process of

cost aggregation [9, 25, 3]. Rather than operating on tra-

ditional four-connected image grids, like early global algo-

rithms, these methods reduce the computational complexity

by efficiently passing messages between nodes in a tree.

Here, a global stereo matching method is proposed

that performs cost aggregation through message passing

within the minimum spanning tree (MST). Unlike tradi-

tional graph-based approaches that define and minimize

global energy functions, the proposed method performs

maximum a posteriori (MAP) disparity estimation using

statistics that are generated from a wide range of ground

truth data. Specifically, the proposed method uses the re-

cently released Middlebury stereo benchmark version 3 im-

age set [18]. This set includes 30 high-resolution image

pairs and ground truth disparity maps, making it possible
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to generate robust statistical models relating the observed

image intensities and the corresponding disparities.

2. Background

Several different algorithms have been introduced that

perform cost aggregation by allowing neighboring pix-

els to share information either iteratively or in sequence.

These include dynamic programming (DP) [16], graph cuts

[4], belief propagation [22], tree-reweighted message pass-

ing [12], and semi-global matching [9]. While some of

these methods operate on conventional four-connected im-

age grids, others have adopted tree structures to reduce the

complexity of aggregation.

Szeliski et al. [23] compared energy minimization meth-

ods that operate on images represented as four-connected

grids of pixels. Tree-reweighted message passing and graph

cuts were shown to be most effective in arriving at solutions

that approach the global minimum of the energy functional

at the expense of high computational complexity. Similar

solutions can be obtained more efficiently using belief prop-

agation, however, this method is not guaranteed to converge

and, in most cases, does not converge on cyclic graphs such

as the four-connected image grids.

To improve the efficiency of cost aggregation and guar-

antee convergence, trees spanning the image space can be

used instead of four-connected grids. The original method

based on DP, for example, operates on horizontal scanlines

in the image [16]. Since scanlines are processed indepen-

dent of one another, unwanted streaking artifacts appear

in the resulting disparity maps. Hirschmüller [9] recog-

nized the limitations of such an approach and introduced the

semi-global matching (SGM) method that considers eight

or more lines converging at each pixel location to perform

cost aggregation. SGM, which can be thought of as a multi-

directional variant of dynamic programming, significantly

reduces the streaking effect. An alternative proposed by

Bleyer and Gelautz, termed simple-tree DP [3], achieves

efficient global aggregation and addresses the streaking is-

sue by performing four passes of DP through every pixel.

Effectively, aggregation occurs on trees composed of hor-

izontal scanlines that are connected vertically. Both SGM

and simple-tree DP have been shown to be effective cost

aggregation/disparity selection methods, both in terms of

computational efficiency and accuracy of matching.

In [25], Yang introduced a stereo matching method that

operates on minimum spanning trees constructed from the

input images. The minimum spanning tree, which is ob-

tained through successive removal of high-cost edges from

the four-connected image grid, covers the full extent of the

image and provides a unique path between every pair of

pixels in the image. Instead of exchanging disparity evi-

dence among the pixels in the standard four-connected grid,

the information is propagated sequentially along paths in

the minimum spanning tree. Yang’s method is essentially a

global variant of adaptive support-weight cost aggregation

[27], where the connectivity of pixels within the MST and

their color similarity determine the effective scope of aggre-

gation. Note that minimum spanning trees were previously

used in the context of stereo matching by Veksler [24] to

orchestrate dynamic programming in a way that enforces

inter-scanline consistency of disparities.

Stereo matching is frequently interpreted as a labeling

problem, where every pixel in the image is assigned a dis-

parity label. Proven maximum likelihood (ML) and maxi-

mum a posteriori (MAP) estimators exist that solve label-

ing problems through message passing on trees. Such algo-

rithms have been extensively studied in the field of coding

theory [17]. Yang’s method fits this framework by perform-

ing message passing on trees, however, it is limited by the

fact that aggregation is performed independently for each

slice of the cost volume corresponding to a specific dispar-

ity. As such, this method tends to flatten objects in the dis-

parity map. SGM addresses this problem by considering

disparity transitions while aggregating cost, which results in

improved performance on slanted surfaces. In many ways,

SGM’s rule of operation closely resembles the Viterbi algo-

rithm [8], a well-known ML estimator.

This paper introduces a stereo matching method that

performs MAP disparity estimation through message pass-

ing on the minimum spanning tree. It is assumed that the

MST can be modeled as a hidden Markov tree (HMT) that

governs the relationships between the disparities assigned

to neighboring pixels. This assumption makes it is possi-

ble to efficiently compute disparities on the MST using the

upward-downward algorithm [6]. In addition, the proposed

method does not rely on heuristic formulations of match-

ing cost or disparity smoothness constraints. Scharstein and

Pal [19] have previously demonstrated that stereo match-

ing performance can be significantly improved by learning

the matching parameters from ground truth data. Similarly,

the proposed method relies on probability models estimated

from ground truth disparity data using statistical analysis

and machine learning techniques.

3. MAP Disparity Estimation on the MST

The proposed method introduces a novel tree-based ap-

proach to stereo matching that uses message passing on the

MST in order to estimate the MAP disparity likelihood of

every pixel. Specifically, message passing is performed us-

ing the upward-downward algorithm, a known MAP es-

timator designed to operate efficiently on trees. In the

context of stereo matching, the application of the upward-

downward algorithm requires a tree structure that covers the

entire space of the image (here, the MST) and probabilis-

tic models that both govern the interactions between pixels

and capture the relationship between disparities and pixel
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Figure 1: An example of a minimum spanning tree gener-

ated from an image.

intensities. The construction of the MST, the message pass-

ing scheme, and the associated probabilistic models are dis-

cussed in the following sections.

3.1. Minimum Spanning Trees from Images

Prior to aggregation, minimum spanning trees are con-

structed from the input images to facilitate the sharing of

disparity evidence between pixels. An assumption is made

that neighboring pixels with similar color are more likely to

have similar disparity, and thus an algorithm stands to ben-

efit from sharing disparity evidence along edges in the tree.

Fig. 1 shows an example of a minimum spanning tree that

connects all of the pixels in a 9×8 image. Notice that short

paths through the tree tend to connect neighboring pixels

with similar color. In contrast, long paths tend to connect

pixels with significantly different color.

In order to find the minimum spanning tree, costs must

first be assigned to each edge linking neighboring pixels in

the four-connected image grid. Since changes in disparity

often coincide with noticeable changes in image intensity

[27], it is natural to choose costs that are proportional to

the intensity difference between neighboring pixels. Here,

the cost of each edge is assigned according to the distance

between pixels as measured by the sum of absolute inten-

sity differences. Once costs have been assigned, Kruskal’s

algorithm [14] is applied to iteratively remove high-cost

edges from the grid until the minimum spanning tree is ob-

tained. The representation of the MST used by the proposed

method is a set of child/parent pixel pairs, ordered in a way

that all paths from the leaf nodes up to the root node can be

traversed in a single scan through the pairs.

3.2. Upward­Downward Algorithm

The MSTs representing the images are assumed to have

the properties of a hidden Markov tree (HMT), i.e., the dis-

parity of each pixel is conditionally independent of the dis-

parities of all other pixels given the disparities of its imme-

c1 d1

c2 d2

c3 d3 c4 d4

Figure 2: Subsection of a hidden Markov tree (HMT) model

where each state node, denoted by dn, is associated with an

observation node, denoted by cn. In this illustration, parent

nodes are placed above, and connected to, their child nodes.

For example, the children of d2 are c(d2) = {d3, d4} and

the parent of d2 is p(d2) = d1.

diate neighbors in the tree. Hidden Markov trees are defined

by 1) a set of connections between nodes that have hidden

states, and 2) a set of observations associated with the state

of each node. In the context of stereo matching, the hidden

state is the disparity dn of pixel n, and the observation is the

vector of costs cn of choosing all possible disparity values.

Fig. 2 illustrates an example of such an HMT.

The HMT model allows efficient calculation of the max-

imum a posteriori (MAP) disparity estimate

d̂n = argmax
dn

P (C|dn)P (dn)

of each pixel n, where C = [c1, . . . , cN ] denotes the set

of all observed matching costs throughout the entire image,

P (C|dn) is the likelihood of observing the cost C given dis-

parity dn, and P (dn) is the prior probability of disparity dn.

The structure and properties of the HMT can be exploited to

calculate the large multivariate distribution P (C|dn)P (dn)
efficiently using the upward-downward algorithm [6].

The probability distribution that is computed using the

upward-downward algorithm can be reformulated as

P (C|dn)P (dn) = P (dn,C)

= P (Cn|dn)P (dn,C\n) (1)

using conditional independence relationships assumed by

the HMT model, where Cn denotes the collection of costs

that belong to the subtree rooted at node dn, and C\n de-

notes the collection of all costs excluding those in Cn. In

Fig. 2, C2 includes c3, c4, and all costs associated with

children of d3 and d4. The cost C\3 includes c1, c2, c4, and

all other costs not connected to children of d3.

The calculation of (1) using the upward-downward algo-

rithm is decomposed into two stages, where β messages are

first passed up from the leaf nodes to the root node (the up-

ward stage) and then α messages are passed down from the
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root node to the leaf nodes (the downward stage). After ini-

tializing P (Cn|dn) to P (cn|dn) at the leaf nodes, messages

in the upward stage are computed recursively using

βp(n)
n (dp(n))

︷ ︸︸ ︷

P (Cn|dp(n)) =

dmax∑

dn=dmin

βn(dn)
︷ ︸︸ ︷

P (Cn|dn)P (dn|dp(n)) (2)

βn(dn)
︷ ︸︸ ︷

P (Cn|dn) =







∏

v=c(n)

βp(v)
v (dp(v))

︷ ︸︸ ︷

P (Cv|dp(v))






P (cn|dn) (3)

where c(n) denotes the set of children of node n, p(n) de-

notes the parent of node n, and [dmin, dmax] represents the

range of disparities. The messages in the downward stage

are then computed using the recursion

αn(dn)
︷ ︸︸ ︷

P (dn,C\n)=

dmax∑

dp(n)=dmin

P (dn|dp(n))

βp(n)(dp(n))

︷ ︸︸ ︷

P (Cp(n)|dp(n))

P (Cn|dp(n))
︸ ︷︷ ︸

β
p(n)
n (dp(n))

αp(n)(dp(n))

︷ ︸︸ ︷

P (dp(n),C\p(n)).

(4)

In order to evaluate (2)-(4), it is necessary to estimate

the disparity transition probabilities P (dn|dm) between all

neighboring pixels n and m and the disparity likelihoods

P (cn|dn) for all pixels n prior to applying the recursion.

These probabilities depend on the stereo image capture con-

figuration, which is affected by factors such as resolution,

exposure, illumination, baseline, and structural properties

of the scene. For the remainder of this work, transition

probabilities and disparity likelihoods are estimated from

half-resolution training images and ground truth disparity

maps provided by the Middlebury stereo benchmark ver-

sion 3. After being rounded to integer values, each available

ground truth disparity in the training set is used to estimate

transition probabilities and disparity likelihoods.

3.2.1 Transition Probabilities

The majority of stereo matching methods that incorporate

local message passing abstract the disparity transition prob-

ability into an explicit smoothness term in the energy func-

tion. The smoothness term typically takes the form of a

pair-wise penalty function that discourages significant dis-

continuities in the disparity assignment of neighboring pix-

els. The linear truncated model and variants of the Potts

model, all of which increase the penalty values with in-

creasing disparity transitions, are commonly used in stereo

matching [3, 9]. To allow for disparity discontinuities

around object edges, both models saturate the penalty value

once a certain disparity transition threshold is met. Edge-

preserving properties of the smoothness term can otherwise

∆D
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∆
I
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∆I = 50
∆I = 150

Figure 3: Transition probabilities given intensity difference.

be achieved by making the penalty function dependent on

the intensity difference between connected pixels.

Consider two neighboring pixels labeled n and m in the

HMT with observed intensities In and Im. The proposed

method aims to directly model the probability of a disparity

transition ∆D = |dn − dm| conditioned on the pair-wise

pixel intensity change ∆I = |In − Im|. The underlying

probability distribution was estimated by first constructing

a bivariate histogram of the disparity transitions ∆D and in-

tensity differences ∆I extracted using training images and

ground truth disparity maps. Conditional probability dis-

tributions were calculated from the bivariate histogram by

fixing the values of ∆I and normalizing by the number of

observed pixels with that particular intensity difference.

Continuous transition probabilities, illustrated for inten-

sity changes of ∆I=0, 50, and 150 in Fig. 3, are observed

to follow the exponential distribution where the decay rates

of the exponentials vary with the intensity change. This is

not surprising, since only a small number of pixels in most

images belong to depth edges. The majority of pixels reside

inside object boundaries and experience little to no change

in disparity when compared to their neighbors.

Probabilities of selected disparity transitions as functions

of intensity differences are shown in Fig. 4. This illustrates

the effect that increasing intensity differences have on the

probability of disparity transitions. For example, as the

intensity difference between neighboring pixels increases

from 0 to 150, the probability that the disparity stays the

same (i.e., ∆D = 0) drops from 0.95 to 0.73, while the

probability that the disparity changes by two, i.e., ∆D = 2,

increases from 0.0 to 0.02. The red lines in Fig. 4 represent

linear models fitted to the observed probabilities (plotted

in blue). The transition probabilities obtained for ∆D > 4
have been observed to experience very little change, and are

collectively represented by the model shown in the last row

of Fig. 4. These models allow for the transition probability

P (dn|dm) to be computed for all pixels n and m based on

the intensity differences between the pixels.

3.2.2 Likelihoods

As previously indicated, the upward-downward algorithm

requires an estimate of the likelihood P (cn|dn) of observ-
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Figure 4: The probability of disparity transitions ∆D = 0,

1, 2, 3, 4, and ∆D > 4 as a function of intensity difference.

The blue dots represent probabilities extracted from ground

truth disparity maps and fitted lines are drawn in red.

ing a vector of costs cn, given a disparity dn. In the con-

text of stereo matching, cn is a metric that quantifies the

visual similarity between a pixel n and each of its candidate

matches in the other image. Selection of the appropriate

cost metric is crucial to the performance of stereo matching,

and has been studied extensively. A thorough examination

of cost metrics was presented by Hirschmüller et al. [10],

who examined a variety of parametric and non-parametric

cost metrics, and concluded that the census transform [28]

provides the best overall accuracy, especially in the pres-

ence of illumination and exposure changes.

Our experiments indicate that the accuracy of matching

can be further improved by combining the 9 × 7 census

metric with the absolute difference of horizontal gradients

around the pixels of interest. This is likely due to the fact

that census imposes a hard threshold, which is easily dom-

inated by noise in areas of the images that lack texture. In

such a scenario, the real-valued absolute difference of gra-

dients contributes to the disambiguation of matching. In the

proposed method, the census metrics ccn and gradient met-

rics cgn evaluated for all disparity hypotheses are vertically

concatenated to form the vector of costs cn.

While many existing stereo matching methods avoid es-

timating the likelihood P (cn|dn) and instead use the val-

ues of cn directly within a cost minimization framework,

the proposed method takes a statistical approach to estimate

the likelihood from ground truth data. Estimation is per-

formed using multinomial logistic regression under the fol-

lowing assumptions: 1) the disparity dn can be expressed as

a categorically distributed variable dependent on cn, 2) the

probability of dn can be calculated from a linear combina-

tion of the observed costs cn, and 3) this linear combination

can be obtained by applying a training procedure to sample

data. Precisely, multinomial logistic regression estimates

the conditional probability P (dn|cn). Under the assump-

tion of equiprobable disparities, this conditional probability

is proportional to the sought likelihood P (cn|dn).
Using the softmax model [11], the formulation of the

conditional probability provided by multinomial logistic re-

gression is given by

P (dn = k|cn) =
exp

(
c
T

nθk

)

dmax∑

i=dmin

exp
(
c
T

nθi

)

, (5)

where dn is the true disparity of the n-th pixel, k is a candi-

date disparity, and θk is the vector of the linear coefficients

corresponding to the k-th disparity candidate.

The training set of the Middlebury stereo benchmark was

used to fit the set of coefficients θ = [θdmin
, . . . ,θdmax

].
The resulting elements along the diagonals corresponding

to both census and gradient metrics are the dominant terms

in the θ matrix, whereas the values of elements outside of

the diagonals are smaller by more than an order of magni-

tude. Since only the diagonal elements of θ are significant,

the matrix can be approximated by setting the off-diagonal

terms to zero. To avoid favoring any particular disparity

over another, the elements along the diagonals can be sim-

ply represented as constants γc and γg . This allows for sim-

plified computation of equation (5) using the approximation

P (dn = k|cn) ≈
exp

(

γcccn,k + γgc
g
n,k

)

dmax∑

i=dmin

exp
(
γcccn,i + γgc

g
n,i

)

, (6)

where ccn,k is the k-th element of the census vector cgn, and

c
g
n,k is the k-th element of the gradient vector cgn. Within the

proposed method, the coefficient values are γc = −0.014
and γg = −0.289.

3.3. Disparity Selection and Refinement

Once disparity likelihoods have been computed using the

upward-downward algorithm, disparity maps for both im-

ages are obtained using the winner-take-all (WTA) disparity

selection criteria by simply selecting the most likely dispar-

ities. Cross-checking [20] is then used to identify incon-

sistent pixels, i.e., pixels whose disparities do not satisfy a

2223



Table 1: Results on the Middlebury training set evaluating the percentage of errors > 2 of non-occluded pixels.

Method, Res.

Avg.

bad 2.0

1

Adiron

1

ArtL

1

Jadepl

1

Motor

1

MotorE

1

Piano

0.5

PianoL

1

Pipes

0.5

Playrm

0.5

Playt

1

PlaytP

1

Recyc

0.5

Shelvs

1

Teddy

0.5

Vintge

MeshStereo [1], H 15.1 1 7.14 1 9.55 4 23.0 9 9.42 4 10.1 5 15.4 1 24.9 1 12.8 8 23.7 4 23.4 2 13.3 1 13.5 4 39.9 2 7.21 4 22.6 1

TMAP, H 16.2 2 10.9 3 11.4 7 21.7 6 8.00 3 8.01 1 16.0 2 27.6 3 8.85 1 22.5 3 35.2 8 15.1 3 12.4 1 44.4 5 6.93 3 35.9 4

IDR [13], H 17.0 3 12.0 5 11.4 6 18.7 3 10.4 5 8.53 2 16.6 4 26.0 2 11.8 6 22.4 2 49.7 16 13.4 2 12.9 3 49.0 11 6.47 2 34.0 3

LCU [2], Q 17.3 4 10.9 2 12.6 9 22.0 8 11.3 7 12.1 10 20.9 11 32.2 9 12.1 7 23.9 5 24.6 4 16.5 6 12.5 2 40.3 3 5.14 1 38.8 7

SGM [9], H 17.8 5 15.3 7 8.87 3 18.1 1 10.9 6 8.90 3 16.4 3 29.1 6 11.5 5 21.7 1 52.5 18 15.8 4 14.6 5 46.4 7 7.47 6 39.3 8

PFS [5], F 19.9 6 20.9 13 7.96 2 18.5 2 11.6 8 9.87 4 19.9 8 28.9 5 14.2 11 28.2 8 49.5 15 17.2 7 16.5 6 55.4 20 7.88 8 45.7 15

Table 2: Results on the Middlebury test set evaluating the percentage of errors > 2 of non-occluded pixels.

Method, Res.

Avg.

bad 2.0

0.5

Austr

1

AustrP

1

Bicyc2

1

Class

0.5

ClassE

1

Compu

1

Crusa

1

CrusaP

1

Djemb

0.5

DjembL

0.5

Hoops

1

Livgrm

1

Nkuba

1

Plants

0.5

Stairs

MeshStereo [1], H 13.4 1 5.90 1 4.88 4 10.8 8 12.9 5 10.6 1 13.6 2 12.2 3 9.01 1 5.39 3 27.4 2 23.5 2 17.7 1 21.0 5 15.4 5 20.9 2

LCU [2], Q 17.0 2 24.7 5 7.59 9 11.6 9 11.9 3 27.9 2 14.0 3 19.3 4 15.8 6 8.10 13 36.1 8 29.1 6 21.3 4 18.4 1 14.1 2 23.8 4

TMAP, H 17.1 3 20.2 4 4.94 5 8.13 4 12.8 4 30.0 3 14.1 5 27.9 9 20.4 10 5.09 1 31.5 6 23.1 1 20.9 3 19.0 2 18.8 9 18.0 1

IDR [13], H 18.4 4 37.5 11 4.08 1 7.49 2 23.3 12 40.6 6 15.7 12 24.5 5 11.3 5 5.46 5 33.1 7 26.0 3 21.5 5 21.7 6 15.3 4 21.2 3

SGM [9], H 18.7 5 40.3 12 4.54 3 8.03 3 22.9 11 40.5 5 14.6 8 24.7 6 10.1 3 5.40 4 29.6 4 28.5 5 23.9 7 20.0 3 14.2 3 30.9 8

LPS [21], H 19.4 6 6.14 2 5.34 6 9.24 5 7.53 1 96.0 20 15.0 10 9.61 1 9.40 2 5.18 2 92.4 22 27.4 4 24.3 8 23.0 9 10.0 1 25.6 6

bijective mapping. These pixels, which most often coincide

with occlusions, should not be allowed to affect aggrega-

tion. This is achieved by forcing the disparity likelihoods

[P (cn|dn = dmin), . . . , P (cn|dn = dmax)]
T at inconsis-

tent pixels to be uniformly distributed, and reapplying the

upward-downward algorithm. Finally, median filtering is

performed on the resulting disparity maps in order to elimi-

nate isolated mismatches.

3.4. Computational Complexity

Letting N be the number of pixels and D be the number

of disparity hypotheses, the planarity of the four-connected

image grid makes it possible to compute the MST in O(N)
time [15], whereas the complexity of the upward-downward

algorithm used for aggregation and refinement is O(ND2).
By explicitly considering only a fixed number of disparity

transition probabilities as suggested in section 3.2.1, one

can avoid full matrix multiplication in (2) and (4) and in-

stead evaluate a sum of shifted vectors, reducing the com-

plexity to O(ND). Similar complexity has previously been

reported by Felzenszwalb and Huttenlocher [7] for their

linear-time message passing method.

4. Results

The proposed method was evaluated using both the train-

ing and test image sets of the Middlebury stereo benchmark

version 3. Results are given in Tables 1 and 2 for the eval-

uation of error rates using the default metric, which mea-

sures the percentage of non-occluded disparity errors that

are greater than two with respect to the original resolution.

The average error rate of the proposed method, denoted by

TMAP (Tree-based Maximum A Posteriori disparity esti-

mation), ranks 3rd and 2nd lowest in the test and training

sets, respectively. It also achieves the lowest error rates

among all methods for six of the image pairs. The similar

performance on training and test sets in terms of both rank

and average error rate (16.2% and 17.1%) suggest that the

parameters used to model disparity likelihood and transition

probabilities are not specific to the training set. The pro-

posed method was implemented on a MacBook Pro com-

puter with a 2.7 GHz Intel Core i7 CPU and 16 GB memory.

The average runtime per image for the 30 half-resolution

images in the testing and training sets is 6.8 seconds. Mes-

sage passing using (2)-(4) accounted for 6.1 seconds, while

MSTs and input likelihoods accounted for <0.7 seconds.

To illustrate the performance of the proposed method,

select disparity maps and error images are given in Fig. 5.

Results on the MotorE images demonstrate that TMAP al-

lows for robust matching in the presence of exposure varia-

tions. This is due to the use of the census and gradient met-

rics, both of which are invariant to shifts in intensity. The

Pipes images test the method’s ability to handle depth dis-

continuities and narrow foreground objects. While the tran-

sition probabilities strongly favor continuity of disparities,

the method manages to accurately capture the foreground

objects. This is because the minimum spanning tree con-

forms to the foreground objects, requiring very few dispar-

ity discontinuities to occur between neighbors in the tree.

The Playt images illustrate a case of imperfect rectifi-

cation, where significant vertical disparities exist between
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Figure 5: Disparity maps and the corresponding error images obtained for selected datasets of the Middlebury benchmark

(version 3). Errors in occluded regions are shown in gray, while the errors in non-occluded areas are shown in black.

corresponding pixels. The way that the census cost metric

is computed makes it inherently sensitive to vertical offsets,

leading to unreliable matching on imperfectly rectified im-

ages. The two images from the test set where the proposed

method produces the lowest and highest error rates relative

to other methods are Stairs and CrusaP, respectively.

While both of these image sets contain weakly textured sur-

faces, the proposed method reproduces the smooth surface

in the Stairs image more accurately due to its gradual

disparity gradient.

A comparison of error rates achieved using various tree-

based cost aggregation methods is given in Fig. 6. In

order to isolate cost aggregation from the other stages of

stereo matching, disparity refinement and post processing

were disabled, and the same census/gradient cost metric de-

scribed in section 3.2.2 was used by all methods. The cost

aggregation of TMAP outperforms all other methods for 12

out of 15 training images, while achieving the second lowest

error rate for the remaining three images. Both the MST fil-

tering [25] and the recursive bilateral filtering (RecurB) [26]

perform aggregation independently for each disparity hy-

pothesis. By doing so, they are making an implicit assump-

tion that surfaces in the scene are fronto-parallel, resulting

in increased error rates for images that contain slanted sur-

faces. In contrast, the aggregation schemes of semi-global

matching [9] and simple tree matching [3] explicitly penal-

ize disparity transitions between neighboring pixels in the

tree. However, the pre-defined structure of the trees over
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Figure 6: Accuracy of matching using the proposed (TMAP) and related aggregation methods (winner-take-all with no post-

processing). To isolate the performance of aggregation, each method uses the same weighted combination of census/gradient

cost derived in section 3.2.2. Related aggregation methods include MST filtering (MST) [25], semi-global (SGM) [9],

recursive bilateral filtering (RecurB) [26], and simple trees (SimpleTree) [3].

(a) MST (b) TMAP

Figure 7: A comparison of results obtained using the cost

aggregation schemes of the MST filtering method [25] and

the proposed method (TMAP). In the bottom images, the

white areas indicate absolute disparity errors ≥ 1.

which these methods aggregate does not take advantage of

visual principles of grouping [27]. The minimum span-

ning trees used by TMAP, on the other hand, enforce visual

grouping of shapes while still allowing explicit penalization

of disparity transitions.

An illustration of the proposed method’s ability to re-

cover disparities along a slanted surface is provided in Fig.

7. Here, TMAP is compared to MST filtering, since both

methods perform aggregation on minimum spanning trees.

Recall that MST filtering does not consider disparity tran-

sitions during aggregation and, as such, produces a rough

approximation of the surface corresponding to the ground

plane in the scene. Conversely, the proposed method eval-

uates the probabilities of all possible disparity transitions.

The transition probabilities estimated from the available

ground truth data strongly favor gradual transition in dis-

parity, as previously discussed in section 3.2.1. As a result,

the proposed method accurately handles disparity estima-

tion along slanted surfaces.

5. Conclusion

This paper presents a method for performing maximum

a posteriori (MAP) disparity estimation on minimum span-

ning trees that facilitate the efficient exchange of disparity

evidence across the entire image. The proposed method

uses an implementation of the upward-downward algorithm

to aggregate costs through message passing between nodes

in the minimum spanning tree. The messages, which repre-

sent disparity likelihoods and probabilities of disparity tran-

sitions, are derived from statistical relationships between

matching costs and true disparities.

When evaluated using the Middlebury stereo benchmark

version 3, the proposed method is among the top perform-

ers. While the parameters of the method are learned from

the training set, results on the test set demonstrate that these

parameters are not specific to the training set, and that the

method is capable of performing well under a variety of

challenging conditions. The aggregation technique used by

the proposed method has also been demonstrated to out-

perform existing tree-based aggregation techniques. When

compared to another method that aggregates using MSTs,

it is also shown that the proposed method allows for more

accurate disparity estimation along slanted surfaces without

requiring higher-order smoothness terms. It is noteworthy

that these results are achieved without requiring contextual

knowledge of the scene or surface fitting.
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