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Abstract

We propose a novel image representation, termed

Attribute-Graph, to rank images by their semantic similarity

to a given query image. An Attribute-Graph is an undirected

fully connected graph, incorporating both local and global

image characteristics. The graph nodes characterise ob-

jects as well as the overall scene context using mid-level se-

mantic attributes, while the edges capture the object topol-

ogy. We demonstrate the effectiveness of Attribute-Graphs

by applying them to the problem of image ranking. We

benchmark the performance of our algorithm on the ‘rPas-

cal’ and ‘rImageNet’ datasets, which we have created in or-

der to evaluate the ranking performance on complex queries

containing multiple objects. Our experimental evaluation

shows that modelling images as Attribute-Graphs results in

improved ranking performance over existing techniques.

1. Introduction

In a digital world of Flickr, Picasa and Google Image

Search, ranking retrieved images based on their semantic

similarity to a query has become a vital problem. Most con-

tent based image retrieval algorithms treat images as a set

of low level features or try to define them in terms of the as-

sociated text [15, 38]. Such a representation fails to capture

the semantics of the image. This, more often than not, re-

sults in retrieved images which are semantically dissimilar

to the query.

Image processing and computer vision researchers to

date, have used several different representations for images.

They vary from low level features such as SIFT [21], HOG

[3], GIST [23] etc. to high level concepts such as objects

and people [20]. Since we want our image retrieval system

to rank images in a way which is compatible with visual

similarity as perceived by humans, it is intuitive to work

in a human understandable feature space. When asked to

describe an object or a scene, people usually resort to mid-

level features such as size, appearance, feel, use, behaviour

etc. Such descriptions are commonly referred to as the at-

(a) (b) (c)
Figure 1. Same objects, yet different semantics: (a) A dog next to

a person lying on a sofa (b) A person and a dog near a forest (c) A

dog watching a person from a distance

(a) (b) (c)
Figure 2. (a) An example query image (b) & (c) Expected Re-

trieved images: Ones with same semantics

tributes of the object or scene. These human understand-

able, machine detectable attributes have recently become a

popular feature category for image representation for vari-

ous vision tasks [31, 43, 45]. In addition to image and object

characteristics, object interactions and background/context

information form an important part of an image description.

It is therefore, essential, to develop an image representation

which can effectively describe various image components

and their interactions.

Graphs, which have long been used by the vision com-

munity to represent structured groups of objects, are an

ideal tool for this purpose [9, 12, 22, 34]. We represent

images as Attribute-Graphs, using graph nodes to repre-

sent objects in the image and the global context of the

scene. Each object is described using object-specific lo-

cal attributes, and the overall scene with global attributes,

thereby capturing both local and global descriptions of the

image. Apart from the objects of importance in the scene,

our model also incorporates the geometrical layout of the

objects in the image. The edges of the graph capture the

location, structure and orientation of the nodes with respect

to other nodes. The proposed Attribute-Graphs thus char-

acterise an image from three different perspectives, namely,
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Figure 3. Overview of the proposed method: Object detection and classification is followed by the construction of the Attribute-Graph of

the query. The query attribute-graph is then compared with the Attribute-Graphs of the database images, via graph matching to obtain a

ranklist.

global (scenes), local (objects) and sub-local (attributes) as

well as the inter-relations between the same. This allows

them to better conceptualise the essence of the image.

We then use graph matching to ascertain the similarity

of each of the dataset image models to the query model.

The pipeline of the proposed method is shown in Fig. 3.

The goal of our work is to rank images according to their

semantic similarity to the query, by developing an image

representation capable of unifying the varied aspects in an

image.

The rest of the paper is organised as follows. In Section

2 we detail the prior work in this area. In Section 3, we

discuss crucial aspects of the concept of semantic similarity

of images. Keeping the aforementioned aspects in mind,we

describe the construction of Attribute-Graphs in Section 4.

In Section 5, we describe our datasets ‘rPascal’ and ‘rIma-

geNet’ created to evaluate image ranking. The performance

of the proposed algorithm is discussed in Section 6. Section

7 concludes the paper with a summary of our work.

2. Related Work

Mid level features have long been used for various tasks

in the field of computer vision. The recent surge in the

use of attributes have reiterated the efficacy of such fea-

tures. Farhadi et al. [8] showed the usefulness of attributes

for image description, object classification and abnormal-

ity detection. Extending the applicability of attributes be-

yond objects, Patterson et al. [25] demonstrated their use

for scene description and classification. Attributes have

also been employed for image understanding [26, 39], web

search [13, 14], zero-shot-learning [11, 18], action recogni-

tion [32] and human-computer interaction [24].

In addition to these applications, attributes have recently

been increasingly used for the task of image retrieval and

ranking. As attributes can effectively describe mid-level se-

mantic concepts, they are a convenient means to express the

users’ search intentions. However most attribute based im-

age retrieval works [35, 41] focus on textual queries. For

example, Siddiquie et al. [35] exploit the interdependence

among both query and non-query attributes, and model the

correlation among them to improve retrieval performance.

Yu et al. [41] improve upon the performance of [35] by

modelling query attribute dependency on a pool of weak at-

tributes. Images however, are an amalgamation of several

constituents, and cannot be accurately described by just a

few words. It is therefore difficult to capture the complete

gist of an image merely by textual descriptions [35, 41],

structured queries [19], concept maps [40] or sketches [7].

Such techniques tend to focus on one or two aspects of

the image while ignoring the rest. While Lan et al. [19]

consider the spatial relationship between a pair of objects,

they do not account for the overall geometrical layout of

all the objects and the object characteristics. Xu et al.

[40] while maintaining spatial relationships do not consider

background information and object attributes. Kulkarni et

al. [17] consider both objects and their interrelations, but

do not model the background holistically.

Content based image retrieval techniques such as [6, 42]

use image queries. Zheng et al. [42] couple complemen-

tary features of SIFT and colour into a multidimensional

inverted index to improve precision, while adopting multi-

ple assignment to improve recall. Douze et al. [6] use at-

tributes in combination with Fisher vectors of a query im-

age to perform retrieval. These techniques obtain a single

global representation for an image, and fail to consider the

objects in the image and their local characteristics. Cao et

al. [1] perform image ranking by constructing triangular ob-

ject structures with attribute features. However, they fail to

take into account other important aspects such as the global

scene context. We compare the proposed method with the

works of Douze et al. and Cao et al. in Sec. 6.

3. Ranking Algorithm: Aspects to Consider

People tend to look for objects in images. Therefore, vi-

sually similar images would generally contain the same ob-

jects. Consider the images in Fig. 1. All the three images,

contain the same objects, namely a person and a dog. Yet

they are semantically very different from each other. This il-

lustrates that mere presence of similar objects is insufficient

to make two images similar.
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On the other hand, in both Fig. 2 (b) and (c), not only

are a dog and person present, but they are also in similar

environments as in the query image. Both the retrieved im-

ages depict indoor scenarios with the objects in close spatial

proximity as in the query. However, these images also con-

tain additional objects such as a food carton, mobile and

remote which are not present in the query. Also, the news-

paper in Fig. 2 (a) is missing in 2 (c). Yet, an image search

returning such results would be far more appealing to a user

than one returning images in Figs. 1 (b) and (c). This in-

dicates that humans do not treat all the components of the

scene with equal importance. We discuss this in more detail

in Sec. 4.3.

People usually interpret a scene using multiple cues,

which are commonly referred to as image semantics. We

can broadly categorise these as,

• the important objects present in the scenes

• the characteristics of these objects such as their appear-

ance, shape, size etc.

• the spatial layout of the various scene components

• the context or background

A ranking algorithm would need to utilise an image repre-

sentation which takes all these aspects into account, in order

to mimic human perception. We describe such a represen-

tation in Sec. 4.2.

4. Attribute-Graphs for Image Ranking

4.1. Object detection and classification

Objects play an important role in our understanding of

an image. Therefore, accurate detection and classification

of the objects is essential to construct a good representation

for an image. Convolutional Neural Network (CNN) based

algorithms have recently shown an improved performance

over most other techniques for the tasks of detection and

classification of objects [4, 10, 16]. We employ the algo-

rithm of Girshick et al. [10] to localise and classify objects.

Girshick et al. obtain region proposals for an image by per-

forming selective search as described by Uijlings et al.[37].

A high-capacity CNN is then utilised to obtain 4096 dimen-

sional features for the obtained region proposals. Class spe-

cific linear SVMs are used to score these proposals. Given

all scored regions in an image, a greedy non-maximal sup-

pression is used to eliminate low scoring proposals and ob-

tain the final object regions R1, R2, . . . etc., and their corre-

sponding classes o1, o2, . . . etc.

4.2. Attribute­Graph construction

The proposed method uses undirected fully connected

graphs G(V,E) to represent images. Here, V = {Vl, Vg}
represent the nodes and E represents the set of edges con-

necting the nodes. Each object present in the image con-

tributes to a graph node resulting in a total of N object

nodes or local nodes denoted by Vl = {v1, . . . , vN}. The

additional node Vg (also referred to as the global node) rep-

resents the background or the overall scene. An image with

N objects is thus transformed into a graph having N + 1
nodes. The edge sets of the graph are defined as follows:

• Local edges: Edges between two object nodes. There

will be

(

N

2

)

such edges.

• Global edges: Edges between the object nodes and the

global node (Vg). N such edges exist.

The following sections (4.2.1 & 4.2.2) describe the features

used to characterise the Attribute-Graph.

4.2.1 Node features

Each object node is represented using object level attributes

(local attributes). These local attributes are limited to the

area occupied by the bounding box of that particular ob-

ject and represent the semantic characteristics of that object.

The global node captures the overall essence of the image.

We use a different set of attributes, which we refer to as

global attributes to define this node. These attributes are

extracted from the entire image (I) and describe the image

as a whole. This enables the global node to represent the

image context or scene characteristics effectively. The node

features are assigned according to Eq. (1).

φ(vj) =

{

ϕ(I) if vj = Vg
ψ(vj) otherwise

(1)

vj represents the jth node, ψ extracts the local attributes

of the object and ϕ is a function which returns the global

attributes of the image. In Fig. 4, the object nodes dogs

and sofa are described by local attributes such as has head,

is wooden etc., and the scene by global attributes such as

living room, interior etc.

4.2.2 Edge features

The edge features of the model are defined so as to cap-

ture the spatial configuration of the image components. The

local edges capture the relative arrangement of the objects

with respect to each other while the global edges define the

positioning of the objects in the image. The edge features

are represented by Eq. (2).

χ(eij) =















[µij , θij , oij ] if vi, vj ∈ Vl

[µig, θig, area(vi)]
if vi ∈ Vl &
vj = Vg

(2)

eij represents the edge connecting node vi to node vj .

µij is the pixel distance between object centroids. θij rep-

resents the angle of the graph edge with respect to the hori-

zontal taken in the anti-clockwise direction, while ensuring
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Figure 4. (a) An image (b) The corresponding Attribute-Graph: The local nodes (dogs, sofa) are described by local attributes (has head, is wooden etc.)

The global node captures the overall scene context and is described by global attributes (living room, interior etc.). The edges between the local nodes are

characterised by the distance, angle and the overlap between the bounding boxes of objects (dogs, sofa), thereby specifying the relationship between the

two. The edges connecting the local nodes to the global node define the position of that object in the scene.

left/right symmetry. It indicates the relative spatial organi-

sation of the two objects. Left/right symmetry is ensured by

considering an angle θ to be equal to the angle (180 − θ).

oij represents the amount of overlap between the bounding

boxes of the two objects and is given by Eq. (3).

oij =
area(vi) ∩ area(vj)

min(area(vi), area(vj))
(3)

area(vi) is the fraction of the image area occupied by the

ith bounding box. The intersection of the two bounding

boxes is normalised by the smaller of the bounding boxes

to ensure an overlap score of one, when a smaller object is

inside a larger one. Inclusion of area(vi) as a global edge

feature causes the graph matching algorithm to match nodes

of similar sizes to each other.

µig and θig are the magnitude and orientation of the edge

connecting the centroid of the object corresponding to node

i to the global centroid. The global centroid is computed as

given in Eq. (4).

cg =
1

N

N
∑

k=1

ck (4)

ck represents the centroid of the kth local node. The global

centroid represents the centre of the geometrical layout of

the objects in the image. The edges connecting each ob-

ject to the global node illustrate the placement of that object

with respect to the overall object topology.

The proposed algorithm to construct a graph for a given

image is presented in Algorithm 1. An example graph for

an image is shown in Fig. 4.

4.3. Relative Importance of different objects

As discussed in Sec. 3, humans do not attach equal im-

portance to all objects. The presence/absence of relatively

smaller objects such as food carton, mobile and remote do

not seem to make much of a difference in our perception

of the images in Fig. 2. However, those images would have

Algorithm 1: Construct Image Attribute-Graph

Input : Image (I)

Output: Bounding boxes (R1, R2, . . . , RN ), object

classes (o1, o2, . . . , oN ), nodeFeature,

edgeFeature

/* N - no. of objects */

[R1, R2, . . . , RN ] = objectDetectors(I);

[o1, o2, . . . , oN ] = objectClassifiers(R1, R2, . . . , RN );

/* Extract node features */

for i = 1:N do

nodeFeature(vi) = extractLocalAttribute(I, Ri);

nodeFeature(vg) = extractGlobalAttribute(I);

for j = 1:N do

for k = j+1:N do
/* Construct local edges and extract their

features */

ejk = getEdge(vj , vk);

edgeFeature(ejk) = [µjk, θjk, ojk];

cg = centroid(c1, c2, . . . , cN );

/*c1, c2, . . .→ centroids of R1, R2, . . .*/

for p = 1:N do
epg = getEdge(vp, cg); /* Construct global edges */

edgeFeature(epg) = [µpg , θpg , area(vp)];

seemed significantly different to us, had the relatively larger

objects (person/dog) been missing. This indicates varying

importance for objects in the scene depending on the their

attributes. Further, Proulx [28, 29] perform visual search

experiments to conclude that larger objects capture greater

visual attention.

We deal with this unequal importance of different ob-

jects, by assigning a relative weight to each local node of
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Algorithm 2: Attribute-Graph Ranking

Input : Query Image (Q)

Output: Ranklist

/* Construct query Attribute-graph using Algo. (1) */

[qGraph, bounding boxes (R1, R2, . . . , RN ), object

classes (o1, o2, . . . , oN )] = constructGraph(Q);

wts = getWeight(R1, R2, . . . , RN );

/* Weights indicate the relative importance of different

query objects */

for image in Dataset images do

/* load Dataset image graph */

dGraph = loadGraph(image);

[Slcl, Sgbl, Sedge] = graphMatch(qGraph, dGraph,

wts, (o1, o2, . . . , oN ));

/* Calculate score */

score = α×Slcl+β×Sgbl+(1−α−β)×Sedge

Ranklist = sort(score);

the query. This weight is computed as the ratio of the area

of the corresponding bounding box to the sum total of all

bounding box areas. This causes larger objects to be given

priority during matching.

4.4. Graph Matching

During the evaluation phase, we use graph matching to

compare the query image Attribute-Graph with each of the

dataset image Attribute-Graphs. Graph matching is done

such that the overall similarity score between the mapped

nodes and edges is maximised, while preserving the match-

ing constraints. We enforce the following constraints on the

matching process:

• A local node of a particular object class can be

matched only to another local node of the same class.
• A global node can be matched only to another global

node.

For our experiments, we use Re-weighted Random

Walks (RRWM) algorithm proposed by Cho et al. [2],

which formulates the problem of matching as the task of

node selection on an association graph. This graph is con-

structed by modelling the nodes as the candidate correspon-

dences between the graphs to be matched. Random walks

are then performed on the association graph, with inter-

mediate re-weighting jumps, while enforcing the matching

constraints. This graph matching algorithm has been shown

to be robust to noise, outliers and deformation. However,

our Attribute-Graph representation is general and any other

graph matching technique, capable of handling constraints,

can also be used to obtain matching scores between two

Attribute-Graphs.

The scores of each dataset image are given by Eq. (5).

[Slcl, Sgbl, Sedge] = GM(Q,Dk, wts, objs) (5)

where Q refers to the query image, Dk is the kth image in

the dataset D and GM(.,.) is the graph matching technique.

Slcl, Sgbl, Sedge are the scores associated with the match-

ing between the local nodes, the global node and the edges

respectively of the two graphs. wts correspond to the im-

portance weights calculated as described in Sec. 4.3. objs

refers to the object classes associated with the local nodes.

The algorithm for obtaining a ranked set of images given

a query image is described in Algorithm 2. The final score

corresponding to a dataset image is calculated as shown

in algorithm. α and β are constants determined empiri-

cally. The scores obtained are sorted to get the ranklist. An

overview of the proposed method is depicted in Fig. 3.

5. Datasets

To evaluate our ranking technique, we require datasets

which have graded relevance scores for the reference im-

ages corresponding to each query. Moreover, it is essential

that these relevance scores have been assigned considering

overall visual similarity, and not just one particular com-

ponent of the image (For e.g. according to ImageNet hi-

erarchy which focuses mostly on objects). For this purpose

we have created two datasets, rPascal and rImageNet which

are subsets of the aPascal [8] and ImageNet [5] databases.

Each of these datasets contain 50 query images and a set of

reference images corresponding to each query. Reference

images correspond to the set of images that are considered

for ranking for a given query image. These reference im-

ages have been selected so as to contain at least one object

in common with that particular query. This has been done

to prevent burdening the annotators with a lot of irrelevant

images.

12 volunteers were recruited to annotate the images.

Given a query image and the corresponding reference im-

ages, the annotators were asked to give a relevance score

between 0-3 for each of the reference images with respect

to that particular query. These score values were defined as

follows:

• 0 - irrelevant : Unrelated to the query and should not

be retrieved when searching for this particular query

• 1 - fair : Has a few components/aspects similar to the

query

• 2 - good : Similar to the query except for a few missing

components/aspects

• 3 - excellent : Very similar, exactly what we would like

to see when searching for this particular query

Each annotator was presented with reference images cor-

responding to 20 query images from each dataset. This re-

sulted in the reference set corresponding to each query im-

age receiving annotations from at least 5 different annota-

tors. The final relevance score was obtained by computing

the median score of the 5 annotations for each image.
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(a) (b)
Figure 5. Object count in query images of (a) rPascal (b) rImageNet

5.1. rPascal Dataset

The aPascal dataset [8] contains a total of 4340 images,

spanning 20 labelled object classes, divided into 2113 train-

ing images and 2227 test images. Our ‘rPascal’ (ranking

Pascal) dataset is constructed entirely over the test set of

aPascal. The queries consist of 18 indoor scenes and 32 out-

door scenes. The queries include both simple images con-

taining one or two objects and also more complex images

containing 8 or more objects. The rPascal dataset contains

a total of 1,835 images with an average of 180 reference

images per query.

5.2. rImageNet

The rImageNet dataset is constructed from the valida-

tion set of ILSVRC 2013 [30] detection challenge, which

contains 20,121 images with objects belonging to 200 dif-

ferent classes. To increase the complexity of the dataset,

we have selected only images containing at least 4 objects.

The queries contain 14 indoor and 36 outdoor scenes. The

rImageNet dataset contains a total of 3,354 images with an

average of 305 reference images per query. Owing to the

increased number of classes and objects in the images, this

dataset is much more challenging than rPascal.

The statistics pertaining to the number of queries con-

taining a certain number of objects for both the datasets is

given in Fig. 5. Example queries from both datasets can be

seen in the first column of Fig. 8.

6. Experiments and Results

6.1. Experimental setup

We perform object detection and classification, using

Regions with CNN (RCNN), the algorithm of Girshick et

al. [10]. These detected regions form the nodes of our graph

and are characterised by the local attributes extracted from

them. We employ the 64 attributes defined by Farhadi et

al. [8] as our local attributes. They consist of shape at-

tributes such as ‘2D boxy’, ‘cylindrical’ etc., part attributes

such as ‘has head’, ‘has leg’, ‘has wheel’ etc. and material

attributes such as ‘has wood’ and ‘is furry’. We use the same

set of features as those used by Farhadi et al. [8], which

describe each object by a 9751 dimensional feature vector

containing texton, HOG, edge and colour descriptor based

visual words, to train the attribute classifiers. The attribute

classifiers are trained on the aPascal training set. For global

attributes, we use the 205 dimensional output probabili-

ties of a deep network trained on the Places database1[44],

which have classes such as coast, desert, forest, home, ho-

tel etc. We set α = 0.4, β = 0.4 (in Algo. 2) in all our

experiments.

For a baseline, we compare with our implementation of

the work of Douze et al. [6]2. Douze et al. uses Fisher vec-

tors [27] (of SIFT features) extracted from the image con-

catenated with ‘Classemes’ [36] as features to describe an

image. Classemes is a 2659 dimensional vector of classifier

outputs, trained for categories that are selected from an on-

tology of visual concepts. The features used to obtain the

classemes are extracted from the image as a whole and con-

sist of colour GIST, oriented and unoriented PHOG, pyra-

mid self similarity [33] and bag of words using the SIFT

descriptor.

We also compare the proposed method with the attribute

based ranking method of Cao et al. [1]. They represent an

image using a set of disjoint triangles, whose vertices corre-

spond to image objects. With this representation, they cal-

culate the similarity between two images by mapping the

triangles of one image on to the other.

6.2. Evaluation measures

For quantitative evaluation, we compute the Normalised

Discounted Cumulative Gain (nDCG) of our ranklist.

nDCG is a standard measure for evaluating ranking algo-

rithms [1, 35] and is given in Eq. (6).

DCG@k =

k
∑

i=1

2reli − 1

log2(i)

nDCG@k =
DCG

IDCG
(6)

1The pre-trained network was obtained at http://places.csail.mit.edu/
2Our implementation achieves the accuracies mentioned in [6] on the

databases used by Douze et al.
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(a) (b)
Figure 6. Qualitative results: nDCG comparison against Ranking truncation level ‘k’ for (a) rPascal dataset (b) rImageNet dataset. The

proposed method shows a significant improvement in performance over both Douze et al. [6] and Augmented Retrieval [1] as well as the

other baselines in both datasets. Plots are best viewed by zooming in.

reli is the relevance of the ith ranked image and IDCG

refers to the ideal Discounted Cumulative Gain(DCG),

which acts as a normalisation constant to ensure that the

correct ranking results in an nDCG score of 1. k denotes

the ranking truncation level.

6.3. Discussion

Figure 6 plots the nDCG scores of the proposed method,

Douze et al. [6], Cao et al. [1], as well as a some other base-

lines as a function of the ranking truncation level k. The

baselines we consider include nearest neighbour compari-

son with the fc7 features of AlexNet [16], PlacesNet [44],

and a combination of the two. We also compare against a

simple baseline which ranks images based on just the num-

ber of common objects present in the two images. As ob-

served from the figure, our performance exceeds that of the

other techniques [1, 6] as well as the above established base-

lines on both datasets. Since Douze et al. consider only the

global descriptors of images and do not try to model the

objects and their spatial layout, their results in many cases,

fail to have all the desired objects in the first few retrieved

images.

Cao et al. not only ignore the global scene context, but

also do not characterise the relationships existing between

their object triangles, thereby limiting the amount of spatial

layout information up to three objects. As can be observed

from Fig. 6, these drawbacks lead to a poor performance,

especially when the queries are complex images with many

objects as in the case of the rImageNet dataset.

On rPascal we show an improvement of 5-8% over Cao

et al. and 7-12% over Douze et al. On rImageNet we show

an improvement of 9-11% over Cao et al. and 8% over

Douze et al.

Figure 8 shows a few ranking examples by the proposed

method. The images ranked 1-7 for each of the queries in

the first column are shown in columns 2-8 of Fig. 8. Ranked

images annotated as fair and irrelevant have been marked

with orange and red boxes respectively. Two of these ap-

pear in queries corresponding to rows D and H. This mis-

ranking is mainly due to incorrect detections and classifi-

cations of objects in the reference images. For example,

the two bikes in row D, column 6, are wrongly classified

as cars. Similarly, the 6th ranked image in the last row has

mis-detections of microphone.

The proposed method scales linearly with the number of im-

ages in the database. An inverted index file scheme based

on objects and attributes can be used to speed this up further.

6.4. Ablation Analysis

To better understand the contribution of various com-

ponents of the Attribute-Graph, we analysed the perfor-

mance of the proposed method, by ablating each compo-

nent. The results obtained are depicted in Fig. 7. Our anal-

ysis confirms that removal of any of the global node, object

nodes, edges or importance weights assigned to the nodes,

negatively impacts performance, thereby demonstrating the

importance of each of the components of the proposed

Attribute-Graph. We observe that the performance is most

affected by the removal of object nodes leading to 7% and

12% drops in rPascal and rImageNet respectively.

7. Conclusion

We have proposed a novel image representation using an

attribute based graph structure. Our Attribute-Graphs rep-

resent various objects present in the image, along with their

characteristics such as shape, texture, material and appear-

ance. Attribute-Graphs also capture the spatial scene struc-

ture via the graph edges and the overall scene gist through

global attributes. We show the efficacy of the proposed rep-

resentation by its application to image ranking. We evalu-

ate the performance of our ranking technique on the rPas-

1077



(a) (b)

Figure 7. Ablation analysis of the proposed method for (a) rPascal (b) rImageNet. Plots are best viewed by zooming in.
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Figure 8. Ranking results for the Proposed method: Column 1: Queries A-H, Columns 2-8: First 7 retrieved images. The first 4 queries

(A-D) are from rPascal and the last 4 (E-H) belong to rImageNet. The annotation scores are shown at the right top corner of every image.

Irrelevant images have been marked with a red boundary and images with an annotation of Fair have been marked with orange. The

remaining images have been annotated as Good or Excellent.

cal and rImageNet datasets, which we have collated for the

purpose. The proposed method obtains an improvement of

around 5-8% in the nDCG scores, demonstrating the ability

of our representation in capturing semantic similarity.
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