
Registering Images to Untextured Geometry using Average Shading Gradients
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Abstract

Many existing approaches for image-to-geometry regis-

tration assume that either a textured 3D model or a good

initial guess of the 3D pose is available to bootstrap the reg-

istration process. In this paper we consider the registration

of photographs to 3D models even when no texture informa-

tion is available. This is very challenging as we cannot rely

on texture gradients, and even shading gradients are hard

to estimate since the lighting conditions are unknown. To

that end, we propose average shading gradients, a render-

ing technique that estimates the average gradient magni-

tude over all lighting directions under Lambertian shading.

We use this gradient representation as the building block of

a registration pipeline based on matching sparse features.

To cope with inevitable false matches due to the missing

texture information and to increase robustness, the pose of

the 3D model is estimated in two stages. Coarse pose hy-

potheses are first obtained from a single correct match each,

subsequently refined using SIFT flow, and finally verified.

We apply our algorithm to registering images of real-world

objects to untextured 3D meshes of limited accuracy.

1. Introduction

Registering images to 3D models of real-world objects

or places is an important prerequisite for transferring infor-

mation between images and a 3D model of the scene [6, 26].

For example, color information from images can be used to

texture a 3D model that was previously acquired using range

scans. More broadly speaking, the 2D image may provide

diverse information that can be used to annotate, or possi-

bly even update [24], the 3D model. Going in the opposite

direction, it is possible to annotate images with information

from the corresponding part of the 3D scene, once we know

the camera pose from which the image was taken.

In this paper, we introduce a method for registering in-

dividual photographs to 3D models even in the absence

of any information on the texture of the object. This is

in contrast to many existing image-to-geometry registra-

tion approaches [14, 16, 17] that rely on pre-registered

images to which a newly arriving photograph is aligned
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Figure 1. Registration pipeline using average shading gradients.

through matching of features. Such pre-registered images

are available, for example, when the 3D geometry is ac-

quired through multi-view stereo [1]. However, this sce-

nario is not always applicable, e.g. when acquiring a 3D

model by non-photometric methods, such as range scans.

Although some range scanners are able to measure the re-

flectance of a surface point, this color information is not

very reliable and only available if the scanning is performed

during daytime. However, it is not unusual that scanning

campaigns are required to take place at night; thus we need

to work with the raw geometry information only [5].

Our method estimates the pose of the depicted 3D model

by searching for sparse correspondences between features

found on the photograph and image features found on ren-

derings of the 3D model. Existing methods, in contrast, typ-

ically aim to maximize the statistical dependency between

the photograph and a rendering [6]. The resulting regis-

tration criterion is dense, but leads to a highly non-convex

optimization problem with many local optima, necessitat-

ing good initialization. Therefore, dense registration meth-

ods are by and large bootstrapped with user interaction or

some other prior information on the camera pose. While

this may be suitable for smaller scanning campaigns, this

does not scale to registering a continuous incoming stream

of images to a geometric model of the scene. Our work is

complementary to these dense methods in that it automati-

cally provides registration hypotheses, which can be further

refined, if needed, without requiring user interaction.

Gradients are the most common building block for many

image features, e.g. [7, 23]. Since we cannot hope to recover

the texture gradients in renderings of the 3D model, we need
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to rely on gradients due to the shading of the object, if we

aim to use well-proven image features for describing image

patches. In absence of prior information on the lighting and

reflectance properties of the object, we assume a simple,

yet effective, Lambertian shading model with a single point

light source, and estimate the observable gradient magni-

tude averaged over all directions of the point light. This av-

erage shading gradient directly relates to the magnitude of

standard image gradients that are computed with the same

linear operator, yet neither requires a known lighting direc-

tion nor any ad-hoc assumptions about it. Bringing both

rendering and photograph into a gradient representation al-

lows us to establish sparse 2D-to-3D correspondences.

However, in the absence of texture, the ratio of correct

correspondences tends to be lower than when matching im-

ages. To cope with this, we estimate the camera pose in

two stages. First, coarse poses are generated from just a

single correspondence each. To that end we render patches

from randomly sampled viewpoints around Harris3D key-

points [31] and match them to the image. The coarse pose

is obtained by estimating an affine transformation between

image and matching rendering. This initial estimate is re-

fined in a second step that iteratively improves the camera

pose using SIFT flow [20] on the gradient representation.

While registration does not always succeed due to the diffi-

culty of the problem, a final automatic verification step can

predict reliably whether the registration was successful.

The contributions of this paper are as follows: (1) We

present average shading gradients, a novel way of com-

puting a gradient representation from renderings of an un-

textured 3D model in the absence of any lighting informa-

tion. The representation directly relates to gradients found

on real images. (2) We introduce a method for generating

coarse image-to-geometry registration estimates from just

a single correct patch correspondence. Compared to other

work in image-to-geometry registration [2, 14, 28], we are

not restricted to specific (e.g., ground-level) viewpoints. (3)

We propose an iterative pose refinement technique based on

SIFT flow that substantially increases the registration accu-

racy. (4) To make our pipeline fully automatic, we suggest

a verification step that accurately predicts whether the reg-

istration has succeeded. Our experiments show that average

shading gradients coincide well with gradient information

of corresponding images and robustly cope with “noisy” ge-

ometry. Moreover, we demonstrate the efficacy of our entire

pipeline on 3D meshes of varying complexity and accuracy.

2. Related Work

The idea of using rendered lines for aligning 3D ob-

jects has a long history in computer vision [22] and is

used in object-level pose estimation [18, 32, 35], image-

to-geometry registration [28], sketch-based shape retrieval

[10] and photo-to-terrain alignment [3]. In addition to sim-

ple line rendering techniques, such as silhouettes, contours,

ridges and valleys, more sophisticated and view-dependent

methods have been proposed. Suggestive contours [8], for

example, are drawn where contour lines would occur if the

view direction was altered slightly. Apparent ridges [15] use

a notion of view-dependent curvature to compute ridges and

valleys. The obtained lines do not necessarily coincide with

high principal curvature, but rather with large perceived cur-

vature. Both line rendering techniques are geared to convey

shape to human users. In contrast, the average shading gra-

dient proposed here aims at matching the gradients observ-

able from a real image of the 3D object. Our technique

is also more robust to noise and fine surface detail, as it

is computed in screen space. Incorporating global illumi-

nation effects like ambient occlusion [29] into the shading

model could further improve the shading gradient.

Feature-based pose estimation matches image features

on the photograph to features stored in a database and

anchored to 3D points [2, 14, 17]. A pose is typi-

cally estimated from these 2D-to-3D correspondences using

RANSAC. [14, 16, 17] use previously registered images to

derive image features. [34] extends [14] by exploiting tem-

poral coherency in a sequence. In contrast, our work does

not require pre-aligned images, but only a 3D model from

which we render synthetic views instead. [2, 28] take this

approach for aligning paintings to geometry, however as-

suming that camera poses only occur at ground level, with

a fixed set of horizontal and vertical orientations. This lim-

its the applicability when registering photographs from el-

evated viewpoints. We instead sample camera poses for

rendering around key points on the 3D object. Also, while

[2, 28] use 3D models with texture information, we address

the more general setting of having an untextured 3D model

of a real-world object. Our two phase pose estimation strat-

egy is related to [16, 28], which use GIST descriptors [27]

for retrieving similar views and thereby also first generate

initial pose estimates, which get subsequently refined. In

our work, the first phase relies on image patches instead

of complete views, allowing for a wider sampling of view-

points. [21] in contrast relies on global features such as lines

that are typically found in urban scenes.

Techniques for pose refinement often involve optimizing

some measure of alignment between the photograph and a

rendering of the model. Most prominent is the seminal work

on mutual information alignment [33], which assumes that

pixel values are spatially independent, but come from a joint

probability distribution over pixel values of photograph and

rendering. The objective is to maximize their statistical de-

pendency. This results in a highly non-convex optimization

problem, hence good initialization is crucial. The render-

ing technique itself turns out to be crucial as well. [6], for

example, proposed a blending of normal and ambient oc-

clusion maps. This is extended by [9] to render colors in-
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duced from other images whenever possible. Other refine-

ment approaches try to align the silhouette lines of the ren-

derings and photograph [26]. However, these approaches

typically require the full object to be depicted, whereas our

approach is not limited to photos that depict any silhouette

line. Note that our approach for generating coarse pose hy-

potheses complements these refinement algorithms.

3. Average Shading Gradients

To match feature points between renderings of untex-

tured models and photographs, we need to define a suitable

representation that allows assessing their similarity. This

representation should depend on local image variation that

is present in both source modalities. Here, we propose to

use gradients from shading, since they are detectable in both

photographs and on renderings of the 3D model. In general,

the gradient magnitude of an image is defined as

‖∇I‖ =

√

(hx ∗ I)
2
+ (hy ∗ I)

2
, (1)

where I denotes the image, hx and hy are derivative filters

in x and y direction, and ∗ denotes the convolution opera-

tion. All other operations are pixel-wise.

Aside from the 3D geometry and camera pose, the im-

age formation process also depends on the context of the

scene (e.g., the background), as well as the lighting condi-

tions and the reflectance model of the 3D surface. Without

prior knowledge, we assume the background to be constant

and the reflectance model to be Lambertian with constant

albedo. For the lighting, we assume a single point light

source with unknown lighting direction. Hence, we can ex-

press the image I of the 3D model given a certain camera

pose in terms of a normal map n and lighting direction l as

I = max(0,−n · l). (2)

Inserting Eq. (2) into Eq. (1) allows to compute gradients

on the rendered image. However, the light direction l is

still unknown. Assuming a fixed lighting direction is possi-

ble; setting it to coincide with the camera viewing direction

(“headlight” assumption), for example, results in a gradient

magnitude that is related to suggestive contours [8]. How-

ever, for a fixed lighting direction some discontinuities in

the normal map will not give rise to gradients. Yet, these

discontinuities may be strongly present for other lighting

directions. In this paper we thus average the gradient mag-

nitude over all possible light directions of the unit sphere S.

Specifically, we propose the average shading gradient

‖∇I‖ =

∫

S

‖∇I(l)‖ dl (3)

=

∫

S

[

(hx ∗max(0,−n · l))
2
+ (4)

(hy ∗max(0,−n · l))
2

]
1

2

dl.

Computing the average gradient magnitude in Eq. (3) in

closed form is challenging due to the complex form of the

integrand. Hence, we make two approximations to arrive at

a more tractable expression. First, we replace max(0,−n·l)
by 1

2
(n · l), since the square of the dot product is symmetric

in the light direction and we integrate over all lighting di-

rections. I.e., pixels on the normal map, for which the inner

product is positive, will be clipped for the opposite light di-

rection, and vice versa. Only when the stencil of the deriva-

tive filter covers an area across which the visibility (i.e. the

sign of the dot product) changes, this approximation is in-

exact. However, we found this effect to be negligible in

practice (see Fig. 2 and Sec. 5). As a second approxima-

tion, we apply Jensen’s inequality, which allows deriving a

closed form bound as follows:

‖∇I‖ ≈
1

2

∫

S

√

(hx ∗ (n · l))
2
+ (hy ∗ (n · l))

2
dl (5)

≤
1

2

√

∫

S

(hx ∗ (n · l))
2
+ (hy ∗ (n · l))

2
dl

=
1

2

√

∫

S

((hx ∗ n) · l)
2

dl+

∫

S

((hy ∗ n) · l)
2

dl

=

√

π

3

√

√

√

√

3
∑

i=1

(hx ∗ ni)2 + (hy ∗ ni)2. (6)

To obtain the last equality, we transform the squared filter

response as

x̂ = [x2

1
x2

2
x2

3
2x1x2 2x1x3 2x2x3], (7)

which maps a three-dimensional vector into a six-

dimensional space such that x̂ · ŷ = (x · y)2. We obtain

∫

S

((h ∗ n) · l)
2

dl =

∫

S

(̂h ∗ n) · l̂ dl

= (̂h ∗ n) ·

∫

S

l̂ dl =
4

3
π

3
∑

i=1

(h ∗ ni)
2, (8)

where the ni denote the x, y, z components of the normal

field. The bound from Eq. (6) is very efficient to compute

as it only involves convolutions and pixel-wise operations.

Benefits. Figure 2 shows an example of the gradient magni-

tudes of a Lambertian shading model for the normal map of

a statue. First, we note that averaging over light directions

(c, Eq. 3) as proposed here appears superior to making an ar-

bitrary assumption on the lighting direction. When making

a “headlight” assumption (b, [8]), i.e. the light comes from

the viewing direction, certain characteristic structures like

the contour of the chin get lost. On the arm of the statue
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(a) Normal map (b) “Headlight” assumption (c) Average shading gradient (d) Approximation, Eq. (5) (e) Bound, Eq. (6)

Figure 2. Image gradients for the normal map from (a). From left to right: (b) Gradient magnitude computed with Lambertian shading and

“headlight” assumption [8]. Monte Carlo estimate of the average gradient magnitude using the (c) correct (Eq. 3) and (d) approximated

(Eq. 5) Lambertian shading. (e) Our closed-form bound (Eq. 6).

(a) Apparent ridges (b) Average shading gradient

Figure 3. Comparison of apparent ridges (a) and our average shad-

ing gradients (b), after non-maximum suppression and hysteresis,

on a high quality mesh (top) and a noisy mesh (bottom).

it can be seen, moreover, that gradients tend to vanish for

surfaces pointing towards the camera in the headlight case,

while they are present for our average shading gradient. We

also see that the two approximations (d, e) to the exact av-

erage shading gradient have little visible impact.

Connection to apparent ridges. Judd et al. [15] observed

that apparent ridges coincide well with the output of a

Canny edge detector on renderings assuming Lambertian

shading, averaged over many light configurations. This

suggests interpreting our gradient rendering algorithm as a

screen space approximation to apparent ridges. We compare

both in Fig. 3, after non-maximum suppression and hystere-

sis, as in a Canny edge detector. On a high quality mesh

(top) the obtained lines for both renderings coincide very

well, whereas on a mesh with a noisier surface (bottom),

especially on slanted parts, apparent ridges produce more

spurious lines that are not related to meaningful edges. In

Sec. 5 we show the improved noise behavior of our aver-

age shading gradients quantitatively. Additionally, our ap-

proach can be used with any linear gradient operator and

is more efficient as it avoids the costly computation of the

view-dependent curvature in object space for each frame.

4. Pose Estimation

To estimate the camera pose of an input image relative

to the untextured 3D model, we now match patches of the

input image to patches generated from renderings of the 3D

model, using gradients as basic building block of the rep-

resentation. This yields 2D-to-3D point correspondences

from which a pose is then estimated. Similar approaches

have recently been used for image-to-painting alignment

[30], painting-to-geometry registration [2], and location es-

timation [14, 17]. As matching to untextured models leads

to more false correspondences, we divide the registration

process into two steps. First, we estimate a coarse pose from

just a single correspondence between an image patch and a

patch in the database of rendered views of the model. In a

second step we refine this pose into a final, full 11 degrees-

of-freedom (DOF) pose. Figure 1 illustrates the pipeline.

4.1. Patch database

To populate the database with rendered patches, we ran-

domly sample camera poses from which the model can be

rendered. To reduce the space of possible camera poses, we

first identify characteristic points on the model that likely

give rise to discriminative features in renderings that show

this point. Compared to matching entire rendered images

[28], this significantly reduces the pose space, since transla-

tions do not need to be considered at this stage. We find

100 characteristic points using Harris3D [31], a 3D key

point detector for point clouds and meshes. It approximates

the local surface around a vertex as a two-dimensional

quadratic function, and applies a continuous version of the

well-known Harris operator. This yields a score that corre-

lates well with the local curvature around the vertex, favor-

ing corners or spike-like structures.

Specifically, we evaluate the Harris3D score at a ran-
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domly chosen subset of all vertices, and use non-maximum

suppression in 3D space to yield thinned out key points. For

each key point we randomly sample 10 camera poses that

show this particular point. To cover a reasonable range of

different viewpoints, we sample uniformly across all cam-

era directions from which the surface point is visible; the

camera distance is sampled from a log-normal distribution

(i.e. the distance relative to the mean is Gaussian). Note,

that we do not need to estimate a ground plane and we do

not introduce a bias toward camera poses that are at a cer-

tain height above ground, or have a fixed set of possible

viewing angles relative to the 3D object as in previous work

[2, 14, 28]. We only assume a photographer’s bias to up-

right pictures; i.e. we choose the in-plane rotation such that

the up-axis of the model coincides with y-axis of the view.

We then render each view using the average shading gra-

dient from Sec. 3, after which we identify 2D keypoints that

we can match to those of the image to be registered. In our

experience blob detectors, such as the difference of Gaus-

sians [23], do not lead to stable keypoints. The reason is

that photographic images also contain texture gradients not

present in the average shading gradient-representation of

the 3D model, which can have significant influence on blob

localization. In contrast, corners are stable features that can

be localized reliably in both the average shading gradient

and the gradient image of a query photograph. Note that in

both cases we compute gradients using the same linear oper-

ator. We detect corner points on multiple scales using a (2D)

Harris detector, and extract patches of size 120σ, where σ

is the scale of the key point. All extracted patches are re-

sized to 256 × 256 pixels to gain scale invariance. Finally,

we compute a HoG descriptor [7] from the gradient patches.

Note that we do not use non-maximum suppression on the

gradients, as we found this to deteriorate performance. We

use 8× 8 blocks with 9 orientation bins, resulting in a 576-

dimensional descriptor, which is stored in the database.

4.2. Coarse pose estimation

Given the descriptors from a 2D query image, we search

the nearest neighbor within the database. To compare a

query descriptor dq to a database descriptor ddb, we use

the similarity score proposed by Aubry et al. [2]:

s(dq,ddb) = (ddb − µ)TΣ−1dq. (9)

Here, Σ and µ are the covariance matrix and mean, respec-

tively, over all descriptors in the database. At query time,

evaluating s(dq,ddb) can be done by taking the inner prod-

uct between dq and a transformed set of database descrip-

tors, which can be pre-computed. Eq. (9) can be interpreted

as the calibrated classification score of dq for a one-vs-all

classifier that discriminates ddb from all other descriptors

using linear discriminant analysis [2]. Like Aubry et al. we

Figure 4. Estimating a camera pose from a single correspondence:

The query patch (red box on the left) was matched to a database

patch (middle). We generate a coarse estimate of the true camera

pose by concatenating the known pose of the database patch with

the relative scale and translation of the matching Harris keypoints.

This figure shows the photograph and the aligned normal map for

better visualization; the matching uses gradient representations.

found that transforming the database descriptors increases

the matching quality over the raw descriptors.

As we do not rely on textured 3D models, we need to

deal with an increased amount of false correspondences in

the matching process. For example, on the Statue dataset

shown in Fig. 2, on average only 4% of all putative corre-

spondences from nearest neighbors are correct in the sense

that the 3D point projects within a distance of 50 pixels to

the matched 2D point. A regular RANSAC [11] approach

would fail as we need to sample 3 or more correct corre-

spondences to estimate the extrinsic camera pose, e.g. using

[25], or at least 6 correspondences to estimate the full pose.

To deal with this issue, we first estimate a coarse pose

from just a single correspondence, making this viable even

for low rates of correct putative correspondences. For ev-

ery correspondence between an image and a database patch,

we compute an affine transformation from the relative posi-

tion and scale of the Harris keypoints. After applying this

transformation to the known pose of the rendered view, the

support of the rendered patch is transformed to the support

of the patch within the image (see Fig. 4). Note that the

admissible poses relative to the pose of the rendered view

in the database are limited to scaled and translated variants.

However, we argue and show in Sec. 5 that this provides a

good and efficient initialization for pose refinement.

4.3. Pose refinement and verification

The coarse pose estimates are ranked based on the num-

ber of inlier correspondences, i.e. those whose 3D point

projects within a 50 pixel distance to the 2D point. The

20 top ranked poses are then iteratively refined. We pro-

pose to use SIFT flow [20] for computing a dense flow field

from the average shading gradient-rendering, given the cur-

rent camera pose, to the gradient of the query image. The

SIFT flow algorithm is similar to optical flow algorithms,

but matches dense feature vectors instead of raw intensi-

ties. The flow field is estimated by minimizing the L1-norm

between warped image features, while simultaneously reg-

ularizing the flow spatially and in magnitude (favoring slow
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and smooth flows). Since we did not find the refinement to

be very sensitive to the choice of image features, we used

SIFT as originally proposed [20], as well as the default pa-

rameters as provided by the authors’ implementation.

The resulting flow field is then used to compute dense

2D-to-3D correspondences. In contrast to the coarse step,

we can use RANSAC to estimate a refined pose, as there are

now many inliers if the coarse pose was sufficiently close to

the true one. In each iteration of the inner RANSAC loop

we sample 6 correspondences to estimate both the extrinsic

and intrinsic parameters using the direct linear transforma-

tion algorithm [13]. Empirically, we found that only few

iterations of RANSAC suffice to find a good refinement.

We use three iterations of coarse-to-fine estimation: First

a downscaled version of both rendering and photograph is

used to refine the pose from which a new rendering is cre-

ated; this is repeated on progressively finer resolutions.

The refined poses on the finest resolution allow for a ro-

bust pose verification step to detect whether the registration

process was successful. For this we use their mutual repro-

jection error. Specifically, let P be a pose that projects a

3D point onto the 2D image plane and V the set of vertices

that are projected inside the image area, i.e. visible within

the image. Then the mutual reprojection error δ between

two poses P and P ′ measures the average 2D Euclidean

distance of projected vertices visible in either view:

δ(P,P ′) =
1

2

(

1

|V|

∑

x∈V

‖P(x)− P ′(x)‖2+

1

|V ′|

∑

x∈V′

‖P(x)− P ′(x)‖2

) (10)

We compute the mutual reprojection error for every pair of

refined poses and treat them as compatible if the error is

below 5% of the longest image dimension. The compatibil-

ity relation defines a graph on the refined poses, in which

we find the largest connected component C. Finally, our

algorithms regards a photograph as correctly registered if C
consists of at least 3 poses. Otherwise, our algorithm rejects

the photograph as not registered. The verified poses in the

largest connected component constitute the final output of

our algorithm and can be further refined by bootstrapping

existing dense registration approaches, e.g. [5].

5. Experiments

To evaluate our gradient rendering method as well as our

approach for image-to-geometry registration, we use three

different datasets. The first is a 3D mesh of a Gnome along

with 9 real images, which were registered using mutual

information-based alignment [6] with manual initialization.

The mesh is high quality with little noise on the vertex po-

sitions and normals. The photographs are taken under con-
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Figure 5. Similarity score (Eq. 9)

between descriptors from render-

ings of a noiseless mesh and

of meshes with artificial noise

on the vertex positions. Higher

scores mean more robustness to

noise.

trolled conditions and show the gnome figurine on a smooth

background and under diffuse illumination. These are fa-

vorable conditions for a good registration.

Additionally, we use two real world datasets – Statue and

Notre Dame – acquired from photographs via multi-view

stereo reconstruction using the publicly available multi-

view environment software package [12]. While this is a

convenient way of acquiring 3D models with registered im-

ages for evaluation, the models are significantly “noisier”

than the Gnome model, posing a greater challenge to our

registration algorithm. The Statue surface is quite porous

but this fine detail is not reflected in the 3D geometry, thus

acting like a texture. Many of the images show the 3D mesh

on cluttered background and changing light conditions, fur-

ther contributing to the difficulty of registration. While the

photographs from the Statue dataset were taken with the in-

tent of reconstructing the geometry, the Notre Dame dataset

consists of community photos. We emphasize that the im-

ages used for evaluation were only used to create the 3D

model and not in any part of our pipeline. For testing, we

sampled 69 diverse images from Statue, and 70 images from

Notre Dame. The query images are resized such that the

longest dimension has 1024 pixels.

5.1. Average shading gradients

We first evaluate how well our gradient rendering

method matches gradients and edges found on real images.

As rendering baseline we use apparent ridges [15], a stan-

dard technique for conveying 3D shape via line drawings.

To have a fair comparison to apparent ridges which yield

thin lines, we show results for our average shading gradi-

ent method also after non-maximum suppression (NMS).

On the photograph, we compute gradients or detect edges

using the gradient operator of the well-known Canny detec-

Table 1. Similarity score between photograph and rendered

patches for various combinations of gradient/edge representations.

Gnome Statue Notre Dame

Apparent ridges / Sketch tokens 131.5 53.4 52.5

Apparent ridges / Gradients + NMS 145.8 52.6 46.6

Ours + NMS / Sketch Tokens 110.9 64.6 63.7

Ours + NMS / Gradients + NMS 130.6 70.6 65.2

Ours / Gradients 159.3 82.5 72.4

2035



Table 2. Registration success rate. For each query image only the

pose with the most inliers is considered.

Gnome Statue Notre Dame

RANSAC 0.89 0.10 0.46

Shaded (coarse) 0.67 0.13 0.40

Ours (coarse) 1.00 0.43 0.66

tor [4] (Gradients), as well as using sketch tokens [19], a

state-of-the-art, learned edge detector.

To measure how well the representations for rendering

and photograph match, we compute the descriptor similarity

score from Eq. (9) from patches in correct correspondence.

Higher scores mean higher similarity. Since the coarse reg-

istration algorithm (Sec. 4.2) is based on nearest neighbors

in descriptor space, this directly relates to its ability to find a

correct image-to-model correspondence. Table 1 shows the

results on the three datasets. As can be seen, the highest de-

scriptor similarity is achieved between our average shading

gradient-representation of the 3D geometry and gradients

extracted on corresponding images. This confirms our intu-

ition that average shading gradients computed from the nor-

mal map of an untextured surface are highly correlated to

the gradients of photographs. Moreover, our gradient repre-

sentation clearly outperforms apparent ridges, except after

NMS on the easy Gnome dataset. Note however, as men-

tioned before, that NMS generally does not help here.

In a second experiment we analyze the robustness to ge-

ometric noise. We take the high-quality Gnome model and

add increasing amounts of Gaussian noise to each vertex

along its normal. As before, we render the meshes from dif-

ferent poses and extract descriptors on the rendering. Fig-

ure 5 shows the similarity score (Eq. 9) between descriptors

from renderings of the original mesh and from the noisy

mesh. The noise level denotes the standard deviation of

the Gaussian noise, as a fraction of the object diameter. It

can be seen that apparent ridges are sensitive to even small

amounts of noise, while average shading gradients degrade

gracefully with the noise level.

5.2. Pose estimation

We evaluate our full registration pipeline, with and with-

out refinement, and compare to two baselines. The first

baseline replaces the proposed average shading gradients

with a simple Lambertian shading under a “headlight” illu-

mination. We, moreover, compare to a standard RANSAC

approach that generates poses as follows: The correspon-

dences between 2D feature points on the input photograph

and 3D key points on the model form the putative inliers. In

each of 5000 iterations of the inner RANSAC loop we sam-

ple 4 correspondences and estimate the extrinsic pose (i.e.

camera rotation and translation) with the efficient PnP algo-

rithm of Moreno-Noguer et al. [25]. We then compute the

Table 3. True positive and true negative rates of verification step.

Gnome Statue Notre Dame

true positives (TP) 1 1 0.98

true negatives (TN) 1 0.81 0.7

number of consistent inlier correspondences, and finally re-

fit the extrinsic pose on the inliers. The optimistic RANSAC

baseline assumes the true intrinsics to be known.

We measure the registration quality by means of the mu-

tual reprojection error (Eq. 10). Table 2 shows the success

rate for the RANSAC baseline, for the shading baseline,

as well as for the coarse step of our registration pipeline,

both considering only the top-ranked hypothesis. We count

a coarse registration with δ < 150 as successful, since em-

pirically this is accurate enough for the refinement to im-

prove the pose significantly. Fig. 6 plots the fraction of

correctly registered photographs among the top k hypothe-

ses. Recall, that hypotheses are ranked based on the num-

ber of inlier 2D-to-3D correspondences. We find that our

approach achieves consistently better registration rates than

using RANSAC, despite RANSAC assuming known intrin-

sics. Moreover, average shading gradients significantly out-

perform registering on a shaded image itself. Nonetheless,

since the setting of registering images of an arbitrary view-

point to untextured geometry is challenging, it is to be ex-

pected that coarse registration does not always succeed.

Fortunately, the verification step proposed in Sec. 4.3 is

able to identify very reliably when the registration succeeds,

as can be seen in Table 3. Note that we observe some false

negatives, suggesting that our system errs on the cautious

side. These results, moreover, suggest that our approach

can be used as a fully automatic registration system. To

demonstrate that, we evaluate the statistics of the mean re-

projection error among those registrations that are in the set

C of verified poses, obtained by the verification step. For a

fair comparison, the error for the coarse poses is evaluated

on the set of poses that pass the verification after refinement.

After computing the mean reprojection error per image over

all verified registrations, we take its median as well as well

as the upper and lower quartiles across all accepted images.

For RANSAC we report the error of the pose with the most

inliers among the correctly registered images.

Table 4. Median mean reprojection error, as well as lower and

upper quartiles for images that passed the verification step. For

RANSAC only images that can be registered correctly are used.

Gnome Statue Notre Dame

RANSAC 25.3 (14.0 / 46.2) 36.7 (16.7 / 66.2) 39.9 (14.4 / 70.1)

Ours (Coarse) 24.8 (20.8 / 33.2) 33.9 (27.0 / 39.9) 41.2 (32.4 / 61.3)

Shaded (Ref.) 22.8 (22.8 / 22.8) 43.4 (26.8 / 401.7) 10.6 (7.5 / 19.8)

Ours (Ref.) 12.6 (12.1 / 19.9) 6.4 (3.8 / 12.1) 9.1 (6.4 / 14.4)

2036



5 10 15

0

0.2

0.4

0.6

0.8

1

Hypothesis rank

F
ra

c
ti
o
n
 o

f 
re

g
is

te
re

d
 i
m

a
g
e
s

 

 

5 10 15 20

0

0.2

0.4

0.6

0.8

1

Hypothesis rank

F
ra

c
ti
o
n
 o

f 
re

g
is

te
re

d
 i
m

a
g
e
s

 

 

5 10 15 20

0

0.2

0.4

0.6

0.8

1

Hypothesis rank

F
ra

c
ti
o
n
 o

f 
re

g
is

te
re

d
 i
m

a
g
e
s
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Shaded (refined)

Figure 6. Fraction of correctly registered photographs when considering the first k ranked hypotheses. We compare coarse poses computed

with average shading gradients to refined poses computed with Lambertian shaded renderings.

Figure 7. Examples of successful registrations: The query photograph is shown on the left, the top-ranked verified pose on the right.

We make three observations: Already the coarse poses

have a clearly lower reprojection error than the RANSAC

pose. Moreover, the average shading gradients significantly

increase the registration accuracy compared to using Lam-

bertian shading. They show a particularly big benefit on

the Gnome and Statue datasets, which do not have a lot of

intricate geometric details. Finally, we observe that the pro-

posed refinement step greatly increases the registration ac-

curacy.

Figure 7 shows some examples of successful registra-

tions for the top-ranked verified pose. It can be seen that

our system is able to register photographs with a great va-

riety of viewing angles and scales due to putting only few

constraints on the sampled camera poses for creating the

database. Our system is also able to register photographs

on which only parts of the full 3D model are depicted, and

successfully copes with different lighting conditions.

6. Conclusion

We presented a novel approach for the challenging prob-

lem of registering images to untextured geometry, based

on sparse feature matching between the query image and

rendered images obtained from the 3D model. Since we

cannot rely on textural information for matching, we pro-

pose average shading gradients, a rendering technique for

the untextured geometry that averages over all lighting di-

rections to cope with the unknown lighting of the query im-

age. As our experiments have shown, average shading gra-

dients coincide well with shading-related gradients in real

photographs. Our fully automatic registration pipeline con-

sists of two stages, and is able to accurately register images

across a wide range of view points and illumination condi-

tions, without requiring initialization or any other form of

manual intervention.
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