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Abstract

Crowdsourced 3D CAD models are becoming easily ac-

cessible online, and can potentially generate an infinite

number of training images for almost any object category.

We show that augmenting the training data of contemporary

Deep Convolutional Neural Net (DCNN) models with such

synthetic data can be effective, especially when real train-

ing data is limited or not well matched to the target domain.

Most freely available CAD models capture 3D shape but are

often missing other low level cues, such as realistic object

texture, pose, or background. In a detailed analysis, we

use synthetic CAD-rendered images to probe the ability of

DCNN to learn without these cues, with surprising findings.

In particular, we show that when the DCNN is fine-tuned

on the target detection task, it exhibits a large degree of in-

variance to missing low-level cues, but, when pretrained on

generic ImageNet classification, it learns better when the

low-level cues are simulated. We show that our synthetic

DCNN training approach significantly outperforms previ-

ous methods on the PASCAL VOC2007 dataset when learn-

ing in the few-shot scenario and improves performance in a

domain shift scenario on the Office benchmark.

1. Introduction

Deep CNN models achieve state-of-the-art performance

on object detection, but are heavily dependent on large-

scale training data. Unfortunately, labeling images for de-

tection is extremely time-consuming, as every instance of

every object must be marked with a bounding box. Even the

largest challenge datasets provide a limited number of anno-

tated categories, e.g., 20 categories in PASCAL VOC [3]),

80 in COCO [12], and 200 in ImageNet [2]. But what if we

wanted to train a detector for a novel category? It may not

be feasible to compile and annotate an extensive training set

covering all possible intra-category variations.

We propose to bypass the expensive collection and an-

notation of real images by using freely available 3D CAD

models to automatically generate synthetic 2D training im-

ages (see Figure 2). Synthetic data augmentation has been

Figure 1. We propose to train few-shot object detectors for real im-

ages by augmenting the training data with synthetic images gener-

ated from freely available non-photorealistic 3D CAD models of

objects collected from 3dwarehouse.sketchup.com.

used successfully in the past to add 2D affine transforma-

tions to training images [7], recognize text [6], and even

train detectors for a handful of categories such as cars [21].

However it has not yet been demonstrated for detection of

many categories with modern DCNNs. [22] trained ob-

ject detectors for 31 categories on synthetic CAD images,

but used a histogram-of-oriented (HOG) gradient model

(DPM [4]), which is significantly less powerful than DC-

NNs on object classification [7] and detection [19, 5, 20].

The main challenge in training with freely available

CAD models is that they capture the 3D shape of the ob-

ject, but frequently lack other low-level cues, such as object

texture, background, realistic pose, lighting, etc. [22] used

a simple rendering of objects with uniform gray texture and

a white background, and showed that HOG-based models

learn well from such data, as they are invariant to color

and texture and mostly retain the overall shape of the ob-

ject. However, DCNN visualizations have shown that they

retain color, texture and mid-level patterns. It is therefore

unknown if they would tolerate the lack of such low-level

cues in training images, or if a more sophisticated render-

ing process that simulates these cues is needed.

To investigate how missing low-level cues affect DC-

NNs’ ability to learn object detectors, we study the precise

nature of their “cue invariances”. For a given object cat-

egory, a DCNN maps the low-level cues contained in the

image (shape, texture) to high-level category information

(cat, car) represented by top layer activations (e.g. fc7 in

AlexNet [7]). We define “cue invariance” to be the ability

of the network to extract the equivalent high-level category
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Figure 2. Can we learn deep detectors for real images from non-photorealistic 3D CAD models? We explore the invariance of deep features

to missing low-level cues such as shape, pose, texture and context, and propose an improved method for learning from synthetic CAD data

that simulates these cues.

information despite missing low-level cues. We expect the

network to learn different invariances depending on the task

it was trained on.

Quantifying such invariances could help better under-

stand DCNN models and impove transfer to new domains,

e.g., to non-photorealistic data. A small number of papers

have started looking at this problem [9, 26, 13], but many

open questions remain, such as: are DCNNs invariant to ob-

ject color? Texture? Context? 3D pose? Is the invariance

transferable to new tasks?

With the help of images synthetically rendered from 3D

models, we design a series of experiments to “peer into the

depths” of DCNNs and analyse their invariance to cues, in-

cluding ones that are difficult to isolate using real 2D im-

age data. We make surprising discoveries regarding the

representational power of deep features. In particular, we

show that they encode far more complex invariances to cues

such as 3D pose, color, texture and context than previously

accounted for. We also quantify the degree to which the

learned invariances are specific to the training task.

Based on our analysis, we propose a method for zero-

or few-shot learning of novel object categories that gener-

ates synthetic 2D data using 3D models and a few texture

and scene images related to the category. An advantage

of our approach is that it drastically reduces the amount of

human supervision over traditional bounding-box labeling

methods. This could greatly expand available sources of vi-

sual knowledge and allow learning 2D detectors from the

millions of CAD models available on the web. We present

experiments on the PASCAL VOC 2007 detection task and

show that when training data is missing or limited for a

novel category, our method outperforms both training on

real data and the synthetic method of [22]. We also demon-

strate the advantage of our approach in the setting when the

real training data comes from a different domain than target

data using the Office [18] benchmark.

To summarize, our contributions are three-fold:

• we gain new and important insights into the cue invari-

ance of DCNNs through the use of synthetic data,
• we show that synthetic training of modern large-scale

DCNNs improves detection performance in the few-

shot and dataset-bias scenarios,

• we present the largest-scale evaluation of synthetic

CAD training of object detectors to date.

2. Related Work

Object Detection. “Flat” hand-designed representations

(HOG, SIFT, etc.) have dominated the object detection lit-

erature due to their considerable invariance to factors such

as illumination, contrast and small translations. In combi-

nation with discriminative classifiers such as linear SVM,

exemplar-based [14] or latent SVM [4], they had proved

powerful for learning to localize the global outline of an ob-

ject. More recently, convolutional neural networks [8] have

overtaken flat features as clear front-runners in many image

understanding tasks, including object detection. DCNNs

learn layered features starting with familiar pooled edges

in the first layer, and progressing to more and more com-

plex patterns with increasing spatial support. Extensions

to detection have included sliding-window CNN [19] and

Regions-CNN (RCNN) [5].

Understanding Deep CNNs. There has been increasing

interest in understanding the information encoded by the

highly nonlinear deep layers. [27] reversed the computation

to find image patches that most highly activate an isolated

neuron. A detailed study of what happens when one trans-

fers network layers from one dataset to another was pre-

sented by [26]. [13] reconstruct an image from one layer’s

activations, using image priors to recover the natural statis-

tics removed by the network filters. Their visualizations

confirm that a progressively more invariant and abstract rep-

resentation of the image is formed by successive layers, but

they do not analyse the nature of the invariances. Invariance

to simple 2D transformations (reflection, in-plane rotation)

was explored by [9]. In this paper, we study more complex

invariances by “deconstructing” the image into 3D shape,

texture, and other factors, and seeing which specific combi-

nations result in high-layer representations discriminant of

object categories.

1279



Use of Synthetic Data. The use of synthetic data has a

longstanding history in computer vision. Among the ear-

liest attempts, [15] used 3D models as the primary source

of information to build object models. More recently,

[21, 10, 23] used 3D CAD models as their only source of

labeled data, but limited their work to a few categories like

cars and motorcycles. [16] utilized synthetic data to probe

invariances for features like SIFT, SLF, etc. In this pa-

per, we generate training data from crowdsourced 3D CAD

models, which can be noisy and low-quality, but are free and

available for many categories. We evaluate our approach on

all 20 categories in the PASCAL VOC2007 dataset, which

is much larger and more realistic than previous benchmarks.

Previous works designed special features for matching

synthetic 3D object models to real image data ([11]), or used

HOG features and linear SVMs ([22]). We employ more

powerful deep convolutional images features and demon-

strate their advantage by directy comparing to [22]. The au-

thors of [25] use CAD models and show results of both 2D

detection and pose estimation, but train multi-view detec-

tors on real images labeled with pose. We avoid expensive

manual bounding box and pose annotation, and show re-

sults with minimum or no real image labels. Finally, several

approaches had used synthetic training data for tasks other

than object detection. For example, [6] recently proposed a

synthetic text generation engine to perform text recognition

in natural scenes while [17] proposed a technique to im-

prove novel-view synthesis for images using the structural

information from 3D models.

3. Approach

Our approach learns detectors for objects with no or few

training examples by augmenting the training data with syn-

thetic 3D CAD images. An overview of the approach is

shown in Figure 2. Given a set of 3D CAD models for each

object, it generates a synthetic 2D image training dataset

by simulating various low-level cues (Section 3.1). It then

extracts positive and negative patches for each object from

the synthetic images (and an optional small number of real

images). Each patch is fed into a deep neural network that

computes feature activations, which are used to train the fi-

nal classifier, as in the deep detection method of RCNN [5]

(Section 3.2). We explore the cue invariance of networks

trained in different ways, as described in Section 3.3.

3.1. Synthetic Generation of Low­Level Cues

Realistic object appearance depends on many low-level

cues, including object shape, pose, surface color, re-

flectance, location and spectral distributions of illumination

sources, properties of the background scene, camera char-

acteristics, and others. We choose a subset of factors that

can easily be modeled using computer graphics techniques,

namely, object texture, color, 3D pose and 3D shape, as

well as background scene texture and color.

When learning a detection model for a new category with

limited labeled real data, the choice of whether or not to

simulate these cues in the synthetic data depends on the

invariance of the representation. For example, if the rep-

resentation is invariant to color, grayscale images can be

rendered. We study the invariance of the DCNN represen-

tation to these parameters using synthetic data generated as

follows.

3D Models and Viewpoints Crowdsourced CAD models

of thousands of objects are becoming freely available on-

line. We start by downloading models from 3D Warehouse

by searching for the name of the desired object categories.

For each category, around 5 − 25 models were obtained

for our experiments, and we explore the effect of varying

intra-class shape by restricting the number of models in our

experiments. The original poses of the CAD models can

be arbitrary (e.g., upside-down chairs, or tilted cars). We

therefore adjust the CAD models’s viewpoint manually to 3

or 4 “views” (as shown in Figure 2) that best represent intra-

class pose variance for real objects. Next, for each manually

specified model view, we generate several small perturba-

tions by adding a random rotation. Finally, for each pose

perturbation, we select the texture, color and background

image and render a virtual image to include in our virtual

training dataset. Next, we describe the detailed process for

each of these factors.

Object/Background Color and Texture We investigate

various combinations of color and texture cues for both the

object and the background image. Previous work by [22]

has shown that when learning detectors from virtual data

using HOG features, rendering natural backgrounds and

texture was not helpful, and equally good results were ob-

tained by white background with uniform gray object tex-

ture. They explain this by the fact that a HOG-based classi-

fier is focused on learning the “outlines” of the object shape,

and is invariant to color and texture. We hypothesise that the

case is different for DCNN representations, where neurons

have been shown to respond to detailed textures, colors and

mid-level patterns, and explore the invariance of DCNNs to

such factors.

Specifially, we examine the invariance of the DCNN rep-

resentation to two types of object textures: realistic color

textures and uniform grayscale textures (i.e., no texture at

all). In the case of background scenes, we examine in-

variance to three types of scenes, namely real-image color

scenes, real-image grayscale scenes, and a plain white back-

ground. Examples of our texture and background genera-

tion settings are shown in Table 1.

In order to simulate realistic object textures, we use a

small number (5 to 8 per category) of real images containing
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real objects and extract the textures therein by annotating a

bounding box. These texture images are then stretched to

fit the CAD models. Likewise, in order to simulate realis-

tic background scenes, we gathered about 40 (per category)

real images of scenes where each category is likely to ap-

pear (e.g blue sky images for aeroplane, images of a lake or

ocean for boat, etc.) When generating a virtual image, we

first randomly select a background image from the available

background pool, and project it onto the image plane. Then,

we select a random texture image from the texture pool and

map it onto the CAD model before rendering the object.

3.2. Deep Convolutional Neural Network Features

To obtain a deep feature representation of the images, we

use the eight-layer “AlexNet” architecture with over 60 mil-

lion parameters [7]. This network had first achieved break-

through results on the ILSVRC-2012 [1] image classifica-

tion, and remains the most studied and widely used visual

convnet. The network is trained by fully supervised back-

propagation (as in [8]) and takes raw RGB image pixels of

a fixed size of 224 × 224 and outputs object category la-

bels. Each layer consists of a set of neurons, each with lin-

ear weights on the input followed by a nonlinearity. The

first five layers of the network have local spatial support

and are convolutional, while the final three layers are fully-

connected to each neuron from the previous layer, and thus

include inputs from the entire image.

This network, originally designed for classification, was

applied and fine-tuned to detection in RCNN [5] with im-

pressive gains on the popular object detection benchmarks.

To adapt AlexNet for detection, the RCNN applied the net-

work to each image sub-region proposed by the Selective

Search method ([24]), adding a background label, and ap-

plied non-maximal suppression to the outputs. Fine-tuning

all hidden layers resulted in performance improvements.

We refer the reader to [5] for more details.

3.3. Analysing Cue Invariance of DCNN Features

Recall that we define “cue invariance” to be the ability

of the network to extract the same high-level category infor-

mation from training images despite missing low-level cues

such as object texture. To test for this invariance, we create

two synthetic training sets, one with and one without a par-

ticular cue. We then extract deep features from both sets,

train two object detectors, and compare their performance

on real test data. Our hypothesis is that, if the representa-

tion is invariant to the cue, then similar high-level neurons

will activate whether or not that cue is present in the in-

put image, leading to similar category-level information at

training and thus similar performance. On the other hand,

if the features are not invariant, then the missing cue will

result in missing category information and poorer perfor-

mance. In this work, we extract the last hidden layer (fc7 of

AlexNet) as the feature representation, since it has learned

the most class-specific cue invariance.

As an example, consider the “cat” object class. If the

network is invariant to cat texture, then it will produce sim-

ilar activations on cats with and without texture, i.e. it will

“hallucinate” the right texture when given a texureless cat

shape. Then the detector will learn cats equally well from

both sets of training data. If, on the other hand, the network

is not invariant to cat texture, then the feature distributions

will differ, and the classifier trained on textureless cat data

will perform worse.

We expect that the network will learn different cue in-

variances depending on the task and categories it is trained

on. For example, it may choose to focus on just the texture

cue when detecting leopards, and not their shape or con-

text, as their texture is unique. To evaluate the effect of

task-specific pre-training, we compare three different vari-

ants of the network: 1) one pre-trained on the generic Ima-

geNet [2] ILSVRC 1000-way classification task (IMGNET);

2) the same network additionally fine-tuned on the PAS-

CAL 20-category detection task (PASC-FT); and 3) for the

case when a category has no or few labels, we fine-tune the

IMGNET network on synthetic CAD data (VCNN).

To obtain the VCNN network, we fine-tune the entire net-

work on the synthetic data by backpropagating the gradients

with a lower learning rate. This has the effect of adapting

the hidden layer parameters to the synthetic data. It also al-

lows the network to learn new information about object cat-

egories from the synthetic data, and thus gain new object-

class invariances. We show that this is essential for good

performance in the few-shot scenario. Treating the network

activations as fixed features is inferior as most of the learn-

ing capacity is in the hidden layers, not the final classifier.

We investigate the degree to which the presence of different

low-level cues affects how well the network can learn from

the synthetic data.

4. Experiments

4.1. Cue Invariance Results

We first evaluate how variations in low-level cues affect

the features generated by the IMGNET and PASC-FT net-

works on the PASCAL VOC2007 dataset. For each exper-

iment, we follow these steps (see Figure 2): 1) select cues,

2) generate a batch of synthetic 2D images with those cues,

3) sample positive and negative patches for each class, 4)

extract hidden DCNN layer activations from the patches as

features, 5) train a classifier for each object category, 6) test

the classifiers on real PASCAL images and report mean Av-

erage Precision (mAP). To determine the optimal number of

synthetic training images, we computed mAP as a function

of the size of the training set, using the RR-RR image gen-

eration setting (Table 1). Results, shown in Figure 4.1, in-
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Figure 3. Relationship between mAP and the number of training

images for the RR-RR generation setting.

dicate that the classifier achieves peak performance around

2000 training images, with 100 positive instances for each

of the 20 categories, which is the number used for all sub-

sequent experiments.

Object Color, Texture and Context For this experiment,

we used 1-2 pose perturbations per view and all views per

category. We trained a series of detectors on several back-

ground and object texture cue configurations, with results

shown in Table 1. First, as expected, we see that training

with synthetic data obtains lower mean AP than training

with real data (around 58% with bounding box regression).

Also, the IMGNET network representation achieves lower

performance than the PASC-FT network, as was the case for

real data in [5]. However, the somewhat unexpected result

is that the generation settings RR-RR, W-RR, W-UG, RG-

RR with PASC-FT all achieve comparable performance, de-

spite the fact that W-UG has no texture and no context. Re-

sults with real texture but no color in the background (RG-

RR, W-RR) are the best. Thus, the PASC-FT network has

learned to be invariant to the color and texture of the object

and its background. Also, we note that settings RR-UG

and RG-UG achieve much lower performance (6-9 points

lower), potentially because the uniform object texture is not

well distinguished from the non-white backgrounds.

For the IMGNET network, the trend is similar, but with

the best performing methods being RR-RR and RG-RR.

This means that adding realistic context and texture statis-

tics helps the classifier, and thus the IMGNET network is

less invariant to these factors, at least for the categories in

our dataset. We note that the IMGNET network has seen

these categories in training, as they are part of the ILSVRC

1000-way classification task, which explains why it is still

fairly insensitive. Combinations of uniform texture with a

real background also do not perform well here. Interest-

ingly, RG-RR does very well with both networks, leading

to the conclusion that both networks have learned to as-

sociate the right context colors with objects. We also see

some variations across categories, e.g., categories like cat

and sheep benefit most from adding the object texture cue.

To explore the lower layers’ invariance to color, texture

and background, we visualize the patches which have the

strongest activations for pool5 units, as shown in Figure 4.

The value in the receptive field’s upper-left corner is nor-

malized by dividing by max activation value over all units

in a channel. The results are very interesting. The unit in the

left subfigure fires on patches resembling tv-monitors in real

images; when using our synthetic data, the unit still fires on

tv-monitors even though the background and texture are re-

moved. The unit on the right fires on white animals on green

backgrounds in real and RR-RR images, and continues to

fire on synthetic sheep with simulated texture, despite lack

of green background. However, it fails on W-UG images,

demonstrating its specificity to object color and texture.

Synthetic Pose We also analyse the invariance of CNN

features to 3D object pose. Through the successive opera-

tions of convolution and max-pooling, CNNs have a built-in

invariance to translations and scale. Likewise, visualiza-

tions of learned filters at the early layers indicate a built-in

invariance to local rotations. Thus while the CNN represen-

tation is invariant to slight translation, rotations and defor-

mations, it remains unclear to what extent are CNN repre-

sentation to large 3D rotations.

For this experiment, we fix the CAD models to three

dominant poses: front-view, side-view and intra-view, as

shown in Table 2. We change the number of views used

in each experiment, but keep the total number of synthetic

training images (RR-RR) exactly the same, by generating

random small perturbations (-15 to 15 degree) around the

main view. Results indicate that for both networks adding

side view to front view gives a boost, but improvement from

adding the third view is marginal. We note that adding some

views may even hurt performance (e.g., TV) as the PAS-

CAL test set may not have objects in those views.

Real Image Pose We also test view invariance on real

images. We are interested here in objects whose frontal

view presentation differs significantly (ex: the side-view of

a horse vs a frontal view). To this end, we selected 12 cat-

egories from the PASCAL VOC training set which match

this criteria. Held out categories included rotationally in-

variant objects such as bottles or tables. Next, we split the

training data for these 12 categories to prominent side-view

and front-view, as shown in Table 3.

We train classifiers exclusively by removing one view

(say front-view) and test the resulting detector on the PAS-

CAL VOC test set containing both side and front-views.We

also compare with random view sampling. Results, shown

in Table 3, point to important and surprising conclusions

regarding the representational power of the CNN features.

Note that mAP drops by less than 2% when detectors ex-

clusively trained by removing either view are tested on the

PASCAL VOC test set. Not only are those detectors never

presented with the second view, but they are also trained

with approximately half the data. While this invariance to

large and complex pose changes may be explained by the

fact the CNN model was itself trained with both views of the

object present, and subsequently fine-tuned with both views
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RR-RR W-RR W-UG RR-UG RG-UG RG-RR

BG Real RGB White White Real RGB Real Gray Real Gray

TX Real RGB Real RGB Unif. Gray Unif. Gray Unif. Gray Real RGB

PASC-FT aero bike bird boat botl bus car cat chr cow tab dog hse mbik pers plt shp sofa trn tv mAP

RR-RR 50.9 57.5 28.3 20.3 17.8 50.1 37.7 26.1 11.5 27.1 2.4 25.3 40.2 52.2 14.3 11.9 40.4 16.3 15.2 32.2 28.9

W-RR 46.5 55.8 28.6 21.7 21.3 50.6 46.6 28.9 14.9 38.1 0.7 27.3 42.5 53.0 17.4 22.8 30.4 16.4 16.7 43.5 31.2

W-UG 54.4 49.6 31.5 24.8 27.0 42.3 62.9 6.6 21.2 34.6 0.3 18.2 35.4 51.3 33.9 15.0 8.3 33.9 2.6 49.0 30.1

RR-UG 55.2 57.8 24.8 17.1 11.5 29.9 39.3 16.9 9.9 35.1 4.7 30.1 37.5 53.1 18.1 9.5 12.4 18.2 2.1 21.1 25.2

RG-UG 49.8 56.9 20.9 15.6 10.8 25.6 42.1 14.7 4.1 32.4 9.3 20.4 28.0 51.2 14.7 10.3 12.6 14.2 9.5 28.0 23.6

RG-RR 46.5 55.8 28.6 21.7 21.3 50.6 46.6 28.9 14.9 38.1 0.7 27.3 42.5 53.0 17.4 22.8 30.4 16.4 16.7 43.5 31.2

IMGNET aero bike bird boat botl bus car cat chr cow tab dog hse mbik pers plt shp sofa trn tv mAP

RR-RR 34.3 34.6 19.9 17.1 10.8 30.0 33.0 18.4 9.7 13.7 1.4 17.6 17.7 34.7 13.9 11.8 15.2 12.7 6.3 26.0 18.9

W-RR 35.9 23.3 16.9 15.0 11.8 24.9 35.2 20.9 11.2 15.5 0.1 15.9 15.6 28.7 13.4 8.9 3.7 10.3 0.6 28.8 16.8

W-UG 38.6 32.5 18.7 14.1 9.7 21.2 36.0 9.9 11.3 13.6 0.9 15.7 15.5 32.3 15.9 9.9 9.7 19.9 0.1 17.4 17.1

RR-UG 26.4 36.3 9.5 9.6 9.4 5.8 24.9 0.4 1.2 12.8 4.7 14.4 9.2 28.8 11.7 9.6 0.7 4.9 0.1 12.2 11.6

RG-UG 32.7 34.5 20.2 14.6 9.4 7.5 30.1 12.1 2.3 14.6 9.3 15.2 11.2 30.2 12.3 11.4 2.2 9.9 0.5 13.1 14.7

RG-RR 26.4 38.2 21.0 15.4 12.1 26.7 34.5 18.0 8.8 16.4 0.4 17.0 20.9 32.1 11.0 14.7 18.4 14.8 6.7 32.0 19.3

Table 1. Detection results on the PASCAL VOC2007 test dataset. Each row is trained on different background and texture configuration of

virtual data shown in the top table. In the middle table, the DCNN is trained on ImageNet ILSVRC 1K classification data and finetuned on

the PASCAL training data; in the bottom table, the network is not fine-tuned on PASCAL.

Figure 4. Top 10 regions with strongest activations for 2 pool5 units using the method of [5]. Overlay of the unit’s receptive field is

drawn in white and normalized activation value is shown in the upper-left corner. For each unit we show results on (top to bottom): real

PASCAL images, RR-RR, W-RR, W-UG. See text for further explanation.

again present, the level of invariance is nevertheless remark-

able. In the last experiment, we reduce the fine-tuning train-

ing set by removing front-view objects, and note a larger

mAP drop of 5 points (8%), but much less than one may

expect. We conclude that, for both networks, the represen-

tation groups together multiple views of an object.

3D Shape Finally, we experiment with reducing intra-

class shape variation by using fewer CAD models per cate-

gory. We otherwise use the same settings as in the RR-RR

condition with PASC-FT. From our experiments, we find

that the mAP decreases by about 5.5 points from 28.9% to

23.53% when using only a half of the 3D models. This

shows a significant boost from adding more shape variation

to the training data, indicating less invariance to this factor.

4.2. Few­Shot Learning Results on PASCAL

To summarize the conclusions from the previous section,

we found that DCNNs learn a significant amount of invari-

ance to texture, color and pose, and less invariance to 3D

shape, if trained (or fine-tuned) on the same task. If not

trained on the task, the degree of invariance is lower. There-

fore, when learning a detection model for a new category

with no or limited labeled real data available, it is advanta-

geous to simulate these factors in the synthetic data.

In this section, we experiment with adapting the deep

representation to the synthetic data. We use all available

3D models and views, and compare the two generation set-

tings that produced the best results (RR-RR, RG-RR in

Table 1). Both of these settings use realistic backgrounds,

which may have some advantages for detection. In partic-

ular, visualizations of the positive training data show that

a white background around the objects makes it harder to

sample negative training data via selective search, as most

of the interesting regions are on the object.

As before, we simulate the zero-shot learning situation

where the number of labeled real images for a novel cate-

gory is zero, however, here we also experiment with having

a small number of labeled real images. For every category,

we randomly select 20 (10, 5) positive training images to

form datasets R20 (R10, R5). The sizes of final datasets are

276 (120, 73); note that there are some images which con-

tain two or more positive bounding boxes. The size of the

virtual dataset (noted as V2k) is always 2000 images. We

pre-train on Imagenet ILSVRC (IMAGENET network) and
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IMGNET areo bike bird boat botl bus car cat chr cow tab dog hse mbik pers plt shp sofa trn tv mAP

front 24.9 38.7 12.5 9.3 9.4 18.8 33.6 13.8 9.7 12.5 2.1 18.0 19.6 27.8 13.3 7.5 10.2 9.6 13.8 28.8 16.7

front,side 24.3 36.8 19.0 17.7 11.9 26.6 36.0 10.8 9.7 15.5 0.9 21.6 21.1 32.8 14.2 12.0 14.3 12.7 10.1 32.6 19.0

front,side,intra 33.1 40.2 19.4 19.6 12.4 29.8 35.3 16.1 5.2 16.5 0.9 19.7 19.0 34.9 15.8 11.8 19.7 16.6 14.3 29.8 20.5

PASC-FT aero bike bird boat botl bus car cat chr cow tab dog hse mbik pers plt shp sofa trn tv mAP

front 41.8 53.7 14.5 19.1 11.6 42.5 40.4 25.5 9.9 24.5 0.2 29.4 37.4 47.1 14.0 11.9 18.9 12.7 22.6 38.8 25.8

front,side 45.6 50.2 24.4 28.8 17.4 51.9 41.8 24.5 7.2 27.9 9.2 23.1 37.0 51.3 17.8 13.2 28.6 18.9 9.3 37.8 28.3

front,side,intra 54.2 55.5 22.7 27.0 20.5 52.6 40.1 26.8 8.1 27.3 2.3 30.6 36.6 53.3 17.8 14.2 34.1 26.4 19.3 37.5 30.3

Table 2. Results of training on different synthetic views. The CNN used in the top table is trained on ImageNet-1K classification, the CNN

in the bottom table is also finetuned on PASCAL 2007 detection.

Net Views aero bike bird bus car cow dog hrs mbik shp trn tv mAP

PASC-FT all 64.2 69.7 50 62.6 71 58.5 56.1 60.6 66.8 52.8 57.9 64.7 61.2

PASC-FT -random 62.1 70.3 49.7 61.1 70.2 54.7 55.4 61.7 67.4 55.7 57.9 64.2 60.9

PASC-FT -front 61.7 67.3 45.1 58.6 70.9 56.1 55.1 59.0 66.1 54.2 53.3 61.6 59.1

PASC-FT -side 62.0 70.2 48.9 61.2 70.8 57.0 53.6 59.9 65.7 53.7 58.1 64.2 60.4

PASC-FT(-front) -front 59.7 63.1 42.7 55.3 64.9 54.4 54.0 56.1 64.2 55.1 47.4 60.1 56.4

Table 3. Results of training on different real image views. ’-’ represent removing a certain view. Note that the mAP is only for a subset of

Pascal Dataset.

Figure 5. Detection results of the proposed VCNN on PASCAL.

When the real annotated images are limited or not available, eg.

for a novel category, VCNN performs much better than RCNN

and the Fast Adaptation method.

fine-tune on V2k to get the VCNN network, then train SVM

classifiers on both Rx+V2k.

Baselines. We use datasets Rx (x = 20, 10, 5) to train

the RCNN model, and Rx+V2k to train the Fast Adaptation

method described in [22]. The RCNN is pre-trained on Im-

agenet ILSVRC, however it is not fine-tuned on detection

on R5 and R10 as data is very limited.

Results. The results in Figure 5 show that when the number

of real training images is limited, our method (VCNN) per-

forms better than traditional RCNN. The VCNN also signif-

icantly outperfoms the Fast-Adapt method, which is based

Figure 6. Detections on the Amazon domain in Office, showing

examples where our synthetic model (second row, green bounding

box) improves localization compared to the model trained on real

Webcam images (first row, red bounding box).

on HOG features. We also confirm that our proposed RR-

RR data synthesis methodology is better than not simulat-

ing background or texture. In partcular, fine-tuning on vir-

tual RR-RR data boosts mAP from 18.9% (Table 1) to 22%

without using any real training examples, and to 28% with 5

real images per category, a 10% absolute improvement over

RCNN. We also notice that the results for RG-RR are much

lower than RR-RR, unlike the results in the fixed-feature

experiment. This may be explained by the fact that RG-RR

with selective search generates many sub-regions without

color, and using these regions to do fine-tuning probably

decreases the CNN’s ability to recognize realistic color ob-

jects.

Note that the VCNN trained with 10 real images per cat-

egory (200 total) is also using the approximately 900 real

images of texture and background. However, this is still
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Training bp bk bh bc bt ca dc dl dp fc hp kb lc lt mp mt ms mg pn pe ph pr pj pn rb rl sc sp st td tc mAP

WEBCAM 81 91 65 35 9 52 84 30 2 33 67 37 71 14 21 54 71 38 26 19 41 58 64 16 10 11 32 1 18 29 26 39

V-GRAY 81 93 65 35 30 17 84 30 2 33 67 37 71 14 21 17 24 9 26 9 4 58 54 16 10 11 32 1 18 29 26 33

V-TX 89 94 40 32 20 81 83 48 15 19 72 66 78 18 77 49 75 73 26 17 41 64 77 15 10 15 29 29 29 24 31 46

Table 4. Detection results of the proposed VCNN on the 31 object categories in the Office dataset. The test data in these experiments are

(real) images from the Amazon domain. We compare to training on the real training images from the Webcam domain (top row). Our

model was trained on V-GRAY and V-TX, representing virtual images with uniform gray texture and real texture, respectively. The results

clearly demonstrate that when the real training data is mismatched from the target domain, synthetic training can provide a significant

performance boost for real-image detection.

much fewer than the 15588 annotated bounding boxes in the

PASCAL training set, and much easier to collect as only the

texture images (about 130) need bounding box annotation.

Yet the obtained 31% mAP is comparable to the 33% mAP

achieved by the DPM (without context rescoring) trained

on the full dataset. This speaks to the power of transferring

deep representations and suggests that synthetic CAD data

is a promising way to avoid tedious annotation for novel cat-

egories. We emphasize that there is a significant boost due

to adapting the features on synthetic data via fine-tuning,

showing that adapted features are better than fixed features,

but only for the RR-RR generation settings.

4.3. Results on Novel Domains

When the test images come from a different visual

domain (or dataset) than the training images, we expect

the performance of the detector to degrade due to dataset

bias [18]. In this experiment, we evaluate the benefit of us-

ing synthetic CAD data to improve performance on novel

real-image domains. We use part of the Office dataset [18],

which has the same 31 categories of common objects (cups,

keyboards, etc.) in each domain, with Amazon images as

the target testing domain (downloaded from amazon.com)

and Webcam images as the training domain (collected an

office environment).

To generate synthetic data for the categories in the Office

Dataset, we downloaded roughly five 3D models for each

category. The data generation method is the same as the

experiments for PASCAL, expcept that we use the original

texture on the 3D models for this experiment, considering

that the texture of the objects in Office dataset is simpler.

We compare two generation settings, V-GRAY and V-TX,

representing virtual images with uniform gray texture and

real texture, respectively. The background for both settings

is white, to match the majority of Amazon domain back-

grounds. We generate 5 images for each model, producing

775 images in total. We use the synthetic images to train

our VCNN deep detector and test it on the Amazon domain

(2817 images).

Baseline We train a baseline real-image deep detector on

the Webcam domain (total of 795 images) and also test it

on images in the Amazon domain.

Results The results are shown in Table 4. The mean AP for

VCNN with V-TX is 46.25% versus 38.91% for the deep

detector trained on the Webcam domain, a significant boost

in performance. The V-GRAY setting does considerably

worse. This shows the potential of synthetic CAD training

in dataset bias scenarios.

In Figure 6, we show some examples where the object

is not detected by the detector trained on Webcam, but de-

tected perfectly by the our VCNN model. To obtain these

results we selected the bounding box with the highest score

from about 2000 region proposals in each image.

5. Conclusion

This paper demonstrated that synthetic CAD training of

modern deep CNNs object detectors can be successful when

real-image training data for novel objects or domains is lim-

ited. We investigated the sensitivity of convnets to various

low-level cues in the training data: 3D pose, foreground

texture and color, background image and color. To simu-

late these factors we used synthetic data generated from 3D

CAD models. Our results demonstrated that the popular

deep convnet of [7], fine-tuned for the detection task, is in-

deed largely invariant to these cues. Training on synthetic

images with simulated cues lead to similar performance as

training on synthetic images without these cues. However,

if the network is not fine-tuned for the task, its invariance

is diminished. Thus, for novel categories, adding synthetic

variance along these dimensions and fine-tuning the layers

proved useful.

Based on these findings, we proposed a new method for

learning object detectors for new categories that avoids the

need for costly large-scale image annotation. This can be

advantageous when one needs to learn a detector for a novel

object category or instance, beyond those available in la-

beled datasets. We also showed that our method outper-

forms detectors trained on real images when the real train-

ing data comes from a different domain, for one such case

of domain shift. These findings are preliminary, and further

experiments with other domains are necessary.
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