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Abstract

The prospect of neural reconstruction from Electron Mi-

croscopy (EM) images has been elucidated by the auto-

matic segmentation algorithms. Although segmentation al-

gorithms eliminate the necessity of tracing the neurons by

hand, significant manual effort is still essential for correct-

ing the mistakes they make. A considerable amount of hu-

man labor is also required for annotating groundtruth vol-

umes for training the classifiers of a segmentation frame-

work. It is critically important to diminish the dependence

on human interaction in the overall reconstruction system.

This study proposes a novel classifier training algorithm for

EM segmentation aimed to reduce the amount of manual ef-

fort demanded by the groundtruth annotation and error re-

finement tasks. Instead of using an exhaustive pixel level

groundtruth, an active learning algorithm is proposed for

sparse labeling of pixel and boundaries of superpixels. Be-

cause over-segmentation errors are in general more toler-

able and easier to correct than the under-segmentation er-

rors, our algorithm is designed to prioritize minimization

of false-merges over false-split mistakes. Our experiments

on both 2D and 3D data suggest that the proposed method

yields segmentation outputs that are more amenable to neu-

ral reconstruction than those of existing methods.

1. Introduction

One important task for neural reconstruction from Elec-

tron Microscopy (EM) is to extract the anatomical struc-

ture of a neuron by accurately assigning regions of EM im-

ages to corresponding cells. Due to the size and number of

EM images typically required for a useful dense reconstruc-

tion, it is impractical to manually perform such task. Recent

studies on neural reconstructions or connectomics [30][12]

apply automated segmentation algorithms for determining

cell morphology. The result of such an automated segmen-

tation algorithm is not free of errors, which is why a re-

construction approach must either manually correct the mis-

takes made by these algorithms [30], or conform them to a

skeleton representation generated earlier by hand [12].

In addition, there have been many notable works ad-

dressing one or multiple processes constituting an over-

all segmentation algorithm. Existing algorithms such

as[14][7][19] for pixel classification; [22][21] for effective

generation of over-segmentation; [28][16][1] for isotropic

3D supervoxel clustering; [31][9] for co-segmentation for

anisotropic data report impressive performances on differ-

ent kinds of EM datasets. Many of these novel approaches

are motivated by the methods in natural image segmentation

and evaluate output accuracy using error measures popular

in computer vision literature, e.g., Rand Error (RE) of [16],

Variance of Information (VI) of [1][28].

Ideally, an automated segmentation should attain 100%
accuracy – its output should be free of both types of seg-

mentation errors, namely false merge (under-segmentation)

and false split (over-segmentation). However, it is not real-

istic to expect (near) 100% accuracy in practice; given the

performances of the existing state of the art algorithms, one

can generally assume that their outputs need to be corrected

afterwards. Then, from a connectomics point of view, a seg-

mentation algorithm should be designed to minimize man-

ual labor (or algorithmic complexity) required for correct-

ing its output[15].

To the best of our knowledge, there has not yet been a

study analyzing the effect of segmentation errors on the ef-

fort necessary to correct them. Although error quantities,

such as Rand Error (RE) [16], provide a coarse assessment

of the mistakes an algorithm makes, they are unable to con-

clusively forecast the amount of work required for refine-

ment. As an example, inaccurately combining two regions

of sizes A and B would incur the same RE value as incor-

rectly splitting one region of size A+B into two parts. How-

ever, rectifying these two mistakes demands significantly

different amount of work [5]. The high RE of a false split

of two large bodies, e.g., A = B = 10000, on a 512× 512
image disproportionately penalizes the effort to correct such
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(a) Plane 50 (b) Plane 220 (c) Plane 484

Figure 1. 3D Segmentation output on 3 planes from a volume of 500 images. Each

individual neuron has been colorized with a different color. The two adjacent regions,

colored in white, in the top-right, are in fact parts of two different neurons which

have been falsely merged. Manually correcting this under-segmentation error is much

more labor-intensive than correcting a false split.

error.

From a reconstruction perspective, an over-segmented

result is preferred over an under-segmented one because

a fragmented set of regions can be refined by auto-

mated methods such as agglomeration [25][27][28] or co-

segmentation [9], but an under-segmented region can only

be fixed by a human expert. Even for a human expert,

identifying and correcting false merges is more difficult

than correcting false split [5]. This difficulty is more pro-

nounced in 3D volume segmentation than it is in 2D seg-

mentation. Consider separating the two regions falsely con-

nected through 450 planes (from 50 to 500) of a 5203 vol-

ume by a segmentation method as displayed in Figure 1.

The authors of [25][27][28] were aware of this issue and

reported the two types of error rates separately for perfor-

mance assessment. The study of [14] attempts to reduce

false merges by identifying the locations vital for preserv-

ing topology given exhaustive groundtruth of the data.

Another desirable property of the EM segmentation al-

gorithms is to be able to train the necessary components effi-

ciently without compromising accuracy. An efficient train-

ing is perhaps essential for large scale reconstruction where

one may anticipate learning the predictors multiple times

for different neuropils. A quick segmentation result may

also assist the neurobiologist to decide the optimal sample

preparation that would maximize segmentation accuracy.

But, training existing segmentation algorithms [14][7][19]

remains a significant bottleneck in connectomics [11] due to

the time and effort necessary for generating the groundtruth

and time complexity of training the classifier (e.g., deep

neural networks).

A highly curated exhaustive groundtruth, such as those

offered by the segmentation challenges (e.g., ISBI 2012

2D, SNEMI 2013 3D), demands extensive effort. Provided

necessary resources, it is possible to generate a reasonable

groundtruth by iteratively refining segmentation on a small

volume with an interactive labeling tool such as ilastik [29].

This label set is expected to contain a small degree of tol-

erable noise but is efficient to generate. Some recent algo-

rithms [1][25][27][28] have utilized interactively generated

groundtruth to train the necessary tools for segmentation.

However, these algorithms inherently rely on highly expert

(a) (b) (c) (d)

Figure 2. Workflow of a standard EM segmentation framework: (a) input →

(b) pixelwise classification (white: membrane, black: non-membrane) → (c) over-

segmentation → (d) final segmentation.

annotators or neurobiologists in order to produce a useful

annotation efficiently (by finding out the minimal area to

label for the prediction-correction scheme). Automated al-

gorithms are expected to diminish such dependency on hu-

man expertise. As an alternative to exhaustive labeling,

Jones et.al. [18] presented a method for sparsely labeling

the membrane locations based on appearance similarity to

user annotated examples. A completely semisupervised ap-

proach like [18] will be sensitive to the penalty parameter

and has a risk of introducing noises that are too difficult for

a classifier to tolerate.

We adopt a standard EM segmentation ap-

proach [16][1][25][28], as illustrated in Figure 2, where

the confidence values of a pixelwise classifier 1 are utilized

to generate an initial over-segmentation of the dataset.

The over-segmentated image or volume is then refined

by aggregating superpixels with the help of a superpixel

boundary classifier. In this paper, we propose an algorithm

for training pixel and superpixel boundary classifiers. The

classifiers are trained to attain two desirable properties of

an EM segmentation method:

1. Maximize efficiency: the proposed algorithm employs

active learning for classification. Instead of requiring an

exhaustive pixel-level groundtruth, our algorithm automat-

ically determines a small fraction of samples that are crit-

ical for training the pixel and superpixel boundary classi-

fiers (< 1% for pixel and < 20% for superpixel bound-

ary). These examples are identified using the disagreement

between two predictors: a) a classifier being updated it-

eratively, and b) a semisupervised label propagation algo-

rithm [4] predicting labels based on feature similarity. Un-

like [18], all our training examples are labeled by an anno-

tator.

2. Minimize false-merge: without exhaustive groundtruth,

it is not possible to locate the topologically critical pixels

using the method of [14]. We hypothesize that emphasizing

on the detection of membrane pixels over other types would

reduce the amount of false merges. Accordingly, our train-

ing protocol is designed to be biased towards more accurate

learning of membrane class than the remaining categories.

We empirically demonstrate the advantages of the pro-

posed method over the state of the art techniques for neural

reconstruction from both 2D and 3D EM data. The over-

1We adopt multi-class pixel classification, as is explained later.
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all active learning algorithm is defined in Section 2. Sec-

tions 2.2 and 2.3 explain how our active training approach

is adapted for pixel and superpixel boundary classification.

The following section (Section 3) discusses the experimen-

tal setup and reports the results. Finally, Section 4 con-

cludes with a discussion summarizing our findings.

2. Proposed Active Labeling Framework

The segmentation scheme we adopt consists of pixel

classification followed by a superpixel clustering by means

of a superpixel boundary classifier. We propose an active

strategy to train both the pixel and superpixel boundary

classifiers. The goal of an active learning method is to iden-

tify a few examples – crucial for training a classifier – from

a pool of unlabeled samples. The proposed active classifi-

cation scheme identifies the challenging examples from the

dataset and requests their labels from user. Given the la-

bels for the query examples, the algorithm reconfigures its

predictors and identifies a new set of queries in a repetitive

fashion.

With the aim of locating these challenging examples, we

estimate the class label of any unlabeled point by two pre-

dictors having substantially different views of the dataset.

One predictor is a classifier (Random Forest (RF) [3] in

our experiments) trained from an initially available subset

of datapoints Xl ⊂ X = {x1, . . . , xn} and their labels

Yl. The other predictor is a novel variant of semisupervised

label propagation algorithm [33][4], that assumes a cluster

formation of similar datapoints in feature space. While the

classifier assesses the class of an unlabeled example by a

discriminative set of rules learned so far, the label propa-

gation technique extrapolates a prediction based on feature

similarity among the datapoints.

A training sample is considered to be challenging if the

class suggested by feature similarity is different from that

calculated by the discriminative rules and vice versa2. The

disagreement among these two types of estimates is quan-

tified by a ranking formula. The first few examples in de-

scending order of disagreement measure are presented to

the user as queries. The set Xl is augmented by this new

annotated queries and the whole process is repeated until a

predefined stopping criterion is satisfied.

In Section 2.1, we propose the semisupervised label

propagation method for a multiclass setting to facilitate the

multiclass approaches of [27][25]. The strategies for query

generation and initialization are different for pixel and su-

perpixel boundary classification and are explained in Sec-

tions 2.2 and 2.3 respectively.

2For the interested readers, we illustrate the intuition behind our query generation

approach on a synthetic dataset in[26].

2.1. Proposed Multiclass Label Propagation

Let us suppose, we have n datapoints xi that we wish to
classify into one of the k classes. Let fi denote the indica-
tor variable for datapoint xi: f c

i = 1 if xi is classified to
class c and rest of its values are 0. We wish to assign ‘simi-
lar’ datapoints into the same class, i.e., the pairs of samples
xi and xj with large feature similarity quantified by wij

should belong to the same class. We propose to attain this
by minimizing the following cost.

J(f) =
∑

i∼j

wij

[

fi√
di

− fj
√

dj

]T [

fi√
di

− fj
√

dj

]

(1)

= 2
∑

i

f
T
i fi − 2

∑

i∼j

wij√
di
√

dj
f
T
i fj . (2)

In this cost function, we normalize the weight wij by the
corresponding degree di =

∑

j wij to balance the effects

of disparity in class sample size. The cost is summed over
all neighboring i ∼ j that possess a feature similarity above
a certain predefined value. Using a matrix notation for the
indicator variables, F = [fT1 , . . . fTn ]T , we can write this
cost function as

J(F ) = 2 Tr{FF
T (I −D

−0.5
WD

−0.5)}, (3)

where I and D are the identity and diagonal degree matri-
ces respectively. By relaxing the values of F to be nonneg-
ative real-valued numbers f c

i ≥ 0 and differentiating wrt F ,
one can compute the system of linear equations needed to
be solved for determining F . Of course, the minimization
is constrained by label consistency among the values of fi,
i.e., F1 = 1, where 1 is a vector of all 1’s.

∂J

∂F
= 0 =⇒

(

I −D
−0.5

WD
−0.5

)

F = 0 (4)

An efficient solver for Equation 4 is essential to build an
interactive interface of our method. By avoiding the fac-
torization of matrices with thousands of variables, iterative
techniques can produce a solution significantly faster than
the closed form methods with the same level of accuracy (
up to a certain error tolerance). A stationary iterative formu-
lation of this equation would repeatedly update the solution
using the following formula [20].

Fnext = D
−0.5

WD
−0.5

F (5)

This iteration will converge if: 1) the absolute value of

the eigenvalues of D−0.5WD−0.5 is bounded by 1, and 2)

I − D−0.5WD−0.5 is non-singular [20]. Since there is no

bipartite connected component in the graph corresponding

to W , the first condition is satisfied [6]. We add a small

perturbation to the quantity D−0.5WD−0.5 to attain non-

singularity. One must also satisfy the label consistency con-

straint F1 = 1 to reach a meaningful solution.

In our active learning setting, the algorithm is given the

labels for m out of n examples (where m << n) at the be-

ginning of the process. We set the known labels in F and

iterate Equation 5 followed by a projection onto F1 = 1
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Table 1. Multiclass Label Propagation algorithm

Algorithm: Multiclass Label Propagation

repeat

1. Set the known labels in F .

2. Update solution by Equation 5.

3. Project onto F1 = 1

until convergence

until convergence for computing the unknown label confi-

dences. The algorithm is outlined in Table 1 and has sim-

ilarity to a past approach for efficient label propagation on

large dataset [32].

After a query set is annotated by user, the linear equa-

tions in 4 need to be solved again. Instead of starting the

solver algorithm (Table 1) from scratch, we begin with the

most recently converged F as the initial solution. Such a

warm start brought about a significant speed-up without al-

tering the output in our experiments.

2.2. Active Learning for Pixel Classification

In pixel classification, each datapoint xi of the above for-

mulation corresponds to a pixel. We will denote a pixel by

a different literal ui to distinguish it from it from superpixel

boundary defined later. In our design, each pixel is clas-

sified into one of the four classes: membrane, cytoplasm,

mitochondria, mitochondria border [27].

Initial Subset Selection : Equal size subsets of samples,

one for each class, are selected from the dataset to constitute

the initial dataset Xl for label propagation. In the interactive

setting, the user will be required to select the initial Xl using

a GUI.

In an attempt to maximize the detection of membrane

pixels, the initial training set for the RF classifier is con-

structed from a subset of Xl that contains different number

of examples for different classes. In the following text, we

describe how the pairwise similarity values in W are uti-

lized to determine the sample proportion for different cate-

gories.
Introducing indicator vectors αm and αo for membrane

class m and other classes o respectively, one can determine
the sample proportion by solving an optimization problem.
The value of αm

i = 1 if the i-th membrane example in Xl is
selected and αm

i = 0 otherwise. The following formulation
will select of largest subset of initial samples that will pre-
vent misclassification of any member of class m in a nearest
neighbor classifier setting.

max
α

o,αm

∑

i

α
o
i + α

m
i

s.t.
∑

l:yl=m

α
m
l wijα

m
j ≥

∑

i:yi=o

α
o
iwijα

m
j , ∀j yj = m

α
m
i , α

o
i ∈ {0, 1} (6)

Here, yi ∈ {m, o} indicates whether ui belongs to mem-

brane or other categories. In practice, we compute a sub-

optimal solution to this problem for efficiency. In our so-

lution, αm
i = 1 for all i. We then greedily select ex-

amples for each class o to increase Cut(m, o) as long as

Vol(o) ≤ Vol(m); we refer the reader to [24] for the def-

initions of these terms and to comprehend the motivation

behind our heuristics.
Query Generation : Let the vector pi denote the predic-
tion confidences generated by the classifier for an unlabeled
pixel ui, where pci corresponds to the confidence towards
class c. If one wishes to compute the over-segmentation
from the classifier probability for membrane class pmi , it is
favorable to have pmi > poi , o 6= m for all membrane pixels.
For a pixel ui from the other classes, the deviance poi − pmi
should be maximized instead. We define a margin vector
p̄i wrt class m consisting of these quantities defined as fol-
lows.

a = argmax
c

p
c
i

p̄
c
i =











0, c 6= a

pmi , c = a = m

pai − pmi , c = a 6= m

(7)

Let ḡi be the margin wrt class m computed for ui in a
similar fashion from the real-valued outputs of multiclass
label propagation algorithm. The disagreement δ(ui) be-
tween these two estimates is computed by the dot product
of their differences.

δpixel(ui) = (ḡi − p̄i)
T (ḡi − p̄i). (8)

The margins ḡi and p̄i are modeled to capture the over-

lap in confidence the two predictors have between mem-

brane and other classes. The disagreement δpixel(ui) be-

tween these two margins will increase when the confidence

distributions deviate from one another. A few unlabeled

samples with largest disagreement value δpixel(ui) will be

selected as the next set of queries to be presented to the user.

After the termination of the training process, the real-valued

confidences of the classifier (RF in our case) are used for the

subsequent tasks.

2.3. Active learning for Superpixel Boundary Clas­
sification

The output confidence of pixel classifier (RF in our

cases) is utilized to generate an over-segmentation of the

image or volume (see Figure 2). In order to aggregate the

fragments into actual cell regions, each boundary between

two superpixels of this over-segmentation needs to be clas-

sified as true or false boundary. We employ a superpixel

boundary classifier (RF) that is also trained using the active

learning method. For this training, each datapoint vi corre-

sponds to a superpixel boundary.

Initial Subset Selection : In order to reduce redundancy,

the initial labeled set Xl was populated by the centers of the

output of a clustering algorithm such as k-means.
Query Generation : Given the real valued confidences qi
from the current classifier and the estimates hi of the label
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propagation method, we use the following formula to com-
pute disagreement between them.

δsp(vi) = (qi − hi)
2
. (9)

Note that, since there are only two classes, values of both qi
and hi are scalar for superpixel border classification. A few

samples with largest δsp(vi) are selected as the next query

set to be annotated. After the training terminates, the real

valued predictions from RF are used for superpixel cluster-

ing.

3. Experiments and Results

The proposed algorithm has been tested for both 3D vol-

ume and 2D image segmentation problems. In the follow-

ing, we will describe the experimental setup, i.e., compu-

tation of the intermediate quantities, feature representation

etc. for pixel and superpixel boundary classification. The

Sections 3.2 and 3.3 report the results on 3D and 2D data

respectively.

3.1. Experimental Setup

Pixel classification : As noted earlier, each pixel was clas-

sified into four classes: membrane, cytoplasm, mitochon-

dria, and mitochondria border. A pixel is represented by

features similar to those utilized in ilastik [29], e.g., gaus-

sian smoothing, gradient magnitude, laplacian of gaussian,

hessian of gaussian and its eigenvalues, structure tensor and

its eigenvalues etc. computed at different scales. The simi-

larity values for a pair of examples {ui, uj} were generated

by gaussian distance between their feature representations:

wij = exp
{

− 1

2
(φi−φj)

TΣ−1(φi−φj)
}

where φi are the

feature values of ui and Σ is the covariance matrix among

all feature vectors.

Superpixel boundary classification : Given the pixel de-

tection result, we utilize the predicted confidence values of

the membrane class for generating an over-segmentation by

the watershed algorithm [2]. In order to generate the water-

shed, we used all the pixels (or clusters or pixels larger than

size 3) with RF confidence for membrane class pmi < 0.01.

For superpixel clustering, we follow a context-aware ag-

glomeration approach of [27] that was designed to prevent

under-segmentation by delaying some merge decisions dur-

ing agglomeration. This agglomeration scheme first clus-

ters the cytoplasm superpixels together using a superpixel

boundary predictor and then absorbs the mitochondria bod-

ies into the agglomerated cytoplasm regions based on their

degree of inclusion. A superpixel boundary predictor for

this setup considers the cell boundary as well as the bor-

der between mitochondria and cytoplasm as true boundaries

and only the borders between over-segmented cytoplasm

superpixels as false boundaries.

Each boundary is represented by the statistical proper-

ties of the multiclass probabilities estimated by the pixel

detector. The statistical properties include mean, standard

deviation, 4 quartiles of the predictions generated for the

data locations on the boundary, two regions it separates as

well as the differences of these region statistics [27]. All of

these features can be updated in constant time after a merge

– a property which improves the efficiency of the segmen-

tation algorithm substantially. The affinity values between

two suprepixel boundaries were computed by the same for-

mula used for pixel classification.

3.2. Result on 3D segmentation

We have tested our algorithm for 3D volume segmen-

tation on Focused Ion Beam Serial Electron Microscopy

(FIBSEM) isotropic images collected from fruit fly retina

with a resolution of 10× 10× 10nm. One 2503 volume and

two 5203 volumes were used as training and test datasets

respectively. The proposed algorithm does not need an

exhaustive pixel-level groundtruth. However, for this par-

ticular experiment, instead of presenting queries to an an-

notator, we read off their labels from a noisy pixel level

groundtruth generated earlier for another study [27]. Each

of the segmentation tasks, namely pixel classification, over-

segmentation and subsequent context-aware agglomeration

were performed in 3D.

The performance of our algorithm was compared

against a combination of [7] and [25] that has been

one of the top scorer of the SNEMI 3D segmenta-

tion challenge 2013 (http://brainiac2.mit.edu/

SNEMI3D). The neural net for pixel prediction was trained

with the same techniques described in [7][10]. In order to

further improve the quality of the probability maps, the out-

puts on rotated images were averaged together [8]. The

watersheds were generated in the same manner as those of

the proposed method and then the agglomeration technique

of [25] was applied for superpixel clustering. Our effort

to test the capability of [13], which is an extended version

of [14], has not yet yielded results comparable to [7][25];

the supplementary material [26] discusses some reasons be-

hind such performance

We report the under- and over-segmentation errors sepa-

rately because under-segmentation is costlier than the other

in terms of manual correction. Given a groundtruth, GT ,

and a segmentation, SG, split versions of variance of infor-

mation (VI) [23] and Rand Error (RE) [16] were selected

for performance evaluation. For split-VI, the over and

under-segmentation are quantified by the conditional en-

tropy H(GT | SG) and H(SG | GT) respectively. The over-

segmentation and under-segmentation quantities in Rand

Error are the ratios of pixel pairs within same cluster in GT

but different cluster in SG and vice versa.

The proposed algorithm has been trained and applied 6

times to assess its consistency. In each training pass, we ran-

domly subsampled a set of pixels from the whole training
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(a) Split-VI test vol1 (b) split-RE test vol1 (c) Split-VI test vol2 (d) Split-RE test vol2

Figure 3. Quantitative evaluation of competing methods on two FIBSEM test volumes. Left and right pairs of plots show the split-VI and split-RE errors of two methods on

volume 1 and 2 respectively.

set so that the weight matrix W used in label propagation

contains ∼ 0.5% nonzero values and still fit in the avail-

able memory. The remaining parameters of the proposed

active learning scheme are fixed to initial set size = 4000
(1000 each class), query set size = 10, number of queries

= 800 for all the experiments reported in this paper. For

the superpixel boundary learning, the parameters are set for

all experiments to initial set size = 3.5% of total number of

boundaries, query set size = 10, number of total boundaries

labeled = 15% of all examples (10000 ∼ 14000 in total).

With our current implementation, the computation of pixel

and superpixel training scheme needed around 24 hours on

a 32 and 16 core cluster node respectively.

In Figure 3, we plot the split versions of error measures:

x and y axes correspond to under- and over-segmentation er-

rors respectively. Ideally, a segmentation algorithm should

attain an error rate of 0, and therefore be plotted at the ori-

gin of the graph. For both the proposed and that of [7][25],

the points on the plot were calculated by varying the stop-

ping point of the agglomeration algorithm. The curve cor-

responding to the proposed method is an average of perfor-

mances on 6 trials. On the two FIBSEM test volumes, the

proposed algorithm (blue -o-) consistently produced lower

false merge errors than that (red -x-) of [7][25] at the same

over-segmentation error level.

The combined methods of [7][25] generally attained

high quality segmentation in most areas of the test volumes.

However, because they do not emphasize on the membrane

class for training, their outputs were vulnerable to false

merges near relatively weaker membranes. In Figure 1,

we have displayed the false merge generated by [7][25] op-

erating at agglomeration threshold 0.15 (highest point on

the red curve of Figure 3(c)) on test volume 2. Segmen-

tation produced by the proposed method did not reproduce

this or any other false merges of similar size; the output

of our method is shown in Figure 4(a)-(c) for the same

three planes. The qualitative results from the proposed

method was generated with an agglomeration threshold of

0.3 (halfway in the blue curves of Figure 3(c)). In both

these images, the segmented regions are overlaid on the raw

data with random color. Adjacent regions with same color

may not always imply they are merged, please check [26]

for the output and a visualization tool for a close inspec-

(a) Plane 50 (b) Plane 220 (c) Plane 484

Figure 4. (a)-(c):Result of the proposed method on the same three slices as dis-

played in Figure 1. The output contains no false merges of significant size.

tion of results. In fact, both the test volumes were under-

segmented in the watershed computed from [7]. The VI

errors for under-segmentation for a watershed on [7] output

were 0.132 and 0.236 respectively for two test volumes as

opposed to 0.0188 and 0.0243 on average for those com-

puted from our method. Such outcome may not be obvi-

ous from an examination of pixel probabilities computed

by the proposed method and [7]; example predictions on

Plane 484 are displayed in Figure 5(a)-(c). Indeed, the over-

all accuracy of our pixel detector is less than 90% on sam-

ples whose labels are unknown to the active algorithm. Al-

though the deviation measure defined for active learning of

pixel detection in Section 2.2 enables the identification of

misclassified locations, the gain in classification accuracy

is not the prominent factor contributing to the low under-

segmentation error of our technique.

The proposed pixel detection algorithm inherently mini-

mizes the number of boundary pixels (and maximizes num-

ber of other types of pixels) receiving a confidence pmi <

0.01. Such an outcome is conducive to minimizing false

merges in the consequent watershed method. In Figure 5(d)

we plot the percentage of pixels of membrane (blue o) and

other classes (red x) with pmi < 0.01 against the number

of iterations. By construction, the algorithm starts with a

very low, approximately 0.01%, of membrane pixels with

pmi < 0.01. With the progression of the iterative updating

of training examples, the proposed approach increases the

percentage of other pixels with pmi < 0.01 while maintain-

ing that for membrane pixels at the initial value.

In case of the superpixel boundary classifier, however,

the training scheme effectively reduces the classification er-

ror in distinguishing false boundaries from the correct ones.

In Figure 5(e), we plot the increase in accuracy of the clas-

sifier being actively trained (blue curve) and that of the one

662
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Figure 5. (a)-(c): Pixel predictor confidences on Plane 484. (a) by [7], (b) and (c) by proposed method for boundary and mitochondria class respectively. (d): percentage of

pixels with pm

i
< 0.01 plotted against number of iterations. (e): increase in superpixel (SP) boundary classification accuracy with number of iterations. (f): prediction errors of

the classifier and label propagation on every 10 query sets (100 samples) during superpixel boundary classification.

learned from all examples (black dashed line) on test sam-

ples. The plot shows a steady performance improvement

with query iterations (x-axis). Interestingly enough, the

error rates of both the predictors, namely the label propa-

gation and the classifier, on query sets of images drops to

zero after a certain number of iterations as shown in Fig-

ure 5(f). Such behavior has been observed in all the trials of

superpixel boundary training and was utilized to determine

a stopping criterion for training.

We have not reached to a point of zero error rates in

query set for pixel classification. The error values of the

proposed algorithm are found to be insensitive to the num-

ber of pixel queries in the range [700,1000] [26]. To further

test the parameter sensitivity and robustness of our algo-

rithm, we applied the proposed training with the exact same

parameter on a 2503 FIBSEM volume from a different re-

gion (mushroom body) of fly brain and produced almost

perfect segmentation on a separate 5123 mushroom body

volume. Figure 6 shows outputs on some of the planes, note

how the bias towards the membrane class of the proposed

method resisted false merges on membrane gaps marked by

white squares. Segmentation of all 512 images can be found

in [26]. The VI error measures on a third 2503 volume was

(0.085, 0.21).

3.3. Result on 2D segmentation ­ ISBI 12

We have also tested the proposed method for 2D

segmentation on datasets provided for ISBI 2012 seg-

mentation challenge (http://brainiac2.mit.edu/

isbi_challenge/home). The challenge website pro-

vides a training set of 30 annotated images, generated by

serial section Transmission Electron Microscopy (ssTEM)

from the ventral nerve cord (VNC) of the Drosophila larva.

We remind the user that an exhaustive groundtruth is not

required by the proposed strategy because it automatically

identifies the pixels and superpixel boundaries that are

needed to be labeled by an annotator. For convenience of

experimentation, and to incorporate some mistakes a human

annotator would make in the active learning setting, we gen-

erated a noisy groundtruth by performing a watershed with

all cell interior pixels marked as seeds and read off labels

from this groundtruth.

A similar set of 30 images, without the groundtruth, was

(a) Plane 22 (b) Plane 76 (c) Plane 300

Figure 6. Qualitative Result of the proposed method on mushroom body FIBSEM

data with exact same parameter. White boxes mark gaps in the membrane where the

proposed method successfully avoided false merge.

Table 2. Comparison of F-measure of Rand error provided by ISBI 2012 website.

Proposed [7] All+ [25]

error 0.08 0.05 0.126

also provided for test purposes. The proposed method was

applied on this dataset with the same number of samples and

iteration for pixel classification as mentioned in Section 3.2.

The number of examples utilized for superpixel boundaries

is also similar to those stated in Section 3.2. In Table 2,

we show the quantitative measures of performances of our

method, that of [7] and another baseline algorithm that uses

all pixels for training the pixel detector (Random Forest)

and the technique of [25] for superpixel boundary training.

Since the groundtruth for the test dataset is not available, the

split versions of VI and RE could not be computed. A qual-

itative inspection of the results [26] suggests that the differ-

ence in error values between our method and those of [7]

was most probably caused by over-segmentation.

For complete neuron reconstruction, the 2D segmenta-

tion results on anisotropic images – such as those of ISBI

12 dataset – need to be connected across planes by a link-

age algorithm. The linkage algorithms have been shown to

refine some false split errors, but cannot recover from false

merges [9][31]. It is therefore rational (and may even be

necessary) to prevent under-segmentation at a cost of small

over-segmentation rate. This strategy will be more effective

on difficult areas of EM volume characterized by broken or
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(a) Input (b) [7] (c) Proposed

Figure 7. Performance comparison with [7] on challenging regions of larva data.

Regions highlighted in white (middle column) are falsely merged by watershed gen-

erated from [7].

hazy membranes or dark cell regions. We downloaded 20

images from two different regions of the whole larva dataset

(http://fly.mpi-cbg.de/) and computed segmen-

tation with predictors trained on the challenge data and the

same set of parameters. For [7], the output was generated

by applying watershed after thresholding the pixel predic-

tion values at 0.3, same as that used to compute the winning

entry of the ISBI 12 challenge.

As Figure 7 demonstrates, the proposed method pre-

vents most of the false merges generated by [7] in these

challenging areas and facilitates more accurate reconstruc-

tion through linkage algorithms like [9, 31]. An emphasis

on learning the membrane class leads to a wall generally

‘higher’ than those from [7] around watershed basins. Re-

sults on all the 20 images can be found in [26].

Figure 8 shows images with some pixel locations (cir-

cle centers) selected as queries by our active pixel training

method. Recall that the query set consists of the challeng-

ing examples – the locations where the estimation of the

two techniques contradict each other. The regions covered

by queries include patch between mitochondria and cell

boundary, areas with darker shades. These regions often

turn out to be misclassified (or receive low confidence) by

a predictor trained in interactive setting of [29]. Example

discrepancies between the confidences of label propagation

and classifier used to determine these queries are plotted

in [26].

4. Discussion

We have proposed a framework for training the neces-

sary tools for an EM segmentation algorithm by acquiring

some properties suitable for neural reconstruction. On one

hand, the proposed method suggests a strategy to train with-

out complete groundtruth by automatically selecting a small

fraction of training examples. On the other hand, our algo-

rithm is designed to minimize the false merge errors which

Figure 8. Sample queries determined automatically by the proposed method. Note

how the queries were placed at challenging locations on images such as patch between

mitochondria and cell boundary, areas with darker shades.

are substantially more difficult to correct than the false split

errors. The results demonstrate the merit of our method

for neural reconstruction in comparison to the existing al-

gorithms.

The proposed approach is designed to expedite multi-

ple components of the overall neural reconstruction effort

that led to high impact research in neuroscience [30][12].

A faster training method will assist the imaging expert to

determine the optimal sample quality based on actual seg-

mentation results rather than the raw images. A compre-

hensive search for segmentation errors is not practical in

connectomics [30]. The presence of no or minimal under-

segmentation is a prerequisite for applying intelligent proof-

reading methods that avoids 100% screening of the vol-

ume [17]. Efficiency in creating a groundtruth and training

will also be valuable for computing different predictors for

different neuropils for large scale reconstruction. It will be

interesting to see how other classification tools can be ex-

tended to achieve these properties as well.
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