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Abstract

Learning strong feature representations from large scale

supervision has achieved remarkable success in computer

vision as the emergence of deep learning techniques. It is

driven by big visual data with rich annotations. This paper

contributes a large-scale object attribute database 1 that

contains rich attribute annotations (over 300 attributes)

for ∼180k samples and 494 object classes. Based on the

ImageNet object detection dataset, it annotates the rota-

tion, viewpoint, object part location, part occlusion, part

existence, common attributes, and class-specific attributes.

Then we use this dataset to train deep representations and

extensively evaluate how these attributes are useful on the

general object detection task. In order to make better use

of the attribute annotations, a deep learning scheme is pro-

posed by modeling the relationship of attributes and hierar-

chically clustering them into semantically meaningful mix-

ture types. Experimental results show that the attributes are

helpful in learning better features and improving the object

detection accuracy by 2.6% in mAP on the ILSVRC 2014

object detection dataset and 2.4% in mAP on PASCAL VOC

2007 object detection dataset. Such improvement is well

generalized across datasets.

1. Introduction

Object representations are vital for object recognition

and detection. There is remarkable evolution on represen-

tations for objects [20, 17, 43, 35, 15, 37, 34, 11], scenes

[48], and humans [45]. Much of this progress was sparked

by the creation of datasets [33, 6, 42, 29, 31, 45]. We con-

struct a large-scale object attribute dataset. The motivation

is two-folds.

First, it is an important step towards further semantic un-

derstanding of images. Since deep learning achieved close

or even better performance than human-level on the Ima-

geNet classification dataset [35, 15, 16, 37], semantic un-

derstanding of images is drawing much attention [39, 7].

Besides object class names, the attributes of objects pro-

1The dataset is available on www.ee.cuhk.edu.hk/˜xgwang/

ImageNetAttribute.html
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Figure 1. Objects of the same class are very different in appearance

caused by the variation in rotation, viewpoint, occlusion, deforma-

tion, and other attributes. Some attributes (such as “having inter-

action with persons”) are common across all the classes. Some

are class-specific (e.g. “wing open” is only valid for birds). Their

attributes facilitate semantic understanding of images and help to

learn better deep representations.

vide richer semantic meanings. For example, with the at-

tributes, we can recognize that a car is “old-fashioned” and

has its “door open”, an otter is “floating on the water” and

“facing the camera”. As another example, with the loca-

tion of object parts, we can estimate the action of an object.

Although ImageNet has become one of the most important

benchmark driving the advance of computer vision because

of its large scale and richness on object classes, attribute an-

notations on it are much smaller in scale. The annotations

from our dataset largely enrich the semantic description on

ImageNet.

Second, this database provides labels that facilitate anal-

ysis on the appearance variation of images. It is well-known

that the intra-class variation is one of the most important

factors that influence the accuracy in object detection and

recognition. As shown in Fig. 1, objects of the same class
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are very different in appearance due to the variation in ro-

tation, viewpoint, part deformation, part existence, back-

ground complexity, interaction with other objects, and other

factors. On the Pascal VOC dataset, researchers infer the

viewpoint change and part existence by using aspect ratio

[10]. However, images of the same aspect ratio can be

very different in appearance because of the factors men-

tioned above. A direct way of revealing the factors that in-

fluence appearance variation is to explicitly annotate them.

Therefore, we annotate the ImageNet object detection data,

which has been most widely used in generic object detec-

tion nowadays, with these attributes.

Much evidence has shown that powerful generic feature

representations can be learned on ImageNet with deep mod-

els and the image classification task. With our database, fea-

ture learning can be guided by the knowledge of attributes.

Bengio et al. have pointed out the importance of identifying

and disentangling the underlying explanatory factors hidden

in images for representation learning [2]. A more effective

way would be telling the model these factors during train-

ing for better disentangling them. For the examples in Fig.

1, the rotation and viewpoint information helps the deep

model to learn different features for representing stretch-

ers with different rotations; the common attribute “hav-

ing interaction with persons” for crutches helps the deep

model to capture this contextual visual pattern; the class

specific attributes (e.g. “wing open” for birds and “door

open” for cars) help the deep model to learn features for

representing these specific visual patterns instead of treat-

ing them as noise; the part location and part existence help

the deep model to handle deformation and appearance vari-

ation caused by part existence.

Attributes are correlated, e.g. rotation is related to part

location, and should be modeled jointly. We cluster sam-

ples into attribute groups, which leads to different attribute

mixture types. Some clusters are shown in Fig. 3. The deep

model is trained to predict the attribute mixture types.

When there are lots of attributes describing various as-

pects of an object, it is difficult to identify which are the

most important ones influencing appearance variation. It is

desirable to have a scheme that automatically identifies the

main factors in appearance variation. In this paper, a hi-

erarchical cluster tree is constructed by selecting a single

attribute factor for division at each time. From the top to

the bottom of the hierarchical tree, it is easy to rank the im-

portance of the attribute factors that cause variation. For the

example in Fig. 3, the rank is viewpoint first, part existence

second, and then rotation.

The contributions of this paper are three-folds:

1. The largest attribute dataset for generic objects. It

spans 494 object classes and has 180k samples with rich an-

notations including rotation, viewpoint, object part location,

part occlusion, part existence, 10 common attributes, and

314 class specific attributes. These images selected from

the ILSVRC object detection dataset were widely used for

num. num. part per class class

classes samples location or sample group

AwA [18] 50 30k n class a

CORE [8] 28 3k y sample a, v

a-Pascal [9] 10 12k n sample p,a, v, t

a-Yahoo [9] 12 2.6k n sample p,a, v, t

p-Pascal 07 [1] 6 <6k y sample a

a-ImageNet[32] 384 9.6k n sample p,a, v, t

Ours 494 ∼180k y sample p,a, v, t

Table 1: Comparison of object attribute datasets. Datasets

are different in the number of categories, the number of

samples, whether part locations are annotated, annotation

is per class or per sample. The last column (class group)

indicates some datasets only annotated animal classes (a),

vehicle classes (v), persons (p), or also include other things

(t) like sofa.

fine-tuning deep models in detection literature [11].

2. We show that attributes are useful in discriminating

intra-class variation and improving feature learning. The

deep representation learned with attributes as supervision

improves object detection accuracy on large-scale object

detection datasets. Different ways of using attributes are

investigated through extensive experiments. We find that

it is more effective to learn feature representations by pre-

dicting attribute mixture types than predicting attributes di-

rectly. There are also other ways to make better use of this

attribute dataset in feature learning to be explored in the fu-

ture.

3. The factor guided hierarchical clustering that con-

structs semantically meaningful attribute mixture types.

The attributes are grouped into several attribute factors. At

each step, the attribute factor that best represents the ap-

pearance variation is selected for dividing the samples into

clusters. With this clustering approach, the importance of

attributes in representing variation can be ranked.

2. Related work

Many attribute datasets have been constructed in recent

years. The Sun attribute database is for scene recognition

[29]. Other datasets describe the attributes of objects from

different aspects. A comparison is shown in Table 1. Lam-

pert et al. [18] annotated color, texture, shape, body part

type, and semantic attributes (like fast and weak) for 50 ani-

mal classes. The attributes were labeled per class instead of

per image. Therefore, these annotations are insufficient in

disentangling the factors that cause intra-class appearance

variation, as shown by examples in Fig. 1. There are also

many datasets that provide attributes per sample [8, 9, 32].

The datasets CORE [8], a-Pascal and a-Yahoo [9] are small

in the number of categories and the number of object sam-

ples. The ImageNet attribute dataset constructed by Olga

and Fei-Fei [32] is an important step towards large-scale at-

tribute labels. However, the number of labeled samples in

[32] is still very small. In existing datasets, only the small

datasets in [1, 8] have labels on object parts. In comparison,
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(c) Class Prototypes (d) Label examples for class Lion, Otter and Car. 
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Figure 2. Attribute annotation samples for lion, otter, and car. Best viewed in color. Rotation is quantized into 8 directions (a). Viewpoint is

a 6 dimensional vector (b), where front means main flat side. The prototypes for orientation and viewpoint are defined (c). And then each

bounding box is annotated (d). Outdoor/indoor, interaction with person, tight shot, and see inside are common attributes for all classes.

Female for lion, floating on water for otter, and old fashioned for car are class-specific attributes for single or small groups of classes.

our dataset contains 494 object classes with ∼180k samples

labeled by attributes. The number of samples in our dataset

is an order of magnitude larger than existing datasets that

were annotated per sample. As summarized in Table 1, our

dataset is attractive in the large number of object classes

and annotated samples, object class variety, and annotation

on object part location, occlusion and existence.

Many approaches used predictions on attributes as

middle-level features for recognizing new object categories

with few or no examples [9, 18, 29, 22]. People aimed at

improving the accuracy of attribute prediction [45, 3]. At-

tributes are also found to be effective for object detection.

Farhadi et al. [8] used the functionality, superordinate cate-

gories, viewpoint, and pose of segments as attributes to im-

prove detection accuracy. Azizpour and Laptev used part lo-

cation to improve detection [1]. Simultaneous attribute pre-

diction and image classification is done in [41]. However,

it is not clear if attributes are helpful in learning generic

feature representations with deep models and not clear if at-

tributes are helpful for object detection on very large-scale

datasets like ImageNet. Our work shows that attributes are,

if used in a proper way, helpful in learning feature represen-

tations that improve large-scale object detection.

Deep learning is effective for many vision tasks [17, 34,

43, 14, 19, 11, 26, 28, 23, 25, 44, 47, 21, 49, 5]. It is found

that the features learned from large-scale classification data

can be applied to many other vision tasks. However, the use

of attributes in improving feature learning for object detec-

tion is not investigated in literature.

3. The ImageNet Detection Attribute dataset

A few annotations are shown in Fig. 2. The labeled at-

tributes are summarized into the following groups:

1. Rotation. It corresponds to in-plane rotation of an

object, as shown in Fig. 2 (a). Rotation is discretized into 8

directions.

2. Viewpoint. It corresponds to out-of-plane rotation

of an object, as shown in Fig. 2 (b). Viewpoint can be

multi-valued. For example, one can see both front and left

side of a car. For both in-plane and out-of-plane rotation,

the reference object orientation is chosen such that in most

cases the objects undergo no rotation, in frontal view, and

have most of their parts not self-occluded. The appearance

mixtures obtained in [10] for bicycles and cars correspond

to viewpoint change. The viewpoint has semantic meaning

on whether a person or animal is facing the camera.

3. Common attributes. These attributes are shared across

all the object classes. They includes 10 binary attributes

that may result in appearance variation. 1) Indoor or out-

door, which is scene-level contextual attribute. 2) Complex

or simple background, which is a background attribute. 3)

Tight shot, in which the camera is very close to the object

and leads to perspective view change. In this case, usually

most object parts do not exist. 4) Internal shot, which is true

for images captured in a car and false for images captured

out of a car. 5) Almost all parts occluded, in which more

than 70% of an object is hidden in the bounding box. 6)

Interaction with person, which is an important context for

objects like crutch, stretcher, horse, harmonica, and bow. 7)

Rotten, corrupted, broken, which is a semantic attribute that

results in appearance variation. 8) Flexible shape, which is

true for objects like starfish. 9) Multi-objects, which is true

when a bounding box include multiple objects, e.g. when a

lion hugs its baby. 10) Cut or bitten, which is true when an

apple or a lemon is cut into slices. Fig. 2 shows some com-

mon attributes like outdoor/indoor, interaction with person.

4. Class-specific attributes. It refers to attributes specifi-

cally used for a single class or a small group of classes. We

choose attributes that result in large appearance variation.

For example, binary attributes “long ear” and “fluffy” for
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dog, “mouth open” for hippopotamus, “switched on with

content on screen” for monitor, “wings open” for dragon fly

and bird, “with lots of books” for bookshelf, and “floating

on the water” for whale. Fig. 2 shows some class specific

attributes. There are 314 class-specific attributes defined in

total. Common attributes and class-specific attributes pro-

vide rich semantic information for describing objects.

5. Object part location and occlusion. Different object

classes have different parts. For example, for lions and ot-

ters as shown in Fig. 2, the parts are mouth, neck, hip, and

four legs. For cars as shown in Fig. 2, the parts are the four

wheels and the four corners of the car roof. Variation in

part location corresponds to deformation of object parts. It

is found in [1] on 6 animal classes that part location supervi-

sion is helpful. The part location not only is useful in disen-

tangling the factors that influence appearance variation, but

also facilitates further applications like action recognition,

animation, content based video and image retrieval. Object

parts may be occluded, which results in distortion of the vi-

sual cues of an object. Therefore, the occlusions of object

parts are annotated and represented by gray circles in Fig. 2.

6. Object part existence. For a given object class, its

parts may not be in the bounding box because of occlusion

or tight-shot. For the example in Fig. 2, a lion image with

only head is labeled as lion and a lion image with the full

body is also labeled as lion. However, these two images

have large appearance variation. The appearance mixtures

like half body and full body for persons in [10] correspond

to different object part existence.

The ILSVRC 2013 dataset [31] for object detection is

composed of training data (train), validation data (val) and

testing (test) data. The val data is split into val1 and val2
using the approach in [11]. This dataset evaluates perfor-

mance on 200 object classes that have their descent object

class labels being 494 classes. Our attribute dataset is based

on the bounding boxes of the 494 classes provided in this

dataset. These bounding boxes do not have attribute anno-

tations. In our dataset, we annotate their attributes. The

attributes for all the 494 object classes are annotated. For

the samples in train, each object class is constrained to have

at most 1000 samples labeled. The indices in [11] for se-

lecting positive training samples are used in our attribute

dataset in selecting samples to be labeled. All samples in

val1 are labeled. In total, the 154,886 samples in training

data and all the 26,728 samples in val1 have their attributed

annotated. In summary, all the positive samples that were

used for finetuning the deep model from ILSVRC 2013 ob-

ject detection in [11] have been labeled with attributes.

It took ∼3000 hours/labor for annotating the attributes.

Then the other ∼2000 hours/labor were spent for refining

the labels in order to improve the quality of the annotations.

4. Learning deep model with attributes

The following procedure is used to train deep models:

1. Pretrain the deep model for the 1000-class classifica-

tion problem. The 1000-class ImageNet classification and

localization dataset is used for pretraining the model be-

cause it is found to be effective for object detection.

2. Finetune the deep model for both attribute estimation

and 200-class object detection using the following loss:

L = Lo +

J
∑

j=1

bjLa,j , (1)

Lo =
200
∑

c=1

{

1

2
||wo,c||

2 − bo

N
∑

n=1

[

max(0, 1−w
T
o,chn

)

]

}

,

where Lo is hinge loss for classifying objects as one of the

200 classes or background. wo,c is the classifier for object

class c, hn is the feature from the deep model for the nth

sample.
∑

bjLa,j is the loss for attribute estimation, bj is

the pre-defined weight for the loss
∑

bjLa,j . When label

yj,n is continuous, e.g. for part location, the square loss

La,j =
∑

n(yj,n − ỹj,n)
2 is used in (1), where ỹj,n is the

prediction for the jth attribute and nth sample. When label

yj,n is discrete, e.g. for part existence or attribute mixture

type, the cross-entropy loss La,j = −
∑

n yj,n log(ỹj,n) is

used. Different preparations of the labels yj,n for obtaining∑
La,j are detailed in Section 6.3.1. When bj = 0 for j =

1, . . . , J , the deep model degenerates to the normal object

detection framework without attributes. When attributes are

used, we set bj = 1. With the loss function in (1), the deep

model not only needs to distinguish the 200 object classes

from background for the loss Lo but also needs to predict

the labels from attributes for the loss
∑

j bjLa,j . Samples

without attribute labels are constrained to not having loss

La,j so that they will not influence the attribute learning.

5. Factor guided hierarchical clustering

We divide the training samples of an object class into

many attribute mixture types using the attributes intro-

duced in Section 3. Then the deep model is used for

predicting the attribute mixture type of training samples

using the cross-entropy loss. The attributes of samples

are grouped into 6 semantic factors f = {fi}i=1...6 =
{frot, fview, fcom, fspec, floc, fext}. They correspond to

the six factors introduced in Section 3. For example, frot
denotes rotation and fview denotes viewpoint.

For the samples of an object class, a hierarchical cluster-

ing tree is built. The algorithm is summarized in Algorithm

1. The clustering is done in a divisive way. There is only

one cluster that contains all samples initially. Splits are per-

formed recursively as one moves down on the hierarchical

tree. At each stage, a cluster C is chosen to be split, and then

one of the 6 semantic attribute factors is chosen for splitting

the C into several clusters. Then the other cluster is selected

for further splitting until no cluster satisfies the requirement

on depth and sample size in a cluster. The clustering result

obtained for the class bus is shown in Fig. 3.

Since different object classes are different in their distri-

butions of attributes, clustering is done separately for each
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Figure 3. Factor guided hierarchical clustering for the object class

bus. For splitting samples into clusters, veiwpoint is used first,

then part existence is used, and then rotataion is used.

class so that different classes can choose different semantic

attribute factors.

5.1. Clustering for an attribute factor

For an attribute factor, the selected sample set C is split

into several clusters such that samples in the same cluster

are more similar to each other than to those in other clus-

ters (lines 5-7 in Algorithm 1). The clustering approach

in [46] is use for splitting C into N clusters. It constructs

directed graph using K-nearest neighbor (K-NN). On this

Algorithm 1: Factor Guided Hierarchical Clustering

Input: Ψ = {f}, training samples with attribute

factors for an object class.

D, maximum Tree depth.

M , minimun size for splitting set.

Output: V , the clustering result.

1 Initially, the cluster set V = {C}. Denote the depth of

the cluster C by d(C) and the size of cluster C by |C|.
2 while 1

3 Find a C, s.t. d(C) < D and |C| ≥ M .

4 If C cannot be found, terminate the ‘while’ loop

and output V .

5 for i = 1 to 6

6 Split C into N clusters Si = {C1,i, . . . , CN,i}
using the factor fi.

7 end for

8 S = argmaxSi∈{S1...,S6}E(Si).

9 V ← {V \C} ∪ S}.

10 end while

graph, each sample is a node, the directed edge from the

nth node to the mth node is used for measuring the similar-

ity between the mth sample and the nth sample as follows:

sn,m
i =

{

exp(−
||fi

n
−f

i

m
||2

σ2 ), if f in is in the K-NN of f im,
0, otherwise,

where σ2 is the mean Euclidean distance of all ||f i
n−f i

m||2,

f
i
n and f

i
m are the ith attribute factors for the nth and mth

sample respectively. The closeness measure of clusters is

defined via the indegree and outdegree on the graph. This

approach is adopted because it is found [46]to be better than

affinity propagation, spectral clustering, and normalized cut

on many benchmark image datasets.

5.2. Choice of attribute factor for splitting

Each attribute factor fi is used for obtaining a candidate

split Si = {C1,i, . . . , CN,i}. The candidate split with the

maximum evaluation score E(Si) among the six candidate

splits {S1, . . . , S6} is selected for splitting C (lines 8-9 in

algorithm 1). In our implementation, E(Si) is the entropy

of the split as follows:

E(Si) = E({C1,i, . . . , CN,i}) = −
∑

k

pk log(pk),

where pk = |Ck,i|/
∑

k̃

|Ck̃,i|, (2)

|Ck,i| denotes the number of elements in Ck,i.

5.3. Discussion

E(Si) measures the quality of the candidate split. The

reason of dividing samples into clusters is to group samples

that are similar in appearance. The candidate splits are ob-

tained for small within-cluster dissimilarity. However, uni-

formness of the clusters is important but not considered. For

example, the ImageNet classification dataset has almost the

same number of samples (1300 samples for 90% classes)

in each class for training. As another example, the training

samples are constrained to be not larger than 1000 for train-

ing the deep model on ImageNet detection dataset [11]. The

entropy is used in our algorithm for measuring the uniform-

ness of cluster size. The larger the entropy, the more uni-

form the cluster size, and thus the better the captured vari-

ation in attributes. For example, suppose candidate group

S1 have the C split into clusters having samples with per-

centage 30%, 35% and 35%, candidate group S2 have the C

split into samples with percentage 90%, 9% and 1%. Candi-

date group S2 is considered as worse than S1. S2 has 90%
samples within a cluster and does not capture the main fac-

tor in variation. As another problem, cluster with 2% sam-

ples in S2 has too few samples to be learned well while the

cluster with 90% samples will dominate the feature learn-

ing. Therefore, the S1 is a better choice and will be chosen

by our approach in this case. By using the approach in [46]

for clustering samples with similar factors and then select-

ing the candidate split that has the best uniformness, both
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similarity within a cluster and the ability in identifying the

main factor in variation are considered in our clustering al-

gorithm.

There are some classes that do not have variation in cer-

tain attribute factors. For example, balls like basketball do

not have in-plane or out-or-plane rotation. When a cluster is

split using these attribute factors, the returned cluster num-

ber will be one and has the minimum entropy. Therefore,

these attribute factors will not be selected for clustering.

The cluster C for splitting is constrained to have more

than M samples and tree depth less than D. In our experi-

ment, D = 4, M = 300 , N = 3 and 1372 sub-classes are

obtained. D, M , and N are used for controlling the number

of samples within a cluster. If the number of samples within

a cluster is too small, it is hard to be well trained.

6. Experimental results

We use the ImageNet 2014 training data and val1 data

as the training data and the val2 data for evaluating the per-

formance if not specified. The split of val1 and val2 is the

same as that in [11] because it was downloaded from the

authors’ web. blueThe additional images of ILSVRC 2014

training data are used in training the detectors, just with-

out the attribute annotations. The attribute annotations are

not required at the testing stage because they are only used

for supervising feature learning. We only evaluate the per-

formance on object detection instead of attribute prediction

because the aim of this work is to study how rich attribute

annotation can help feature learning in detection.

The GoogleNet in [37] is chosen as the deep model struc-

ture to learn features because it is found to be the best in

the ILSVRC 2014 object detection challenge. In all experi-

ments, we have used the same model as that in [37] without

any modification like spatial pyramid pooling [14], defor-

mation pooling [27], or batch normalization [16].

6.1. Overall experimental comparison

Since our work is to show the effectiveness of attributes

in feature learning but not for showing the best result from

model averaging, only single-model results across state-of-

the-art methods are reported and compared. Table 2 sum-

marizes the result for RCNN [11] and the results from

ILSVRC2014 object detection challenge. It includes the

best results on the test data submitted to ILSVRC2014 from

GoogLeNet [37], DeepID-Net [24], DeepInsignt, UvA-

Euvision, and Berkeley Vision, which ranked top among all

the teams participating in the challenge. Our single-model

performance is already higher than existing approaches that

use model averaging. Compared with single model results,

it outperforms the winner of ILSVRC2014, GoogleNet, by

10.2% on mAP and the best single model, DeepInsight, by

8% on the ImageNet test dataset.

6.2. Overview of basic components

Table 3 shows the components that arrives at the final

result with mAP 48.5% on val2. If the attributes are not

used and image-level annotation from ImageNet classifica-

tion dataset is used for training, this corresponds to the ap-

proach proposed in [11] and was adopted by many existing

approaches [14, 37]. By pretraining with the 1000-class Im-

ageNet classification data and using selective search [36] for

proposing candidate regions, the mAP is 37.8% and denoted

by res.(a) in Table 3.

If the attributes are not used and bounding box annota-

tion from the 1000-class ImageNet classification dataset is

used for pretraining, it corresponds to the approach in [24].

Using the region proposed by selective search, pretraining

with bounding box labels, the mAP is 40.4% and denote by

res.(b) in Table 3. Based on the setting in res.(b), training

the model with attributes using the approach introduced in

Section 4 improves the mAP from 40.4% to 43%, which is

res.(c) in Table 3. With scale jittering, bounding box regres-

sion and context, the final single-model result is 48.5%.

6.3. Ablation study on attributes

In this section, the model pretrained with bounding

boxes, without scale jittering, using selective search for can-

didate region proposal, without context or bounding box

regression is used as the basic setting. If attributes are

not used, this corresponds to res.(b) in Table 3 with mAP

40.4%. This is used as the baseline in this section. Other

results investigated are only different from the res.(b) in Ta-

ble 3 in using of different loss functions for attributes.

6.3.1 Investigation on approaches in using attributes

We can skip the clustering of attributes and directly the at-

tributes, e.g. part location and part existence, as labels yj,n
for the loss function La,j in (1). The part location labels are

continuous, so the square loss is used. The other attributes,

e.g. part existences, are discrete, so the cross-entropy loss is

used. If the attribute labels are prepared in this way for the

loss function in (1), the object detection has mAP 40.1%, no

better than the baseline with mAP 40.4%. The partial rea-

sons could be attributes are too complex for the deep model

to learn meaningful features and the relationship among at-

tributes is not considered.

Attributes can be used for dividing a object class into

several attribute-mixture-types (sub-classes). The deep

model is then required to predict the sub-class labels, for

which multi-class cross entropy loss is used as the loss La,j

in (1). For example, if 200 object classes are divided into

1200 sub-classes, 1201-class cross entropy loss is used (+1

for the background).

In order to investigate the influence of the single attribute

factors introduced in Section 5, we conduct experiment on

using only single attribute factor as the feature for clustering

samples and obtaining attribute mixture types. In this case,
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approach Flair [38] RCNN[11] Berkeley Vision UvA-Euvision DeepInsight DeepID-Net [24] GoogLeNet[37] ours

ImageNet val2 (sgl) n/a 31.0 33.4 n/a 40.1 40.1 38.8 48.5

ImageNet test (avg) 22.6 n/a n/a n/a 40.5 40.7 43.9 n/a

ImageNet test (sgl) n/a 31.4 34.5 35.4 40.2 37.7 38.0 48.2

Table 2: Detection mAP (%) on ILSVRC2014 for top ranked approaches with single model (sgl) and model averaging (avg).

J = 1 in (1). The “s-cluster i” for i = 1, . . . , 6 in Fig.

4 corresponds to the use of only a single attribute factor fi
defined in section 5. f1 is rotation, f2 is viewpoint, f3 is

common attributes, f4 is class specific attributes, f5 is part

existence, and f6 is part location and visibility. According

to Fig 4, attribute mixture obtained by rotation is the worst

in learning features for object detection, with mAP 40.3%,

i.e. s-cluster 1 in Fig. 4. Part location is the best, with mAP

40.7%, i.e. s-cluster 6 in Fig. 4.

If all attribute factors are directly concatenated and clus-

tered using [46] for obtaining attribute mixture types, the

mAP is 40.9% and denoted by d-cluster in Fig. 4. The use

of all attribute factors performs better than the use of single

attribute factor for obtaining attribute mixture type. If the

hierarchical clustering approach in Section 5 is used for ob-

taining attribute mixture types, the mAP is 42.0% (denoted

by h-cluster in Fig. 4). The h-cluster considers uniformness

in cluster size and performs better than direct concatenation

of attribute factors for clustering without considering uni-

formness, i.e. the d-cluster in Fig. 4 .

We also investigate other clustering methods without re-

quiring attribute annotations. If each object class is ran-

domly partitioned into 6 sub-classes, the mAP is 40.5%.

Appearance features can also be used for clustering [4].

If the 1024 appearance features of last hidden layer in the

baseline GoogleNet with mAP 40.4% are used as the fea-

tures for k-means clustering, the mAP is 40.6%.

6.3.2 Investigation on using multiple mixture sets

When the jth attribute factor fj is used for obtaining the

attribute mixture, we have the jth mixture type set ψj . For

the six factors, we have six sets ψj for j = 1, . . . 6. They

can be used together for jointly supervising the deep model.

In this experiment, the loss for set ψj , j = 1, . . . , 6 is used

as the La,j in (1) and denoted by Lj in Fig. 5. The loss

from the cluster set obtained using the approach in Section

5 is used as the La,7 in (1) and denoted by L7. Fig. 5 shows

the experimental results on using multiple mixture sets. The

use of all mixture sets from L1 to L7 has the best result,

with mAP 43%. If we do not use La,7 and only use the

losses from single factors, i.e. La,j for j = 1, . . . 6, mAP

is 41.1%. Thus La,7 obtained by our clustering approach is

important in the combination.

Fig. 6 visualizes the feature maps obtained by the model

learned with and without attributes. For visualization, we

consider the response maps from the last hidden layer be-

fore average pooling. We directly average 50 response maps

that has the largest positive classification weights. It can be

denotation res.(a) res.(b) res.(c)

pretrain label image bbox bbox

scale jittering n n n

Attribute n n y

mAP (%) 37.8 40.4 43

Table 3: Detection mAP on ILSVRC2014 val2 for different

usage of basic components.

40.4

40.1

40.3

40.4

40.6

40.5

40.6

40.7

40.9

42

39 40 41 42 43

baseline

direct

s cluster 1

s cluster 2

s cluster 3

s cluster 4

s cluster 5

s cluster 6

d cluster

h cluster

mAP (%)

Figure 4. Investigation on different approaches in using attributes

on ILSVRC2014 val2.

40.4

42

42.3

42.1

42.4

42.4

42.6

41.1

43

38 40 42 44

baseline

L7

L1, L7

L1, L2, L7

L1, L2, L3, L7

L1, L2, L3, L4 L7

L1, L2, L3, L4, L5, L7

L1, L2, L3, L4, L5, L6

L1, L2, L3, L4, L5, L6, L7

mAP (%)

Figure 5. Investigation on using multiple attribute mixture sets on

ILSVRC2014 val2.

seen that the features learned with attribute is better in dis-

tinguishing background from objects. Fig. 7 shows some

examples which have high prediction scores on attribute

mixture types in four object classes. In order to evaluate

attribute prediction performance, we randomly select 200

images for each object category from the training positive

dataset for testing and the rest of the training data for train-

ing. The accuracy for rotation estimation is 58.5%. For part

location estimation, the mean square error is 0.105 (part lo-

cations are normalized to [0 1]). The mean average preci-

sion (precision vs recall) are, respectively, 50.1%, 67.3%,

86.3%, 84.3%, 83.8% for part occlusion, part existence,

viewpoint, common attributes and class-specific attributes.

After attribute mixture types have been obtained for mul-

tiple mixture sets, the predicted attribute mixture types can

be used as features for object detection. If we only use these

attribute mixture types as features and learn linear SVM for

object detection, mAP is 40.4%. Note that the attribute mix-

ture types are not supervised by negative background sam-

ples. Although no negative sample has been used for esti-
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HOG-DPM [12] HSC-DPM [30] Regionlet [40] Flair [38] DP-DPM [13] SPP [14] RCNN (VGG) [11] ours-b ours-a ours-a-j

33.7 34.3 41.7 33.3 45.2 59.2 66.0 64.4 66.8 68.5

Table 4: Detection mAP (%) on the PASCAL VOC-2007 test set. ours-b denotes our baseline which uses features learned

without attributes with settings the same as that of the res.(b) in Table 3, ours-a denotes learning features from attributes while

other settings are the same as ours-b, our-a-j denotes the results of adding scale jittering to pretraining on top of ours-a.

Without attribute Image With attributeWith attribute Without attributeImage

Otter

Person

Figure 6. Visualizing feature maps that are most correlated to the

object classes otter and person. The feature maps learned with

attributes are better in handling the appearance variation and dis-

tinguishing objects from background. Best viewed in color.

(a) Results for People indoor with frontal view, without legs 

Viewpoint Part existence  Rotation Common attribute Specific attribute 

(b) Results for Band aid with frontal view, on person’s skin 

(c) Results for Sheep being horizontal in rotation, with head only 

Figure 7. Examples with high prediction scores on attribute mix-

ture types. The images are cropped so the attributes can be seen

better. Best viewed in color.

mating attribute mixture types, they are still useful in dis-

tinguishing foreground from background and attaining the

same accuracy as the baseline.

6.4. Results on PASCAL VOC 2007

In order to prove that the features learned from ImageNet

with our annotated attributes can also be well generalized to

datasets, we conduct evaluation on PASCAL VOC 2007.

We follow the approach in [11] for splitting the training

and testing data. Table 4 shows the experimental results on

VOC-2007 testing data. Many existing works are included

for comparison [12, 30, 40, 38, 10, 11, 14, 13]. We only

report our single-model result as other approaches. We di-

rectly use the models finetuned on the ImageNet detection

data for extracting features and learning SVM without any

finetuning on Pascal VOC for all of our results. If the setting

of res.(b) in Table 3 is used to learn features, mAP is 64.4%.

These features are not learned from attributes and it can be

used as our baseline. If attributes are added to learn features

from ILSVRC, mAP is 66.8%. All the other settings are the

same as res.(b) in Table 3. It shows that the features learned

by the attributes provided by our dataset are stronger in ob-

ject detection. It is effective not only on ImageNet test data

but also on PASCAL VOC 2007. Such improvement can

be generalized across datasets. If the scale jittering is used

for pretraining and attributes are used for learning features

from ILSVRC, mAP is 68.5%. It is better than state-of-the-

art on PASCAL VOC 2007, such as RCNN that uses VGG

for finetuning on Pascal in [11].

7. Conclusion

In this paper, we present a large-scale attribute dataset

based on the ImageNet object detection dataset. It spans

494 object classes and has large number of samples labeled

with rich annotations. These attributes are useful towards

further semantic understanding of images. Based on this

dataset, we provide a deep learning scheme that uses the

attributes to learn stronger feature representations and im-

prove object detection accuracy. Such improvement can be

generalized across datasets. Our empirical study also finds

that, in order to learn better feature representations, when

training the deep model, it is better to group attributes into

clusters, forming attribute mixture types, for prediction in-

stead of separately predicting them. The ImageNet detec-

tion attribute dataset will be released to the public.
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