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Abstract

Recognising persons in everyday photos presents ma-

jor challenges (occluded faces, different clothing, locations,

etc.) for machine vision. We propose a convnet based per-

son recognition system on which we provide an in-depth

analysis of informativeness of different body cues, impact of

training data, and the common failure modes of the system.

In addition, we discuss the limitations of existing bench-

marks and propose more challenging ones. Our method is

simple and is built on open source and open data, yet it im-

proves the state of the art results on a large dataset of social

media photos (PIPA).

1. Introduction

Person recognition in private photo collections is chal-

lenging: people can be shown in all kinds of poses and

activities, from arbitrary viewpoints including back views,

and with diverse clothing (e.g. on the beach, at parties, etc.,

see Figure 1). This paper presents an in-depth analysis of

the problem of person recognition in photo albums: given

a few annotated training images of a person (possibly from

different albums), and a single image at test time, can we

tell if the image contains the same person?

Intuitively, the ability to recognize faces in the wild [22]

is an important ingredient. However, when persons are en-

gaged in an activity (i.e. not posing) their face becomes only

partially visible (non-frontal, occlusion) or simply fully

non-visible (back-view). Therefore, additional information

is required to reliably recognize people. We explore three

other sources: first, body of a person contains information

about their shape and appearance; second, human attributes

such as gender and age help to reduce the search space; and

third, scene context further reduces ambiguities.

The main contributions of the paper are the following.

First, we provide a detailed analysis of performance of

different cues (§3). Second, we propose a more realistic

and challenging experimental protocols over PIPA (§5.1)

on which a deeper understanding of robustness of different

cues can be attained (§5.2). Third, in the process, we obtain

Head ✔ ✘ ✘ ✘
Body ✔ ✔ ✘ ✘
Attributes ✔ ✔ ✔ ✘
All cues ✔ ✔ ✔ ✔
Figure 1. Person recognition in photo albums is hard. To handle

the diverse scenarios we need to exploit multiple cues from differ-

ent body regions and information sources. Photos show test cases

successfully recognised by our system, ticks indicate which in-

gredient could handle it. For example, the surfer is not recognised

when using only head or head+body cues. However, it is success-

fully recognised when the additional attribute cues are provided.

best results on the recently proposed PIPA dataset and show

that previous performance can be matched without special-

ized face recognition or pose estimation (§4). Fourth, we

analyse remaining failure modes (§5). Additionally, our

top-performing method is based only on open source code

and data, and we will make the auxiliary data produced by

us public, including the new attribute annotations over PIPA

(§3.7) and the new experimental setups (§5.1).

1.1. Related work

Data type The bulk of previous work on person recogni-

tion focus either on facial features [22] (only the head/face

is visible), or on the surveillance scenario [3, 2] (full

body is visible, usually in low resolution). Both settings

have seen a recent shift from sophisticated classifiers based

on hand-crafted features and metric learning approaches

[20, 7, 5, 29, 26, 41, 1], towards methods based on deep

learning [37, 36, 43, 33, 27, 38, 21].

In this paper we tackle a different scenario, where per-

sons may appear at different zoom levels (e.g. only head,

upper torso, full body visible), and in any pose (e.g. sitting,

running, posing), and from any point of view (e.g. front,

side, back view), see Figures 1 and 7. The “Gallagher col-

lection person dataset” [15] was the first dataset covering
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this scenario; however, it is quite small (~600 images, 32

identities) and only frontal faces are annotated. We build

our paper upon the recently introduced PIPA dataset [40]

which is two orders of magnitude larger (~40k images, ~2k

identities), more diverse, and also provides identity annota-

tions when the face is not visible. We describe PIPA in more

detail in §2.

Recognition tasks There exist multiple tasks related to

person recognition [19] differing mainly in the amount

of training and testing data. Face and surveillance re-

identification is most commonly done via “verification”

(one reference image, one test image; do they show the

same person?) [22, 2]. The scenario of our interest is ~20
training images and one test image.

Other related tasks are, for instance, face clustering [9,

33], finding important people [30], or associating names in

text to faces in images [13, 14].

Recognition cues The base cue for person recognition

is the appearance of the face itself. Face normalization

(“frontalisation”) [44, 37, 12] improves robustness to pose,

view-point and illumination. Similarly, pose-independent

descriptors can be built for the body [8, 17, 40].

Multiple other cues have been explored, for example:

attributes classification [24, 25], explicit cloth modelling

[15], relative camera positions [18], social context [16, 35],

space-time priors [28], and photo-album priors [34].

The PIPA dataset was introduced together with the refer-

ence PIPER method [40]. PIPER obtains promising results

combining three ingredients: a convnet (AlexNet [23]) pre-

trained on ImageNet [10], the DeepFace re-identification

convnet (trained on a large private faces dataset) [37], and

Poselets [4] (trained on H3D) to obtain robustness to pose

variance. In contrast, this paper considers features based on

open data and use the same AlexNet network for all the im-

age regions considered, thus providing a direct comparison

of contributions from different image regions.

2. PIPA dataset

The recently introduced PIPA dataset (“People In Photo

Albums”) [40] is, to the best of our knowledge, the first

dataset to annotate identities of people with back views. The

annotators labelled many instances that can be considered

hard even for humans (Figure 7). PIPA features 37 107
Flickr personal photo album images (Creative Commons),

with 63 188 head bounding boxes of 2 356 identities. The

dataset is partitioned into train, validation, test, and leftover

sets, with rough ratio 45 : 15 : 20 : 20. Up to annotation er-

rors, neither identities nor photo albums by the same up-

loader are shared among these sets.

For valid comparisons, we follow the PIPA protocol in

[40]. The training set is used for feature learning and the

validation set for exploring and optimising options. The

test set is for evaluation of our methods (Table 4); it is itself

split in two parts, test0/ test1, with roughly the same num-

ber of instances per identity. Given test0 a classifier is learnt

for each identity (11 examples per identity on average), and

these are evaluated on test1 (and vice-versa). Later we con-

sider more challenging splits than the PIPA default (§5.1).

At test time, the system is fed with the photo of the test

instance and the ground truth head annotation (tight around

the skull, face and hair included; not fully visible heads are

hallucinated by the annotators). The task is to find the cor-

responding identity of the head.

In the next section, various image regions and the corres-

ponding recognition cues are defined (§3.1), and their val-

idation set performances are compared (§3.3 to §3.7). The

performance of our final system and comparisons to other

methods and baselines are provided in §4. §5 will present

an in-depth analysis of the systems, including the perform-

ance on the more realistic and challenging PIPA splits.

3. Cues for recognition Features
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Figure 2. Regions con-

sidered for feature ex-

traction: face f, head h,

upper body u, full body b,

and scene s. More than

one feature vector can be

extracted per region (e.g.

h1, h2 ).

Our person recognition

system is performant yet

simple. At test time, given a

(ground truth) head bound-

ing box, we estimate (based

on the box size) five differ-

ent regions depicted. Each

region is fed into one (or

more) convnet(s) to obtain

a set of feature vectors.

The vectors are concaten-

ated and fed into a linear

SVM, trained per identity

as one versus the rest (on

test0/1). In our final system

all features are computed

using the seventh layer of an

AlexNet [23] pre-trained for

ImageNet classification (albeit we explore alternatives in

the next sections). The cues only differ among each other by

the image region considered, and by the fine-tuning used to

alter the AlexNet model (type of data or surrogate task).[23]

Compared to PIPER [40], we merge cues with a sim-

pler schema and do not use specialized face recognition or

pose estimation. Instead, we explore different directions:

how informative are fixed body regions (no pose estima-

tion) (§3.3)? How much does scene context help (§3.4)?

And how much do we gain by using extended data (§3.6 &

§3.7)? This section is based exclusively on validation set.

3.1. Image regions used

We choose five different image regions based on the

ground truth head annotation (given at test time, see
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Cue Accuracy

Chance level 0.27

Scene (§3.4) s 27.06

Body b 80.81

Upper body u 84.76

Head h 83.88

Face (§3.5) f 74.45

Face+head f+h 84.80

Full person P = f+h+u+b 91.14

Full image Ps = P+s 91.16
Table 1. Validation set accuracy of different cues. More detailed

combinations in supplementary material.

§2). The head rectangle h corresponds to the ground

truth annotation. The full body rectangle b is defined as

(3×head width, 6×head height), with the head at the top

centre of the full body. The upper body rectangle u is the

upper-half of b. The scene region s is the whole image

containing the head.

We use a face detector to find the face rectangle f in-

side each test head. We use the open source state of the art

method of [31], which also provides a rough indication of

the head yaw rotation (frontal, 45◦, 90◦ side view). When

no detection matches an annotation (e.g. back views), we

regress the face area from the head bounding box. More

details on the performance of this detector are in §3.5. Five

respective image regions are illustrated in Figure 2.

Please note that regions overlap with each other, and that

those pose agnostic crops may not match the actual regions.

3.2. Fine­tuning and parameters

Unless specified otherwise AlexNet is fine-tuned using

PIPA’s person recognition training set (∼ 30k instances,

∼ 1.5k identities), cropped at different regions, with 300k

mini-batch iterations (batch size 50). We refer to the base

cue thus obtained as f, h, u, b, or s, depending on the crop.

On the validation set we found fine-tuning to provide a sys-

tematic ∼ 10 percent points (pp) gain over not fine-tuned

AlexNet. Since we use seventh layer of AlexNet, each cue

adds 4 096 dimensions to our concatenated feature vector.

We train for each identity linear classifier using SVM

regularization parameter C = 1. On the validation set the

SVM classifier consistently outperforms by a ∼10 pp mar-

gin the naive nearest neighbour (NN) classifier. Additional

details can be found in supplementary material.

3.3. How informative is each image region ?

Table 1 shows the validation set results of each region

individually and in combination. Head and upper body are

the strongest individual cues. We discuss head and face in

§3.5. Upper body is more reliable than the full body, be-

cause we observe that legs are commonly occluded (or out

of frame) and thus become a distractor. Scene is, unsur-

Method Accuracy

Gist sgist 21.56

PlacesNet scores splaces 205 21.44

raw PlacesNet s0 places 27.37

PlacesNet fine-tuned s3 places 25.62

raw AlexNet s0 26.54

AlexNet fine-tuned s = s3 27.06
Table 2. Validation set accuracy of different feature vectors for the

scene region s. See descriptions in §3.4.

prisingly, the weakest individual cue, but it still contains

useful information for person recognition (far above chance

level). Importantly, we see that all cues complement each

other (despite having overlapping pixels).

Conclusion On the validation set at least, our features and

combination strategy seems quite effective.

3.4. Scene (s)

Other than a fine-tuned AlexNet we considered multiple

feature types to encode the scene information. sgist: us-

ing the Gist descriptor [32] (512 dimensions). s0 places:

instead of using AlexNet pre-trained on ImageNet, we con-

sider an AlexNet (PlacesNet) pre-trained on 205 scene cat-

egories of the “Places Database” [42] (∼ 2.5 million im-

ages). splaces 205: Instead of the 4 096 dimensions Places-

Net feature vector, we also consider using the score vector

for each scene category (205 dimensions). s0,s3: we con-

sider using AlexNet in the same way as for body or head

(with zero or 300k iterations of fine-tuning on the PIPA

person recognition training set). s3 places: s0 places

fine-tuned for person recognition.

Results Table 2 compares the different alternatives on the

validation set. The Gist descriptor sgist performs only

slightly below the convnet options (4 608 dimensional ver-

sion of Gist gives worse results). Using the raw (and longer)

feature vector of s0 places is better than the class scores of

splaces 205. Interestingly, in this context pre-training for

places classification is better than pre-training for objects

classification (s0 places versus s0). After fine-tuning s3

reaches a similar performance as s0 places.

Experiments trying different combinations indicate that

there is little complementarity between these features.

Since there is not a large difference between s0 places and

s3, for sake of simplicity we use s3 as our scene cue s in

all other experiments.

Conclusion Scene by itself, albeit weak, can obtain res-

ults far above chance level. After fine-tuning, scene recog-

nition as pre-training surrogate task [42] does not provide a

clear gain over (ImageNet) object recognition.
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Method Accuracy

More data (§3.6) h 83.88

(head region) h+ hcacd 84.88

h+ hcasia 86.08

h+ hcasia + hcacd 86.26

Attributes (§3.7) hpipa11m 74.63

(head region) hpipa11 81.74

h+ hpipa11 85.00

(upper body region) upeta5 77.50

u+ upeta5 85.18

(head+upper body) A = hpipa11 + upeta5 86.17

h+ u 85.77

h+ u+ A 90.12
Table 3. Validation set accuracy of different cues based on exten-

ded data. See §3.6 and §3.7 for details.

3.5. Head (h) or face (f) ?

A large portion of work on face recognition focuses on

the face region specifically. In the context of photo albums,

we aim to quantify how much information is available in the

head versus the face region.

The face region f is defined by a state of the art face de-

tector [31] (see §3.1). Since no face annotations are avail-

able on PIPA, we validate the face detection location by

learning a linear regressor from f to h (per DPM compon-

ent). When using these heads estimates (∼ 75% of heads

replaced) instead of the ground truth head (h in Table 1),

results drop only 0.45% thus indirectly validating that faces

are well localized.

Results When using the face region, there is a large gap of

∼10 percent points performance between f and h in Table

1 highlighting the importance of including the head region

around the face in the descriptor.

When evaluating only on the frontal faces of validation

set (as indicated by the detector) f reaches 81% accur-

acy and 70% for non-frontal faces. The performance drop

between frontal versus handling profile and back views is

less dramatic than one could have suspected.

In comparison, on frontal faces in test set, DeepFace

reaches ∼90% [40], and returns the chance level (0.17%)

otherwise. The test set contains about 50% of non-frontal

faces. On test set f obtains 74% and 57% for frontal and

non-frontal faces, respectively (18 pp drop), while h obtains

82% and 70%, respectively (12 pp drop).

Conclusion Using h is more effective than f, both due

to improved recognition for frontal faces and robustness to

head rotation. That being said, f results show fair perform-

ance to recognise non-frontal faces. As with other body

cues, there is complementarity between h and f and we thus

suggest to use them together.

3.6. Additional training data (hcacd,hcasia)

It is well known that deep learning architectures bene-

fit from additional data. PIPER’s DeepFace is trained over

4.4 · 106 faces of 4 · 103 persons (the private SFC dataset

[37]). In comparison our cues are trained over ImageNet

and PIPA’s 29 ·103 faces over 1.4 ·103 persons. To measure

the effect of training on larger data we consider fine-tuning

using two open face recognition datasets: CASIA-WebFace

(CASIA) [39] and the “Cross-Age Reference Coding Data-

set” (CACD) [6].

CASIA contains 0.5 · 106 images of 10.5 · 103 persons

(mainly actors and public figures), and is (to the best of our

knowledge) the largest open dataset for face recognition.

When fine-tuning AlexNet over these identities (using the

head area h), we obtain the hcasia cue.

CACD contains 160 · 103 faces of 2 · 103 persons with

varying ages. Although smaller than CASIA, CACD fea-

tures greater number of face examples per subject (∼2×).
The hcacd cue is built via the same procedure as hcasia.

Results The improvement of h + hcacd and h + hcasia

over h show that cues from outside training data are com-

plementary to h (see top part of Table 3). hcacd and hcasia
on their own are about ∼ 5 pp worse than h. hcacd and

hcasia exhibit slight complementarity.

Conclusion Adding more data, even from different type

of photos, is an effective means to improve the performance.

3.7. Attributes (hpipa11,upeta5)

Albeit overall appearance might change day to day, one

could expect that long term attributes provide means for re-

cognition. We thus explore building feature vectors by fine-

tuning AlexNet not on person recognition (like for all other

cues), but rather for attributes classification as a surrogate

task. We consider two sets of annotations.

We have annotated the PIPA train and validation sets

(1409 + 366 identities) with five long term attributes: age,

gender, glasses, hair colour, and hair length (11 binary bits

total; see supplementary materials for details). We use the

h crops to build hpipa11, as the attributes are head centric.

We also consider using the “PETA pedestrian attribute

dataset” [11], which features 105 attributes annotations for

19 · 103 full-body pedestrian images. Out of 105 we chose

the five binary attributes that are long term and are well rep-

resented in PETA: gender, age (young adult, adult), black

hair, and short hair (details in supplementary material).

Since upper-body u is less noisy than the full-body b (see

Table 1), upper body crops of PETA are used to fine-tune

AlexNet. The upeta5 cue is thus built.

Results For attribute fine-tuning we consider two ap-

proaches: training a single network for all attributes (multi-

label classification with sigmoid cross entropy loss), or tun-

ing one separate network per attribute (softmax loss) and
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Method Accuracy

Chance level 0.17

Body GlobalModel[40] 67.60

b 69.63

Head DeepFace[40] 46.66

h 76.42

Extended data h+ hcasia + hcacd 79.63

PIPER[40] 83.05

Head+Body h+b 83.36

Full person P = f+h+u+b 85.33

Full image Ps = P+s 85.71

Extended data naeil = Ps+E 86.78

Combining PIPER[40]+P 87.67

with [40] PIPER[40]+naeil 88.37
Table 4. Test set accuracy of different cues and their combinations

under the original PIPA evaluation protocol.

Extended data E = hcasia+hcacd+hpipa11+upeta5.

then concatenating their feature vectors. The results on val-

idation data indicate the second choice (hpipa11) performs

better than the first (hpipa11m).

Table 3 (bottom) shows that attribute classification as

surrogate task does help person recognition. Both PIPA

(hpipa11) and PETA (upeta5) annotations behave similarly

(∼ 1 pp gain over h and u), and show good complement-

ary among themselves (∼5 pp gain over h+u). Amongst

the attributes considered, gender contributes the most to im-

prove recognition accuracy (for both attributes datasets).

Conclusion Adding attributes classification as a surrogate

task improves performance.

4. Test set results

All experiments in this paper are limited to a person re-

cognition scenario where head boxes are provided by hu-

man annotations, and all test faces belong to a known finite

set. Table 4 reports the performance on the test set of the dif-

ferent cues described in previous sections. We study their

complementarity to each other, and compare them against

the PIPER components [40]. A more detailed table and

the corresponding validation set results are included in the

supplementary material.

We also report computational times for some pipelines

in our method. The feature training takes 2-3 days on a

single GPU machine. The SVM training takes 42.20s for h

(4096 dim) and 1303.30s for naeil (4096×17 dim) on the

Original split (581 classes, 6443 samples). Note that this

corresponds to a realistic user scenario in a photo sharing

service where ∼ 500 identities are known to the user and

the average number of photos per identity is ∼ 10.

Compared to PIPER, our framework is computationally

efficient in two aspects. First, our system does not need

to learn to assign weights for different cues. Second, the

PIPER feature has roughly 4096× 108 dimensions, requir-

ing far more memory and training time than our final system

(4096× 17 dim).

Body b Considered alone, our body cue b is a reimple-

mentation of PIPER’s GlobalModel [40]. As expected,

we obtain a similar accuracy.

Head h On the other hand, our head cue h is more ef-

fective than the corresponding PIPER’s DeepFace. As

discussed in §3.5, we have observed that: a) for this task

the head region is more informative than the face (focusing

on the face region is detrimental); b) our approach is much

more robust for non-frontal faces (∼ 50% of test cases),

where h reaches 70% accuracy, while DeepFace becomes

uninformative in this case. When extending the training

data our head performance further improves (see also the

discussion in §5.4).

Head+body h+b Our minimal system matching PIPER’s

performance is h+b, with accuracy 83.36%. Note that

the feature vector of h+b is about 50 times smaller than

PIPER’s.

In principle PIPER captures the head region via one of

its poselets. Thus, h+b extracts cues from a subset of

PIPER’s “GlobalModel+Poselets” [40], which only

reaches 78.79% .

Full person P Similar to the validation set results, having

more cues further improves results. P = f+h+u+b obtains

a clear margin over PIPER, yet is a simpler system (neither

specialised face recognition nor pose estimation used) built

with less training data (only PIPA for fine-tuning, ImageNet

for pre-training, and the face detector training set).

naeil Adding scene s (§3.4) and extended data E (§3.6

& §3.7) contributes to the last 1 percent point. We name our

final method naeil1. Its feature vector is 6 times smaller

than PIPER’s, and it provides the best known results on the

PIPA dataset.

Figures 1 and 7 show some example results of our sys-

tem. §5.4 analyses the remaining hard test cases.

4.1. Complementarity between PIPER and naeil

Since PIPER uses different training data than naeil

we can expect some complementarity between the two

methods. For experiments, we use the PIPER scores

provided by the authors of [40]. Note, however, that the

PIPER features are unavailable. By averaging the out-

put scores of the two methods (PIPER+naeil) gain ∼

1.5 percent points, reaching 88.37%. Using a more sophist-

icated strategy might provide more gain, but we already see

that naeil covers most of the performance from PIPER.

1“naeil”,내일, means “tomorrow” and sounds like “nail”.
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4.2. Towards an open world setting

All experiments in this paper are limited to a person re-

cognition scenario where head boxes are provided by hu-

man annotations, and all test faces belong to a known finite

set. Not providing ground truth heads at test time is an argu-

ably more realistic and challenging scenario in which both

person detection and recognition need to be solved jointly.

Using a face detector (§3.5) as our person detector over

the test set, we reach ∼78% recall at (average) ten detec-

tions per image (∼70% at 3 detections/image). If we use

naeil to label these faces, we reach ∼65% recall on the

test0/1 identities (∼62% at 3 detections/image).

The performance drops, but less dramatically than what

one might expect. It remains as future work to implement a

detailed evaluation in the open world setting.

4.3. A naive baseline

Given the inherent difficulty of the PIPA person recogni-

tion task (see Figure 7) reaching a ∼85% accuracy seems

suspiciously high. Thus, we investigate the issue using a

crude baseline hrgb that takes the raw RGB pixel values of

the head area as features (after downsizing to 40×40 pixels

and blurring), and uses a nearest neighbour classifier. By

design hrgb is only able to recognize near identical heads

across the test0/1split, yet it reaches a surprisingly high

33.77% (49.46%) accuracy on the test set (validation set).

Conclusion About 1/3 of the original PIPA test splits is

easy to solve. This motivates us to explore more realistic

splits and protocols. In the next section we discuss the issue

and propose solutions via new test splits.

5. Analysis of person recognition challenges

This section provides a detailed analysis of the obtained

results and shares insights on addressing future challenges.

As we have seen in §4.3, the current setup includes many

easy examples, limiting us from exploring more difficult di-

mensions of the problem. Accordingly, we propose three

new test0/ test1 splits of PIPA in §5.1. Based on the new

splits, we analyse the robustness of different cues across ap-

pearance changes (§5.2). We then discuss the effect of the

amount of person specific training data (§5.3), and provide

a failure mode analysis in §5.4.

5.1. New PIPA splits with varying difficulty and
challenges

We have seen a strong performance of our main system

naeil (86.78% on test set, Table 4) and the baseline hrgb
(33.77% on test set, §4.3) despite the challenging task of

person recognition in photo albums. This motivates us to

investigate more difficult and realistic setups.

Figure 3. Visualisation of Original and Day splits for one identity.

Greater appearance changes are observed across the Day split.

Limitations of original setup The main limitation of the

original PIPA protocol is that the test0/ test1 splits are even-

odd instances from a sample list that largely preserves the

photo orders in albums. When photos are taken in a short

period of time, adjacent photos can be nearly identical.

However, a main challenge in person recognition is to gen-

eralise across long-term appearance changes of a person;

we thus introduce a range of new splits on PIPA in the order

of increasing difficulty:

Original split O: We keep the original split in our study

for comparison. The split is on the odd vs even basis.

Album split A: All samples are organised by albums.

This split assigns for each person identity samples from sep-

arate albums, while keeping the number of samples equal

for the splits. Since it is not always possible to satisfy both

conditions, a few albums are shared between the splits. In

this setup, training and test samples are split across different

events and occasions.

Time split T : This split investigates the temporal dimen-

sion of the photos. For each person identity, we sort all

photos by their “photo-taken-date” metadata. We split them

into newest versus oldest images. The instances without

time metadata are distributed evenly. This split emphasises

the temporal distance between training and test.

Day split D: T does not always make a time gap: many

people appear only on one event, and the time metadata are

often missing. We thus make the split manually according

to the two conditions: either a firm evidence of date change

such as {change of season, continent, event, co-occurring
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Figure 6. Recognition accuracy at differ-

ent sizes of training examples.

people} between the splits, or visible changes in {hairstyle,

make-up, head or body wear}. These rules enforce “ap-

pearance changes”. For each identity, we randomly discard

instances from the larger test set until sizes match. If there

are less than 5 instances in the split, we discard the identity

altogether (Original split applies the same criterion). After

pruning, 199 identities (out of 581) were left, with about

20 training samples per identity (similar range as all other

splits).

Results Figure 4 provides an overview of how the raw

colour baseline hrgb and our naeil approach perform

across different splits. We observe that the unreasonably

good performance by the hrgb baseline consistently de-

grades from the Original over Album and Time to the Day

splits, indicating the increasing amount of non-trivial recog-

nition tasks. Compared to the 1/5 drop by the hrgb baseline

(33.77% to 6.78%), naeil’s performance is less impaired

(86.78% to 46.48%), indicating naeil’s ability to address

more realistic scenarios characterised by changes in appear-

ance, location and time.

5.2. Importance of features

To gain a deeper understanding of relative importance

of different cues and their robustness across splits, we con-

sider Figure 5 which shows the results normalised by the

performance of naeil (100%). This allows us to analyse

which features maintain, loose or gain discriminative power

when moving from the easier to the more challenging set-

tings.

We observe the strongest drops in relative performance

for body and upper body features, due to the loss of discrim-

inability of global features (e.g. clothing). We see consist-

ent gains for using surrogate training tasks such as attributes

(hpipa11, upeta5) and, more prominently, external data for

head features (hcasia, hcacd). External data for head fea-

tures particularly pays off for the most difficult day split.

Conclusion The usage of significantly larger databases

improves the robustness of our features, enabling recogni-

tion in the most challenging scenarios.

5.3. Importance of training data

We also investigate how much collecting more data from

each person identity can help to improve performance. In

Figure 6 we compare the Original to the Day split and show

performance for different sizes of training samples. While

on the original split already after 10 training examples 80%

performance is reached, the performance on the Day split

sees a relatively slow improvement and stays below 70%

with 25 samples (lagging 20% behind the Original split).

Conclusion From Figure 6 we see that only increasing the

training data will struggle to solve the harder Day split. Bet-

ter features and better methods are required.

5.4. Analysis of remaining failure modes

In the supplementary material we provide detailed stat-

istics to study failure modes in the Original and Day splits.

We discuss here the main findings.

As expected, non-frontal faces are common failure cases

for naeil’s in both Original and Day splits (∼50%). For

frontal faces, we observe in the Day split a larger propor-

tion of failures than in the Original split. Even more, the

majority of failures correspond to large heads (height >
100 pixels), where good features can be extracted. To

handle better more realistic scenarios it is thus important

to improve the recognition of frontal faces across diverse

settings and long time-spans.

Another interesting aspect is that while naeil on the

Original split has only one identity (out of 581) which is

never correctly predicted, on the Day split the proportion of

never correct identities jumps to 20%. This suggests that

there are inherently difficult identities that our simplistic

system currently cannot handle.
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Figure 7. Examples of success cases on the Original split. First column shows the test instances that our systems correctly predict.

Columns 5-7 correspond to train instances of the correct identity. Columns 2-4 are the training examples of the identity that PIPER [40]

wrongly predicts. From top to bottom, the shown test instances are: (1) success case of f+h and failure case of PIPER; (2) success case

of p=f+h+u+b and failure case of PIPER and f+h; (3) success case of p+s and failure case of PIPER and p; and (4) success case

of naeil,and failure case of PIPER and p+s.

6. Conclusion

We analysed the problem of person recognition in photo

albums where people appear with various viewpoints, poses

and occlusions. There are four major conclusions from our

studies. First, head region, even when face is not visible,

is a strong cue for person recognition, better than the face

region itself (§3.5). Second, different cues, although from

overlapping regions, are complementary (§4). Third, fea-

ture learning with massive database of faces improves ro-

bustness across time and appearance (§5.2). Fourth, simply

increasing the number of training examples per person does

not automatically solve the problem, and better recognition

systems must be devised (§5.3).

One possible research direction is collecting a large data-

base of personal photo albums on which better features can

be trained. One can also exploit album context, which is a

rich source of identity information [16, 34, 35]; however, it

was not used in this work for fair comparison.

Our experimental data will be published, e.g. attribute

annotations, new splits, result files, and the trained models.
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