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Abstract

Deformable surface tracking from monocular images

is well-known to be under-constrained. Occlusions often

make the task even more challenging, and can result in fail-

ure if the surface is not sufficiently textured. In this work,

we explicitly address the problem of 3D reconstruction of

poorly textured, occluded surfaces, proposing a framework

based on a template-matching approach that scales dense

robust features by a relevancy score. Our approach is ex-

tensively compared to current methods employing both lo-

cal feature matching and dense template alignment. We test

on standard datasets as well as on a new dataset (that will

be made publicly available) of a sparsely textured, occluded

surface. Our framework achieves state-of-the-art results for

both well and poorly textured, occluded surfaces.

1. Introduction

Being able to recover the 3D shape of deformable sur-

faces from ordinary images will make it possible to field re-

construction systems that require only a single video cam-

era, such as those that now equip most mobile devices. It

will also allow 3D shape recovery in more specialized con-

texts, such as when performing endoscopic surgery or us-

ing a fast camera to capture the deformations of a rapidly

moving object. Depth ambiguities make such monocular

shape recovery highly under-constrained. Moreover, when

the surface is partially occluded or has minimal texture, the

problem becomes even more challenging because there is

little or no useful information about large parts of it.

Arguably, these ambiguities could be resolved by using a

depth-camera, such as the popular Kinect sensor [33]. How-

ever, such depth-cameras are more difficult to fit into a cell-

phone or an endoscope and have limited range. In this work,

we focus on 3D shape recovery given a reference image and

a single corresponding 3D template shape known a priori.

When the surface is well-textured, correspondence-

based methods have proved effective at solving this prob-

lem, even in the presence of occlusions [3, 5, 6, 7, 24, 26,
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Figure 1. Tracking a sparsely textured surface in the presence

of occlusion: (a) template image, (b) input image, (c) relevancy

score, (d) surface tracking result with proposed framework. All

figures in this paper are best viewed in color.

37]. In contrast, when the surface lacks texture, dense pixel-

level template matching should be used instead. Unfortu-

nately, many methods such as [21, 31] either are hampered

by a narrow basin of attraction, which means they must be

initialized from interest points correspondences, or require

supervised learning to enhance robustness. Using Mutual

Information has often been claimed [10, 12, 23, 38] to be

effective at handling these difficulties but our experiments

do not bear this out. Instead, we advocate template match-

ing over robust dense features that relies on a pixel-wise

relevancy score pre-computed for each frame, as shown in

Fig. 1. Our approach can handle occlusions and lack of tex-

ture simultaneously. Moreover, no training step is required

as in [31], which we consider to be an advantage because

this obligates either collecting training data or having suffi-

cient knowledge of the surface properties, neither of which

may be forthcoming.

Our main contribution is therefore a robust framework

for image registration and monocular 3D reconstruction of

deformable surfaces in the presence of occlusions and min-

imal texture. A main ingredient is the pixel-wise relevancy

score we use to achieve the robustness. We will make the

code publicly available, and release the dataset we used
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to validate our approach, which contains challenging se-

quences of sparsely-textured deforming surfaces and the

corresponding ground truth.

2. Related Work

The main approaches for deformable surface reconstruc-

tion either require 2D tracking throughout a batch of im-

ages or a video sequence [1, 13, 27] or they assume a ref-

erence template and corresponding 3D shape is known. In

this work, we focus on the second approach, which we refer

to as template-based reconstruction.

The most successful current approaches generally rely

on finding feature point correspondences [22, 3, 5, 7, 24, 26,

37], because they are robust to occlusions. Unfortunately,

as shown by our experimental results, these methods tend

to break down when attempting to reconstruct sparsely or

repetitively textured surfaces, since they rely on a fairly high

number of correct matches.

Pixel-based techniques are able to overcome some limi-

tations of local feature matching, since they reconstruct sur-

faces based on a global, dense comparison of images. On

the other hand, some precautions must be taken to handle

occlusions, lighting changes, and noise. [21] estimates a

visibility mask on the reconstructed surface, but unlike us,

only textured surfaces and self-occlusions are handled. [14]

registers images of deformable surfaces in 2D and shrinks

the image warps in self-occluded areas. [3] proves that

an analytical solution to the 3D surface shape can be de-

rived from this 2D warp. However, the surface shape in

self-occluded areas is undefined. [8] registers local image

patches of feature point correspondences to estimate their

depths, and geometric constraints are imposed to classify

incorrect feature point correspondences. In contrast to these

local depth estimations, our method reconstructs surfaces

globally in order to be more robust to noise and outliers.

Other recent approaches employ supervised learning for

enhancing performance [28, 36]. In [31] strong results

are achieved with poorly textured surfaces and occlusion

by employing trained local deformation models, a dense

template matching framework using Normalized Cross

Correlation (NCC) [32] and contour detection. Our pro-

posed framework manages to achieve similar performance

without requiring any supervised learning step, while the

use of robust, gradient-based dense descriptors recently pro-

posed in [9] avoids the need to explicitly detect contours.

Other techniques employed for dealing with occlusions

and noise, such as Mutual Information (MI) [11, 12, 23,

38] and robust M-estimators [2] are studied explicitly in our

context, and found to be successful only up to a point.

Our method is similar to that of [25], where a template

matching approach is employed and a visibility mask is

computed for the pixels lying on the surface, but in this

work a very good initialization from a feature point-based

method is required in order for its EM algorithm to con-

verge. In addition to the geometrical degrees of freedom

of the surface, local illumination parameters are explicitly

estimated in [16, 34]. This requires a reduced deformation

model for the surface to keep the size of the problem rea-

sonable.

In the proposed framework, we achieve good perfor-

mance without the need to explicitly estimate any illumi-

nation model, so that an accurate geometric model for the

surface can be employed. Furthermore, rather than estimat-

ing a simple visibility mask as is often done in many do-

mains such as stereo vision [35], face recognition [40], or

pedestrian detection [39], we employ a real-valued pixel-

wise relevancy score, penalizing at the same time pixels

with unreliable information originating both from occluded

and low-textured regions. Our method has a much wider

basin of convergence and we can track both well and poorly

textured surfaces without requiring initialization by a fea-

ture point-based method.

3. Proposed Framework

In this work, we demonstrate that a carefully designed

dense template matching framework can lead to state-of-

the-art results in monocular reconstruction of deformable

surfaces. In this section we describe our framework, based

on a recently introduced gradient-based pixel descriptors [9]

for robust template matching and the computation of a rele-

vancy score for outlier rejection.

3.1. Template Matching

We assume we are given both a template image T and the

rest shape of the corresponding deformable surface, which

is a triangular mesh defined by a vector of Nv vertex coor-

dinates in 3D, VT ∈ R
Nv×3. To recover the shape of the

deformed surface in an input image I, the vertex coordinates

VT of the 3D reference shape must be adjusted so that their

projection onto the image plane aligns with I.

We assume the internal parameters of the camera are

known and, without loss of generality, that the world refer-

ence system coincides with the one of the camera. In order

to register each input image, a pixel-wise correspondence

is sought between the template and the input image. Each

pixel x ∈ R
2 on the template corresponds to a point p ∈ R

3

on the 3D surface. This 3D point is represented by fixed

barycentric coordinates which are computed by backpro-

jecting the image location x onto the 3D reference shape.

The camera projection defines an image warping func-

tion W : R
2 × R

3×Nv → R
2 which sends pixel x to a

new image location based on the current surface mesh V as

illustrated in Fig. 2. The optimal warping function should

minimize the difference between T (x) and I(W(x;V)),
according to some measurement of pixel similarity. Tra-

ditionally, image intensity has been used, but more robust
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Figure 2. An image warping function maps a pixel from the tem-

plate image onto the deforming surface in the input image.

pixel feature descriptors φI(x) will lead to more meaning-

ful comparisons, as discussed in Section 3.2.2.

The image energy cost function is a comparison between

φT (x) and φI(W(x;V)) at every image point x defining

the quality of their alignment

Eimage(V) =
∑

x

d
(

φT (x), φI(W(x;V))
)

. (1)

There are many possible choices for the function d com-

paring the descriptor vectors, such as Sum of Squared

Differences (SSD), NCC, MI, and others. We will discuss

more in detail about the choice of d in Section 3.2.3.

Since monocular 3D surface reconstruction is an under-

constrained problem and there are multiple 3D shapes hav-

ing the same reprojection on the image plane, minimizing

the image energy in Eq. (1) alone is ill-posed. Additional

constraints must be added, such as isometric deformation

constraints enforcing that the surface should not stretch or

shrink. A change in the length between vertex vi and vertex

vj as compared to the template rest length lij from VT is

penalized as

Elength(V) =
∑

i,j

(‖vi − vj‖ − lij)
2. (2)

To encourage physically plausible deformations, the

Laplacian mesh smoothing proposed in [22] is used. This

rotation-invariant curvature-preserving regularization term

based on Laplacian smoothing matrix A penalizes non-rigid

deformations away from the reference shape, based on the

preservation of affine combinations of neighboring vertices.

Esmooth(V) = ‖AV‖
2
. (3)

To reconstruct the surface, we therefore seek the mesh

configuration V that minimizes the following total energy:

argmin
V

Eimage(V) + λLElength(V) + λSEsmooth(V), (4)

for relative weighting parameters λL and λS.

3.2. Robust Optimization

3.2.1 Optimization Scheme

To make the optimization more robust to noise and wide

pose changes, we employ a multi-scale approach, iteratively

minimizing Eσ = Eσ
image + λLElength + λSEsmooth for de-

creasing values of a scale parameter σ, with:

Eσ
image =

∑

x

d (Gσ ∗ φT (x), G
σ ∗ φI(W(x;V))) , (5)

where Gσ is a low-pass Gaussian filter of variance σ2. In

our experiments we solve the alignment at three scales, us-

ing the final result of each coarser scale to initialize the next

set of iterations, and initializing the coarsest scale with the

final position found for the previous frame. The first frame

of each image sequence is taken as the template, and we

employ a standard Gauss-Newton algorithm for minimiza-

tion.

3.2.2 Feature Selection

The image information compared in Eq. (1) comes from

pixel-based image features. Previous approaches [21, 25,

31] employ image intensity as a local descriptor, φI(x) =
I(x). More robust results can be obtained with other fea-

tures, such as the lighting-insensitive image gradient direc-

tion (GD) [15], where φI(x) = tan−1 Iy(x)
Ix(x)

with mod 2π

differencing. Based on its strong previous performance we

also consider the Gradient Based Descriptor Fields (GBDF)

recently proposed in [9]:

φI(x) =
[

[
∂I

∂x
(x)]+, [

∂I

∂x
(x)]−, [

∂I

∂y
(x)]+, [

∂I

∂y
(x)]−

]⊤
,

(6)

where the [·]+ and [·]− operations respectively keep the pos-

itive and negative values of a real-valued signal. These

descriptors are robust under light changes, and remain

discriminative after the Gaussian smoothing employed in

Eq. (5); however, as originally proposed in [9], they are not

rotation invariant. To achieve in-plane rotation invariance,

in our final framework we employ a modified version of

GBDF. In order to compare pixel descriptors in the same,

unrotated coordinate system, the reconstruction of the pre-

vious frame is used to establish a local coordinate system

for each mesh facet. Each pixel descriptor on the template

is then rotated in accordance with its corresponding mesh

facet, to be directly comparable to the points in the input

image. We show in Section 4 that this modification indeed

increases registration accuracy by being able to successfully

track a rotating deformable surface.

3.2.3 Similarity Function Selection

Choosing the correct comparison function d for Eq. (1) also

significantly affects the robustness of the tracking. Com-

mon choices include the SSD of the descriptors, and the

NCC of image intensities [20], which is invariant under

affine changes in lighting.
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Mutual Information: MI [38] is a similarity function that

measures the amount of information shared between two

variables, and it is known to be robust to outliers such as

noise and illumination changes [10]. It has been repeatedly

claimed to be robust to occlusion, for example in [10, 12,

23, 38]. Where occlusions occur, the shared information

between occluded pixels and the template image is low or

none, and its variation does not cause significant change in

the image entropy; therefore, the MI obtains an accurate

maximum value at the position of the correct alignment, in

spite of the occlusion.

However, an MI-based cost function is limited in appli-

cation. MI generally provides a non-convex energy function

with a very strong response at the optimum, but a very nar-

row basin of convergence, as shown in Fig. 5. This makes

it unsuited for direct numerical optimization, while smooth-

ing leads to a significantly degraded energy function. Nu-

merical experiments reported in Section 4 show that, in our

context, MI leaves room for improvement.

Robust Statistics: M-estimators are a popular method for

handling outliers in a template matching framework. Let

ei = φI(W(xi;V)) − φT (xi) be the residual at pixel xi;

then instead of minimizing the sum of squared residuals
∑

i e
2
i , a modified loss function ρ of the residuals is consid-

ered, instead minimizing
∑

i ρ(ei), in order to reduce the

influence of outliers.

In Section 4, tests are performed using two of the most

commonly employed M-estimators, the Huber [18] and the

Tukey [17] estimators. In our context, M-estimators show

moderate efficacy, likely because part of the useful informa-

tion is rejected as outliers. This problem becomes particu-

larly significant when dealing with low-textured surfaces,

where the amount of information available for alignment is

low.

3.3. Handling Occlusions with a Relevancy Score

Our experiments suggest that selecting a robust similar-

ity function is not enough to deal with the occlusions and

image variability encountered when attempting to track a

deforming surface in real-world imagery.

Inspired by the effectiveness of the occlusion masks de-

veloped in works such as [35, 39, 40], we derive a more

robust method to handle occlusions by pre-computing a rel-

evancy score for each pixel of the current frame, which is

then used to weight the pixels during the alignment. Since

we would like to handle occlusions and sparsely textured

surfaces together, rather than designing a binary occlusion

prediction mask, we develop a continuous-valued score that

will raise or lower the importance of pixels depending on

their relevancy. This pre-processing step can greatly im-

prove the quality of the image information handed to the

cost function in Eq. (4).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. The relevancy score results using various methods on

the (a) cloth dataset and (f) sparsely textured paper dataset us-

ing (b)(g) Intensity (c)(h) GBDF (d)(i) Gradient direction (e)(j)

GBDF+Intensity. GBDF gives a better relevancy map than inten-

sity and gradient direction on the first dataset while intensity is

better than GBDF and gradient direction on the second. We there-

fore combine both intensity and GBDF in our proposed relevancy

score.

Given the estimated configuration V∗
t−1 of the de-

formable surface from the previous frame, a thin-plate

spline-based warping function [4] is used to un-warp image

It to closely align with the template T . A relevancy score

is then computed between each pixel x on the synthetically

back-warped image Ît and the same pixel on the template

T , with a sliding-window approach.

It has been verified repeatedly in the literature that NCC

is a reliable choice for measuring patch-based image sim-

ilarity, and so we compute the NCC over the images as

an efficient prediction of relevancy. In one such approach

[19], local image patches are affinely warped based on the

predicted camera pose, and sliding NCC windows are then

used to look for correspondences of map points in the in-

put image. Our approach is somewhat different, as we use

sliding NCC to measure the relevancy of template pixels

on the input image. We average the NCC of both the im-

age intensity and the GBDF features, as it was found that

both descriptors provide relevant and often complementary

information at this predictor stage, (see Fig. 3 for a qualita-

tive comparison).

The sliding relevancy score is computed as the maximum

NCC value over a range of patches near image location x:

ω(x) = max
δ

NCC(PT (x),PÎ(x+ δ)), (7)

where PT (x) and PÎ(x) are patches of size 26 × 26 cen-

tered at x, δ = [δx, δy]
T , and δx, δy vary over [−30, 30] in

all our experiments. Allowing the patch to be compared to

nearby patches accounts for some of the variability between

the surface position V∗
t−1 and the desired position V∗

t to be

recovered.

The similarity scores are then normalized to lie in [0, 1],
and outlier data is also limited at this stage in a process simi-

lar to an M-estimator. The mean µ and standard deviation σ

of the NCC scores are found for each frame, and all values

further than 3σ from the mean are clamped to the interval

2276



Figure 4. Relevancy scores for the well-textured paper dataset.

µ ± 3σ. These values are then linearly rescaled to lie be-

tween 0 and 1, and the normalized weights ω̂ are applied to

the data in the image energy term of Equation (4):

Eimage(V) =
∑

x

ω̂(x)d
(

φT (x), φI(W(x;V))
)

, (8)

where the sum here is extended to all the pixels of the tem-

plate. Relevancy scores for the well-textured paper dataset

are shown in Fig. 4.

3.4. Handling Sparsely Textured Surfaces

The relevancy score described in Section 3.3 is also able

to handle sparsely textured surfaces. Image regions contain-

ing little or no texture have low relevancy scores, so these

pixels will not negatively influence the image alignment.

For example, see Fig. 1. Using the proposed relevancy score

to weight the utility of the image information coming from

each pixel in the image allows the optimization to be driven

by the most meaningful available information.

4. Experiments and Results

3D surface reconstructions are computed with and with-

out occlusion on both well and poorly textured deforming

surfaces. We compare recent methods described in Section

2, which are representative of the current state-of-the-art,

against our dense template matching-based reconstruction

methods using the various similarity measures and occlu-

sion handling techniques described in Section 3.

In particular, we report detailed results of comparisons

with the following methods: “Bartoli12” [3], that recon-

structs the surface by analytically solving a system of PDEs

starting from an estimated 2D parametric warp between im-

ages; “Chhatkuli14” [7], that infers the surface shape ex-

ploiting the depth gradient non-holomonic solution of a

PDE; “Brunet14” [6], that reconstructs a smooth surface

imposing soft differential constraints of isometric deforma-

tion; “Ostlund12” [22], that introduces the Laplacian mesh

smoothing we employ; and “Salzmann11” [29], that uses

pre-learned linear local deformation models.1

As for pixel-based template matching techniques, com-

paring pixel intensity values “Intensity” and gradient di-

rection values “GD” are done using SSD. We also com-

pare standard “NCC” and “MI” over intensity values. The

1Code provided by the authors of these papers was used for all compar-

isons.

Table 1. Reconstruction errors over a range of weighting coeffi-

cient values using the well-textured paper dataset.

error (mm)
λL

10 2 1 0.5 0.25 0.1 0.05 0.01

λ
S

10 7.46 6.46 5.73 5.59 5.31 18.45 93.07 N.A

2 4.60 1.58 2.41 3.68 4.49 5.17 17.23 319.09

1 1.93 1.39 1.20 1.97 3.44 4.61 5.94 147.96

0.5 2.02 1.73 1.43 1.08 1.80 3.76 4.77 61.87

0.25 2.01 1.86 1.67 1.45 1.10 2.17 3.76 26.18

0.1 2.05 1.91 1.75 1.62 1.57 1.20 1.68 240.66

0.05 2.07 2.03 1.96 1.86 1.82 5.62 14.86 185.47

0.01 18.23 15.44 6.25 6.45 6.31 10.44 14.11 342.12

“GBDF” features are compared using SSD, and were seen

to be the strongest feature descriptor, so it is these values

that we test in the M-estimator framework using the “Hu-

ber” and “Tukey” loss functions. Our proposed framework

from Section 3.3 is labeled “GBDF+Oc” in the figures. We

see that it achieves state-of-the-art performances on a stan-

dard, well-textured dataset, and it achieves optimal recon-

struction performance in all datasets with occlusions and

low texture.

Image sequences were acquired using a Kinect camera,

and ground truth surfaces were generated from the depth in-

formation. The template is constructed from the first frame,

and 3D reconstruction is performed for the rest of the se-

quence using the image information alone. The initial mesh

coordinates for each frame are set to the locations of the

final reconstruction of the previous frame in the sequence.

We consider two different metrics to define the recon-

struction accuracy. Many previous methods compare the

average distance of the reconstructed 3D mesh vertices to

their closest projections onto the depth images. This metric

ignores the correspondences between the mesh points and

the point cloud. As a more meaningful metric, we use the

Kinect point cloud to build ground truth meshes, and com-

pute the average vertex-to-vertex distance from the recon-

structed mesh to the ground truth mesh. This metric is used

for the paper itself. Results using the vertex-to-point-cloud

distance are provided in the supplementary material.

To ensure a fair comparison, all results are presented us-

ing the best parameter values found for each method, tuned

separately. To ensure that our results are not overly sensitive

to the selection of parameters λL and λS , we performed the

full reconstruction on the well-textured paper dataset over a

wide range of values, as presented in Table 1. It can be ob-

served that increasing or decreasing these parameters by a

factor of two around λL = 1 and λS = 0.25 results in very

little change in the final reconstruction accuracy, implying

that the method is sufficiently insensitive to these parame-

ters as long as they are within a reasonable range.

The surface rest shape is modeled by a 10 × 13 triangle

mesh in the well-textured dataset, 14 × 17 in the sparsely

textured dataset, and 15 × 14 on the T-shirt dataset. The

σs used in the hierarchical procedures were {15, 7, 3} and

{5, 3, 2}.

Our approach relies on frame-to-frame tracking and thus
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requires a sufficiently good initialization. However, because

the method has a wide basin of convergence, a rough initial-

ization suffices. Our method can fail when the initialization

is too far from the solution, when frame-to-frame deforma-

tions are so large that the relevancy scores stop being reli-

able, or when large changes in surface appearance and se-

vere occlusions cause the image energy term to become un-

informative. If the tracking is lost, it must be reinitialized,

for example by using a feature point based method. How-

ever, this did not prove to be necessary to obtain any of the

results shown below.

4.1. Basin of Convergence

To understand the limitations of the various cost func-

tions, we conducted a simple alignment experiment to test

their respective sensitivities to initial position and image

distractors; results are presented in Fig. 5. The red image

window in the input image is translated in x and y about the

known best alignment to the green template window, and

the cost to compare each window pair is plotted, to allow

the basins of convergence to be inspected visually. MI and

NCC both reach a maximum value close to 1 at the point of

best alignment, but we invert these functions so that a min-

imum cost of all functions is expected at the point of best

alignment.

The GBDF descriptors from Eq. 6 are seen to have a

strong minimum at the point of best alignment, with a rea-

sonably wide, smooth basin of convergence, the desired

property of a good cost function. However, Intensity, MI,

and NCC all have several nearby local minima. Mutual In-

formation is further seen to have a very narrow basin of con-

vergence around the correct point of best alignment, mean-

ing that it is very likely to converge to an incorrect align-

ment given an imperfect initial position.

This experiment only tests translation sensitivity because

this is the variation best understood visually, but the similar

results are likely from other types of misalignment.

4.2. Well-Textured Surfaces

We performed experiments using the well-textured pa-

per dataset presented in [36] consisting of 193 consecutive

images, for example see Fig. 8. Quantitative results are

presented in Fig. 6. For this well-textured dataset, all the

feature point-based methods work well and dense matching

methods are only slightly better. The biggest errors are due

to lighting changes, where intensity features using SSD oc-

casionally fail to track part of the surface, and hence have a

higher error.

To evaluate the robustness of each method to occlusion,

we add artificial hand image occlusions to the image se-

quence. The reconstruction results are presented in Fig. 7.

Feature-based methods still produce reasonably good 2D

reprojection results in this dataset, but the recovered depths
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Figure 6. Reconstruction results on the well-textured paper dataset,

no occlusions. All feature-points based methods work reasonably

well.
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Figure 7. Reconstruction results on the well-textured paper dataset,

with occlusions. Feature-based methods are largely robust to oc-

clusion, however the overall depths recovered are not as accurate

as the proposed framework that includes occlusion handling.

(a) Ostlund12 (b) GBDF alone (c) MI

(d) Tukey (e) Huber (f) GBDF+Oc

Figure 8. Output for a single frame showing relative reconstruction

accuracies. Mutual Information and M-estimators fail to correctly

handle the occlusion, while the proposed framework is successful.

under the occlusion are not very accurate. Fig. 8 provides

the output for a single frame where it can be seen that the

reconstruction fails when using the strong GBDF without

occlusion handling and also when using M-estimators to at-

tempt to handle occlusion, while the proposed framework

is still able to able track the surface accurately. In this sit-

uation, Mutual Information and both the Tukey and Huber

M-estimators are confused by the edges created by the fin-

ger and converge to incorrect locations.

We also demonstrate that the proposed rotation handling

technique described in Section 3.2.2 that overcomes the ro-

tation sensitivity of the GBDF descriptors can successfully

track a rotating deformable object. Fig. 9 shows that with-

out rotation handling, the original GBDF descriptors can

only track up to 50 degrees of rotation, while the proposed

rotation handling technique can track the whole sequence

including a full 360 degrees of rotation.
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Figure 5. Robustness of alignment functions w.r.t. translations between (a) template, and (f) input image, showing the basin of convergence

of the alignment costs around the correct position using Top row: weak Gaussian smoothing, Bottom row: strong Gaussian smoothing,

over (b)(g) Intensity, (c)(h) GBDF, (d)(i) MI, (e)(j) NCC.
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Figure 9. Tracking a rotating deformable surface. Top row: Without rotation handling, tracking with the original GBDF descriptors

eventually breaks down. Bottom row: Our modified GBDF features can track the whole sequence with up to 360
o of rotation.

4.3. Sparsely Textured Surfaces

To understand the performance of the methods in a re-

alistic, sparsely textured setting, a different dataset is re-

quired. A less textured paper dataset exists, as published

in [31], but no ground truth information is available for this

dataset in 3D, and so it is not suitable for numerical compar-

isons. Nevertheless, for qualitative comparison purposes,

we ran the proposed framework on this dataset, and our re-

constructions align very well to the image information. Ex-

ample frames are provided in Fig. 10, and the entire video is

provided as supplementary material. The best known pub-

lished results on this dataset are found in [30], which uses an

algorithm that requires training data in addition to explicitly

delineating the edges of the surface. Our proposed frame-

work is seen to perform as well as this previous method,

qualitatively, while requiring no learning.

In order to be able to perform more meaningful numer-

ical comparisons, we constructed a new dataset along with

ground truth in 3D using a Kinect sensor, example images

are provided in Fig. 12. This new sparsely textured pa-

per dataset contains various deformations and large lighting

changes along with occlusions.

Quantitative results using the new dataset are presented

in Fig. 11. Feature-based methods that fail to reconstruct

plausible surface shapes are indicated by high error bars

that exceed y-axis range. Fig. 12 provides a representative

reconstruction on a single frame. NCC and MI can track

the surface fairly accurately, however they fail to capture

fine details at the surface boundaries and hence the recov-

ered depths in 3D are not very precise. Without occlusion

Figure 10. Sample reconstructions from the [31] dataset. While

no ground truth is available in 3D, our results (top row) are qual-

itatively observed to be very accurate; the best published results

on this dataset are [31] (bottom row), which has to extract the im-

age edges explicitly, and involves learning, while our method does

not. We do not have access to a reference image where the sur-

face is in its planar rest shape, as our mesh assumes, causing some

misalignment at the surface boundary.
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Figure 11. Reconstruction results on the sparsely textured paper

dataset. Feature-based methods fail to reconstruct plausible sur-

faces, as indicated by the out-of-range error bars on the left.

handling, dense matching with gradient-based descriptors

often fails near occlusions. The M-estimators are inconsis-

tent near occlusions. However, the proposed framework is

seen to be able to accurately track the surface throughout

the entire sequence.
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(a) GBDF+Oc (b) NCC (c) MI

(d) GBDF alone (e) Tukey (f) Huber

Figure 12. Reconstruction results on the same single frame. The

proposed framework can track the whole sequence accurately,

while other methods are seen to have trouble handling occlusions

on top of the sparsely textured surface.

It is interesting to note that while the occlusions are

cleanly delineated in the relevancy score over a textured sur-

face, they are much less obviously visible in the relevancy

score over a sparsely textured surface. This is expected, be-

cause well-textured un-occluded regions have consistently

high correlation values with the template, and so it is only

the occluded regions that are assigned low relevancy scores.

However, image regions of little texture have low and noisy

correlation with a template, so occluded regions of similarly

low correlation are assigned similarly low relevancy scores,

and an occluded region is not as obviously distinct from the

low textured regions in the relevancy score map. This is one

of the strengths of the proposed framework, because only

the truly meaningful image regions are allowed to strongly

influence the image energy cost.

4.4. Applications

We demonstrate the robustness of our method in a va-

riety of real-world applications. First, we provide results

on a cloth surface undergoing a different type of deforma-

tion than studied in the paper datasets. We created a new

dataset along with ground truth in 3D using a Kinect sen-

sor, as before, to which artificial occlusions were added, ex-

ample images and our reconstructions are shown in Fig. 13.

Quantitative results are presented in Fig. 14.

The strength of our approach is demonstrated on a

sparsely-textured sail surface with a few dot markers, shown

in Fig. 15. Thanks to the large basin of convergence of our

algorithm, we can simply initialize the registration from a

very rough initial estimate without having first to establish

correspondences. Our algorithm naturally exploits line fea-

Figure 13. Our representative reconstructions on the T-shirt dataset

with artificial occlusions added. Rightmost: a tracking failure case

when occlusions appear at areas with large deformations.
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Figure 14. Reconstruction results on the T-shirt dataset.

Figure 15. Image registration and surface reconstruction on the

sparsely textured sail surface. From left to right: input image and

initialization; final registration and reconstruction; the sail shape

seen from a different viewpoint.

Figure 16. Surface reconstruction of an animation capture from a

monocular camera stream.

tures, which feature point-based methods usually do not.

Fig. 16 depicts another application of our method for an-

imation capture from a monocular camera stream. In this

setting, we capture the animations of a bird whose anima-

tions can be transferred to another character. The video of

captured animations is provided in the supplementary ma-

terial.

5. Conclusion

We have presented a framework for tracking both well

textured and sparsely textured deforming surfaces in videos

in the presence of occlusions. Our framework computes a

relevancy score for each pixel, which is then used to weight

the influence of the image information from that pixel in the

image energy cost function. The presented method favor-

ably compares to standard cost functions used for handling

occlusion, such as Mutual Information and M-estimators.
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