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Abstract

We introduce a new approach to intrinsic image decom-

position, the task of decomposing a single image into albedo

and shading components. Our strategy, which we term di-

rect intrinsics, is to learn a convolutional neural network

(CNN) that directly predicts output albedo and shading

channels from an input RGB image patch. Direct intrinsics

is a departure from classical techniques for intrinsic image

decomposition, which typically rely on physically-motivated

priors and graph-based inference algorithms.

The large-scale synthetic ground-truth of the MPI Sintel

dataset plays a key role in training direct intrinsics. We

demonstrate results on both the synthetic images of Sin-

tel and the real images of the classic MIT intrinsic image

dataset. On Sintel, direct intrinsics, using only RGB input,

outperforms all prior work, including methods that rely on

RGB+Depth input. Direct intrinsics also generalizes across

modalities; it produces quite reasonable decompositions on

the real images of the MIT dataset. Our results indicate that

the marriage of CNNs with synthetic training data may be

a powerful new technique for tackling classic problems in

computer vision.

1. Introduction

Algorithms for automatic recovery of physical scene

properties from an input image are of interest for many ap-

plications across computer vision and graphics; examples

include material recognition and re-rendering. The intrinsic

image model assumes that color image I is the point-wise

product of albedo A and shading S:

I = A · S (1)

Here, albedo is the physical reflectivity of surfaces in the

scene. Considerable research focuses on automated recov-

ery of A and S given as input only color image I [15, 11],

or given I and a depth map D for the scene [19, 1, 2, 5]. Our

work falls into the former category as we predict the decom-

position using only color input. Yet, we outperform modern

approaches that rely on color and depth input [19, 1, 2, 5].

output albedo image

input image

C N N

output shading image

Figure 1. Direct intrinsics. We construct a convolutional neural

network (CNN) that, acting across an input image, directly pre-

dicts the decomposition into albedo and shading images. It es-

sentially encodes nonlinear convolutional kernels for the output

patches (green boxes) from a much larger receptive field in the in-

put image (cyan box). We train the network on computer graphics

generated images from the MPI Sintel dataset [4] (Figure 2).

We achieve such results through a drastic departure from

most traditional approaches to the intrinsic image problem.

Many works attack this problem by incorporating strong

physics-inspired priors. One expects albedo and material

changes to be correlated, motivating priors such as piece-

wise constancy of albedo [18, 20, 1, 2] or sparseness of the

set of unique albedo values in a scene [25, 10, 26]. One

also expects shading to vary smoothly over the image [9].

Tang et al. [27] explore generative learning of priors using

deep belief networks. Though learning aligns with our phi-

losophy, we take a discriminative approach.

Systems motivated by physical priors are usually for-

mulated as optimization routines solving for a point-wise

decomposition that satisfies Equation 1 and also fits with

priors imposed over an extended spatial domain. Hence,

graph-based inference algorithms [29] and conditional ran-

dom fields (CRFs) in particular [3] are often used.

We forgo both physical modeling constraints and graph-

based inference methods. Our direct intrinsics approach

is purely data-driven and learns a convolutional regression

which maps a color image input to its corresponding albedo

and shading outputs. It is instantiated in the form of a mul-

tiscale fully convolutional neural network (Figure 1).

Key to enabling our direct intrinsics approach is avail-

2992



Image Ground-truth Albedo Our Albedo Ground-truth Shading Our Shading

Figure 2. Albedo-shading decomposition on the MPI Sintel dataset. Top: A sampling of frames from different scenes comprising the

Sintel movie. Bottom: Our decomposition results alongside ground-truth albedo and shading for some example frames.

ability of a large-scale dataset with example ground-truth

albedo-shading decompositions. Unfortunately, collecting

such ground-truth for real images is a challenging task as it

requires full control over the lighting environment in which

images are acquired. This is possible in a laboratory set-

ting [11], but difficult for more realistic scenes.

The Intrinsic Images in the Wild (IIW) dataset [3] at-

tempts to circumvent the lack of training data through large-

scale human labeling effort. However, its ground-truth is

not in the form of actual decompositions, but only rela-

tive reflectance judgements over a sparse set of point pairs.

These are human judgements rather than physical proper-

ties. They may be sufficient for training models with strong

priors [3], or most recently, CNNs for replicating human

judgements [24]. But they are insufficient for data-driven

learning of intrinsic image decompositions from scratch.

We circumvent the data availability roadblock by train-

ing on purely synthetic images and testing on both real

and synthetic images. The MPI Sintel dataset [4] provides

photo-realistic rendered images and corresponding albedo-

shading ground-truth derived from the underlying 3D mod-

els and art assets. These were first used as training data by

Chen and Koltun [5] for deriving a more accurate physics-

based intrinsics model. Figure 2 shows examples.

Section 2 describes the details of our CNN architecture

and learning objectives for direct intrinsics. Our design is

motivated by recent work on using CNNs to recover depth

and surface normal estimates from a single image [28, 8, 21,

7]. Section 3 provides experimental results and benchmarks

on the Sintel dataset, and examines the portability of our

model to real images. Section 4 concludes.

2. Direct Intrinsics

We break the full account of our system into specifica-

tion of the CNN architecture, description of the training
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Figure 3. CNN architectures. We explore two architectural variants for implementing the direct intrinsics network shown in Figure 1. Left:

Motivated by the multiscale architecture used by Eigen and Fergus [7] for predicting depth from RGB, we adapt a similar network structure

for direct prediction of albedo and shading from RGB and term it Multiscale CNN Regression (MSCR). Right: Recent work [23, 12] shows

value in directly connecting intermediate layers to the output. We experiment with a version of such connections in the scale 1 subnetwork,

adopting the hypercolumn (HC) terminology [12]. The subnetwork for scale 2 is identical to that on the left. M is input size factor.

data, and details of the loss function during learning.

2.1. Model

Intrinsic decomposition requires access to all the precise

details of an image patch as well as overall gist of the entire

scene. The multiscale model of Eigen and Fergus [7] for

predicting scene depth has these ingredients and we build

upon their network architecture. In their two-scale network,

they first extract global contextual information in a coarse

subnetwork (scale 1), and use that subnetwork’s output as

an additional input to a finer-scale network (scale 2). As

Figure 3 shows, we adopt a Multiscale CNN Regression

(MSCR) architecture with important differences from [7]:

• Instead of fully connected layers in scale 1, we use a

1×1 convolution layer following the upsampling layer.

This choice enables our model to run on arbitrary-sized

images in a fully convolutional fashion.

• For nonlinear activations, we use Parametric Rectified

Linear Units (PReLUs) [13]. With PReLUs, a negative

slope a for each activation map channel appears as a

learnable parameter:

g(xi) =

{

xi, xi ≥ 0

aixi, xi < 0
(2)

where xi is pre-activation value at i-th dimension of

a feature map. During experiments, we observe better

convergence with PReLUs compared to ReLUs.

• Our network has two outputs, albedo and shading (-a

and -s in Figure 3), which it predicts simultaneously.

• We optionally use deconvolution to learn to upsample

the scale 2 output to the resolution of the original im-

ages [22]. Without deconvolution, we upsample an

RGB output (C ′ = C = 3 in Figure 3 and the layer

between uses fixed bilinear interpolation). With de-

convolution, we set C ′ = 64 channels, C = 3, and

learn to upsample from a richer representation.

In addition to these basic changes, we explore a vari-

ant of our model, shown on the right side of Figure 3 that

connects multiple layers of the scale 1 subnetwork directly

to that subnetwork’s output. The reasoning follows that of

Maire et al. [23] and Hariharan et al. [12], with the objective

of directly capturing a representation of the input at multi-

ple levels of abstraction. We adopt the ”hypercolumn“ (HC)

terminology [12] to designate this modification to MSCR.

The remaining architectural details are as follows. For

convolutional layers 1 through 5 in the scale 1 net, we take

the common AlexNet [17] design. Following those, we up-

sample the feature map to a quarter of the original image

size, and feed it to a 1 × 1 convolutional layer with 64-

dimensional output (conv6). Scale 2 consists of 4 convolu-

tional layers for feature extraction followed by albedo and

shading prediction. The first of these layers has 9× 9 filters

and 96 output maps. Subsequently, we concatenate output

of the scale 1 subnetwork and feed the result into the re-

maining convolutional and prediction layers, all of which

use 5×5 filters. The optional learned deconvolutional layer

uses 8×8 filters with stride 4. Whether using deconvolution

or simple upsampling, we evaluate our output on a grid of

the same spatial resolution as the original image.

2.2. MPI Sintel Dataset

For training data, we follow Chen and Koltun [5] and

use the “clean pass” images of MPI Sintel dataset instead of

their “final” images, which are the result of additional com-

puter graphics tricks which distract from our application.

This eliminates effects such as depth of field, motion blur,

and fog. Ground-truth shading images are generated by ren-
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dering the scene with all elements assigned a constant grey

albedo.

Some images contain defect pixels due to software ren-

dering issues. We follow [5] and do not use images with

defects in evaluation. However, limited variation within the

Sintel dataset is a concern for data-driven learning. Hence,

we use defective images in training by masking out defec-

tive pixels (ignoring their contribution to training error).

2.3. MIT Intrinsic Image Dataset

To demonstrate adaptability of our model to the real

world images, we use the MIT intrinsic image dataset [11].

Images in this dataset are acquired with special apparatus,

yielding ground-truth reflectance and shading components

for real world objects. Here, reflectance is synonymous with

our terminology of albedo.

Due to the limited scalability of the collection method,

the MIT dataset contains only 20 different objects, with

each object having 11 images from different light sources.

Only 1 image of 11 has shading ground-truth. We gen-

erate each of 10 shading images S from a corresponding

original image I and reflectance image A (identical for all

the images because they are taken from the same object

and the same camera settings) by element-wise division:

S = I ′/(αA′), where I ′ and A′ denote mean values of

RGB channels of I and A respectively, and α is the value

that minimizes the sum of squared error of I − αA · S.

For our models trained on MIT, we denote inclusion of

these additional generated examples in training by append-

ing the designation GenMIT to the model name. We find

that some images in the MIT dataset do not exactly follow

I = αA · S, but including these generated shadings still

improves overall performance.

2.4. Data Synthesis: Matching Sintel to MIT

Even after generating shading images, the size of the

MIT dataset is still small enough to be problematic for data-

driven approaches. While we can simply train on Sintel and

test on MIT, we observed some differences in dataset char-

acteristics. Specifically, the rendering procedure generat-

ing Sintel ground-truth produces output that does not sat-

isfy I = αA · S. In order to shift the Sintel training data

into a domain more representative of real images, we resyn-

thesized ground-truth I from the ground-truth A and S. In

experiments, we denote this variant by ResynthSintel and

find benefit from training with it when testing on MIT.

2.5. Data Augmentation

Throughout all experiments, we crop and mirror train-

ing images to generate additional training examples. We

optionally utilize further data augmentation, denoted DA in

experiments, consisting of scaling and rotating images.

2.6. Learning

Given an image I , we denote our dense prediction of

albedo A and shading S maps as:

(A,S) = F (I,Θ) (3)

where Θ consists of all CNN parameters to be learned.

2.6.1 Scale Invariant L2 Loss

Since the intensity of our ground-truth albedo and shading

is not absolute, imposing standard regression loss (L2 error)

does not work. Hence, to learn Θ, we use the scale invariant

L2 loss described in [7]. Let Y ∗ be a ground-truth image in

log space of either albedo or shading and Y be a prediction

map. By denoting y = Y ∗−Y as their difference, the scale

invariant L2 loss is:

LSIL2(Y
∗, Y ) =

1

n

∑

i,j,c

y2i,j,c − λ
1

n2





∑

i,j,c

yi,j,c





2

(4)

where i, j are image coordinates, c is the channel index

(RGB) and n is the number of evaluated pixels. λ is a co-

efficient for balancing the scale invariant term: it is simply

least square loss when λ = 0, scale invariant loss when

λ = 1, and an average of the two when λ = 0.5. We se-

lect λ = 0.5 for training on MIT or Sintel separately, as it

has been found to produce good absolute-scale predictions

while slightly improving qualitative output [7]. We select

λ = 1 for training on MIT and Sintel jointly, as the inten-

sity scales from the two datasets differ and the generated

images no longer preserve the original intensity scale. Note

that n is not necessarily equal to the number of image pixels

because we ignore defective pixels in the training set.

The loss function for our MSCR model is:

L(A∗, S∗, A, S) = LSIL2(A
∗, A) + LSIL2(S

∗, S) (5)

2.6.2 Gradient L2 Loss

We also consider training with a loss that favors recovery

of piecewise constant output. To do so, we use the gradient

loss, which is an L2 error loss between the gradient of pre-

diction and that of the ground-truth. By letting ∇i and ∇j

be derivative operators in the i- and j-dimensions, respec-

tively, of an image, the gradient L2 loss is:

Lgrad(Y
∗, Y ) =

1

n

∑

i,j,c

[

∇iy
2
i,j,c +∇jy

2
i,j,c

]

(6)

Shading cannot be assumed piecewise constant; we do not

use gradient loss for it. Our objective with gradient loss is:

L(A∗, S∗, A, S) =

LSIL2(A
∗, A) + LSIL2(S

∗, S) + Lgrad(A
∗, A)

(7)

We denote as MSCR+GL the version of our model using it.
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2.6.3 Dropout

Though large compared to other datasets for intrinsic im-

age decomposition, MPI Sintel, with 890 examples, is still

small compared to the large-scale datasets for image clas-

sification [6] on which deep networks have seen success.

We find it necessary to add additional regularization during

training and employ dropout [14] with probability 0.5 for all

convolutional layers except conv1 though conv5 in scale 1.

2.7. Implementation Details

We implement our algorithms in the Caffe frame-

work [16]. We use stochastic gradient descent with ran-

dom initialization and momentum of 0.9 to optimize our

networks. Learning rates for each layer are tuned by hand to

get reasonable convergences. We train networks with batch

size 32 for 8000 to 50000 mini-batch iterations (depend-

ing on convergence speed and dataset). We randomly crop

images at a size of 416 × 416 pixels and mirror them hor-

izontally. For additional data augmentation (DA), we also

randomly rotate images in the range of [−15, 15] degrees

and zoom by a random factor in the range [0.8, 1.2].

Due to the architecture of our scale 1 subnetwork, our

CNN may take as input any image whose width and height

are each a multiple of 32 pixels. For testing, we pad the

images to fit this requirement and then crop the output map

to the original input size.

3. Empirical Evaluation

MPI Sintel dataset: We use a total of 890 images in

the Sintel albedo/shading dataset, from 18 scenes with 50
frames each (one of the scenes has only 40 frames). We

use two-fold cross validation, that is, training on half of the

images and testing on the remaining images, to obtain our

test results on all 890 images. Our training/testing split is a

scene split, placing an entire scene (all images it contains)

either completely in training or completely in testing. For

comparison to prior work, we retrain with the less stringent

historically-used image split of Chen and Koltun [5], which

randomly assigns each image to the train/test set.

MIT-intrinsic image dataset: MIT has 20 objects with

11 different light source images, for 220 images total. For

MIT-intrinsic evaluation, we also split into two and use two-

fold cross validation. Following best practices, we split the

validation set by objects rather than images.

We adopt the same three error measures as [5]:

MSE is the mean-squared error between albedo/shading

results and their ground-truth. Following [11, 5], we

use scale-invariant measures when benchmarking in-

trinsics results; the absolute brightness of each image

is adjusted to minimize the error.

LMSE is the local mean-squared error, which is the av-

erage of the scale-invariant MSE errors computed on

overlapping square windows of size 10% of the image

along its larger dimension.

DSSIM is the dissimilarity version of the structural sim-

ilarity index (SSIM), defined as 1−SSIM
2

. SSIM char-

acterizes image similarity as perceived by human ob-

servers. It combines errors from independent aspects

of luminance, contrast, and structure, which are cap-

tured by mean, variance, and covariance of patches.

On Sintel, we compare our model with two trivial de-

composition baselines where either shading or albedo is as-

sumed uniform grey, the classical Retinex algorithm ([11]

version) which obtains intrinsics by thresholding gradients,

and three state-of-the-art intrinsics approaches which use

not only RGB image input but also depth input. Barron et

al. [2] estimate the most likely intrinsics using a shading

rendering engine and learned priors on shapes and illumi-

nations. Lee et al. [19] estimate intrinsic image sequences

from RGB+D video subject to additional shading and tem-

poral constraints. Chen and Koltun [5] use a refined shad-

ing model by decomposing it into direct irradiance, indirect

irradiance, and a color component. On MIT, we compare

with Barron et al. [2] as well as the trivial baseline.

3.1. Results

The top panel of Table 1 (image split case) shows

that evaluated on Chen and Koltun’s test set, our

MSCR+dropout+GL model significantly outperforms all

competing methods according to MSE and LMSE. It is also

overall better according to DSSIM than the current state-of-

art method of Chen and Koltun: while our albedo DSSIM is

0.0054 larger, our shading DSSIM is 0.0145 smaller. Note

that Chen and Koltun’s method utilizes depth information

and is also trained on the DSSIM measure directly, whereas

ours is based on the color image alone and is not trained to

optimize the DSSIM score.

The bottom panel of Table 1 (scene-split case) is more in-

dicative of an algorithm’s out-of-sample generalization per-

formance; the test scenes have not been seen during train-

ing. These results show that: 1) The out-of-sample errors in

the scene-split case are generally larger than the in-sample

errors in the image-split case; 2) While HC has negligible

effect, each tweak with dropout, gradient loss, learned de-

convolutional layers, and data augmentation improves per-

formance; 3) Training on Sintel and MIT together provides

a small improvement when testing on Sintel.

Figure 2 shows sample results from our best model,

while Figure 4 displays a side-by-side comparison with

three other approaches. An important distinction is that our

results are based on RGB alone, while the other approaches

require both RGB and depth input. Across a diversity of
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Figure 4. Comparison on MPI Sintel. We compare our intrinsic image decompositions with those of Lee et al. [19], Barron et al. [2], and

Chen and Koltun [5]. Our algorithm is unique in using only RGB and not depth input channels, yet it generates decompositions superior to

those of the other algorithms, which all rely on full RGB+D input (inverse depth shown above). See Table 1 for quantitative benchmarks.
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Sintel Training & Testing: Image Split MSE LMSE DSSIM

Albedo Shading Avg Albedo Shading Avg Albedo Shading Avg

Baseline: Shading Constant 0.0531 0.0488 0.0510 0.0326 0.0284 0.0305 0.2140 0.2060 0.2100

Baseline: Albedo Constant 0.0369 0.0378 0.0374 0.0240 0.0303 0.0272 0.2280 0.1870 0.2075

Retinex [11] 0.0606 0.0727 0.0667 0.0366 0.0419 0.0393 0.2270 0.2400 0.2335

Lee et al. [19] 0.0463 0.0507 0.0485 0.0224 0.0192 0.0208 0.1990 0.1770 0.1880

Barron et al. [2] 0.0420 0.0436 0.0428 0.0298 0.0264 0.0281 0.2100 0.2060 0.2080

Chen and Koltun [5] 0.0307 0.0277 0.0292 0.0185 0.0190 0.0188 0.1960 0.1650 0.1805

MSCR+dropout+GL 0.0100 0.0092 0.0096 0.0083 0.0085 0.0084 0.2014 0.1505 0.1760

Sintel Training & Testing: Scene Split MSE LMSE DSSIM

Albedo Shading Avg Albedo Shading Avg Albedo Shading Avg

MSCR 0.0238 0.0250 0.0244 0.0155 0.0172 0.0163 0.2226 0.1816 0.2021

MSCR+dropout 0.0228 0.0240 0.0234 0.0147 0.0168 0.0158 0.2192 0.1746 0.1969

MSCR+dropout+HC 0.0231 0.0247 0.0239 0.0147 0.0167 0.0157 0.2187 0.1750 0.1968

MSCR+dropout+GL 0.0219 0.0242 0.0231 0.0143 0.0166 0.0154 0.2163 0.1737 0.1950

MSCR+dropout+deconv+DA 0.0209 0.0221 0.0215 0.0135 0.0144 0.0139 0.2081 0.1608 0.1844
∗MSCR+dropout+deconv+DA+GenMIT 0.0201 0.0224 0.0213 0.0131 0.0148 0.0139 0.2073 0.1594 0.1833

Key: GL = gradient loss HC = hypercolumns DA = data augmentation (scaling, rotation) GenMIT = add MIT w/generated shading to training

Table 1. MPI Sintel benchmarks. We report the standard MSE, LMSE, and DSSIM metrics (lower is better) as used in [5]. The upper

table displays test performance for the historical split in which frames from Sintel are randomly assigned to train or test sets. Our method

significantly outperforms competitors. The lower table compares our architectural variations on a more stringent dataset split which ensures

that images from a single scene are either all in the training set or all in the test set. Figures 2 and 4 display results of our starred method.

MIT Training & Testing: Our Split MSE LMSE

Albedo Shading Avg Albedo Shading Total [11]
∗Ours: MSCR+dropout+deconv+DA+GenMIT 0.0105 0.0083 0.0094 0.0296 0.0163 0.0234

∗Ours without deconv 0.0123 0.0135 0.0129 0.0304 0.0164 0.0249

Ours without DA 0.0107 0.0086 0.0097 0.0300 0.0167 0.0239

Ours without GenMIT 0.0106 0.0097 0.0102 0.0302 0.0184 0.0252

Ours + Sintel 0.0110 0.0103 0.0107 0.0293 0.0182 0.0243
∗Ours + ResynthSintel 0.0096 0.0085 0.0091 0.0267 0.0172 0.0224

MIT Training & Testing: Barron et al.’s Split MSE LMSE

Albedo Shading Avg Albedo Shading Total [11]

Naive Baseline (from [2], uniform shading) 0.0577 0.0455 0.0516 − − 0.0354

Barron et al. [2] 0.0064 0.0098 0.0081 0.0162 0.0075 0.0125

Ours + ResynthSintel 0.0096 0.0080 0.0088 0.0275 0.0152 0.0218

Key: DA = data augmentation (scaling, rotation) GenMIT / Sintel / ResynthSintel = add MIT generated shading / Sintel / resynthesized Sintel to training

Table 2. MIT Intrinsic benchmarks. On the real images of the MIT dataset [11], our system is competitive with Barron et al. [2]

according to MSE, but lags behind in LMSE. Ablated variants (upper table, middle rows) highlight the importance of replacing upsampling

with learned deconvolutional layers. Variants using additional sources of training data (upper table, bottom rows) show gain from training

with resynthesized Sintel ground-truth that obeys the same invariants as the MIT data. Note that the last column displays the reweighted

LMSE score according to [11] rather than the simple average. For visual comparison between results of the starred methods, see Figure 5.

scenes, any of the three RGB+D approaches could break

down in one of the scenes on either albedo or shading: e.g.

Lee et al.’s method on the bamboo scene, Barron et al.’s

method on the dragon scene, Chen and Koltun’s method on

the old man scene. The quality of our results is even across

scenes and remains overall consistent with both albedo and

shading ground-truth.

Table 2 shows that our model graciously adapts to real

images. Trained on MIT alone, it produces reasonable re-

sults. Naively adding Sintel data to training hurts perfor-

mance, but mixing our resynthesized version of Sintel into

training results in noticeable improvements to albedo esti-

mation when testing on MIT. The behavior of ablated sys-

tem variants on MIT mirrors our findings on Sintel. On

MIT, the learned deconvolutional layer is especially impor-

tant. Output in Figure 5 exhibits clear visual degradation

upon its removal. Figure 5 illustrates a tradeoff when using

resynthesized Sintel training data: there is an overall bene-

fit, but a Sintel-specific shading prior (bluish tint) leaks in.

In addition to Sintel and MIT, we briefly experiment with

testing, but not training, our models on the IIW dataset [3].

Here, performance is less than satisfactory (WHDR=27.2),

compared to both our own prior work [24] and the cur-

rent state-of-the-art [30], which are trained specifically for
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Image Ground-truth w/o deconv Base System w/ResynthSintel

Albedo

Ground-truth w/o deconv Base System w/ResynthSintel

Shading

Figure 5. Adaptability to real images. Our base system (MSCR+dropout+deconv+DA+GenMIT) produces quite reasonable results when

trained on the MIT intrinsic image dataset. Without learned deconvolution, both albedo and shading quality suffer noticeably. Including

resynthesized Sintel data during training improves albedo prediction, but biases shading towards Sintel-specific lighting conditions.

IIW. We speculate that there could be some discrepancy be-

tween the tasks of predicting human reflectance judgements

(WHDR metric) and physically-correct albedo-shading de-

compositions. As we observed when moving from Sintel to

MIT, there could be a domain shift between Sintel/MIT and

IIW for which we are not compensating. We leave these

interesting issues for future work.

4. Conclusion

We propose direct intrinsics, a new intrinsic image de-

composition approach that is not based on the physics of

image formation or the statistics of shading and albedo pri-

ors, but learns the dual associations between the image and

the albedo+shading components directly from training data.

We develop a two-level feed-forward CNN architecture

based on a successful previous model for RGB to depth

prediction, where the coarse level architecture predicts the

global context and the finer network uses the output of the

coarse network to predict the finer resolution result. Com-

bined with well-designed loss functions, data augmentation,

dropout, and deconvolution, we demonstrate that direct in-

trinsics outperforms state-of-the-art methods that rely not

only on more complex priors and graph-based inference, but

also on the additional input of scene depth.

Our data-driven learning approach is more flexible, gen-

eralizable, and easier to model. It only needs training data,

requires no hand-designed features or representations, and

can adapt to unrealistic illuminations and complex albedo,

shape, and lighting patterns. Our model works with both

synthetic and real images and can further improve on real

images when augmenting training with synthetic examples.
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