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Abstract

Photometric stereo is widely used for 3D reconstruction.
However, its use in scattering media such as water, biolog-
ical tissue and fog has been limited until now, because of
forward scattered light from both the source and object, as
well as light scattered back from the medium (backscatter).
Here we make three contributions to address the key modes
of light propagation, under the common single scattering
assumption for dilute media. First, we show through ex-
tensive simulations that single-scattered light from a source
can be approximated by a point light source with a single
direction. This alleviates the need to handle light source
blur explicitly. Next, we model the blur due to scattering of
light from the object. We measure the object point-spread
function and introduce a simple deconvolution method. Fi-
nally, we show how imaging fluorescence emission where
available, eliminates the backscatter component and in-
creases the signal-to-noise ratio. Experimental results in a
water tank, with different concentrations of scattering me-
dia added, show that deconvolution produces higher-quality
3D reconstructions than previous techniques, and that when
combined with fluorescence, can produce results similar to
that in clear water even for highly turbid media.

1. Introduction

Obtaining 3D information about an object submersed in
fog, haze, water, or biological tissue is difficult because of
scattering [5, 15, 22]. In this paper, we focus on photo-
metric stereo, which estimates surface normals from inten-
sity changes under varying illumination. In air, photometric
stereo produces high-quality geometry, even in textureless
regions with small details, and is a widely used 3D recon-
struction method.

In a scattering medium, however, light propagation is
affected by scattering which degrades the performance of
photometric algorithms unless accounted for (Fig. 1). Dis-
tance dependent attenuation caused by the medium has been
dealt with in the past [16]. Here, our contributions lie in
handling three scattering effects (Fig. 2), based on a single
scatter model [25]: 1) light traveling from the source to the
object is blurred due to forward scattering; 2) light travel-
ing from the object to the camera is blurred due to forward
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Figure 1. 3D shape recovery of a squirt gun using photomet-
ric stereo in a scattering medium. [Left] one of the input images,
[Right] reconstruction results. Err Z is the mean absolute error
in the heights and captures the overall shape error, while Err N
is the mean angular error in the normals and captures the error
caused by noise. a) Result of standard photometric stereo in air.
It ignores the medium effects, and thus the shape is not well de-
fined. b) Reconstruction result of a recent method [32]. c) By
applying our method to account for blur due to scattering from
the object, we improve the previous result and recover the correct
shape. However the surface still exhibits noise due to a small dy-
namic range after backscatter subtraction. d) Using fluorescence
to optically eliminate the backscatter prior to deblurring reduces
the noise and produces the best result. e) Result in clear water.
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scattering; 3) light traveling from the source is scattered
back towards the camera without hitting the object. This
is known as backscatter and is an additive component that
veils the object. All these effects are distance dependent
and thus depend on the object 3D surface: the property we
aim to reconstruct. To handle this we introduce the small
surface variations approximation for the object (Sec. 3),
that assumes surface changes are small relative to the dis-
tance from the object (that is assumed to be known). This
assumption removes the dependence on the unknown sur-
face heights Z, but unlike the common distant light/camera
approximations, it still allows for dependencies on spatial
locations X and Y. One important consequence of this is
the ability to model anisotropic light sources, which is not
possible for distant lights.

Forward scatter was previously compensated for itera-
tively for both pathways (light to object and object to cam-
era) simultaneously [21]. We analyze the paths separately.
The resulting algorithm is simpler, requires fewer images
and yields better results. First, consider the blurring of light
traveling fo the object from the source (Fig. 2b). The pho-
tometric stereo formulation assumes a point light source,
illuminating from a single direction. However, if the source
is scattered by the medium, this no longer holds: the point
light source is spread, and the direction of light rays inci-
dent on the object changes. Nonetheless, for a Lambertian
surface, illuminated from a variety of directions, we still
get a linear equation between the image intensities and the
surface normals [24]. Here, we show through simulations
in a large variety of single scattering media, that a forward-
scattered light source illuminating a Lambertian surface can
be well approximated by a non-blurred light source in an ef-
fective purely absorbing medium (Sec. 6). This allows for
much easier calibration in practice.

Next, we observe that the blur caused by scattering from
the object to the camera (Fig. 2c) significantly affects the
shape of the surface reconstructed by photometric stereo.
This important effect has been neglected in many previous
works. In general, the point-spread function (PSF) for an
object is spatially varying and dependent on the unknown
scene depths. However, we demonstrate that a spatially in-
variant approximation can still achieve good results, when
calibrated for the desired medium and approximate object
distance. We estimate the PSF and use it to deconvolve the
images after backscatter has been removed (Sec. 7). These
corrected images are used as input to a linear photometric
stereo algorithm to recover the surface normals, which are
then integrated. This results in much higher quality 3D sur-
faces across varying turbidity levels.

Finally, consider the backscatter component (Fig. 2a).
In a previous work (Tsiotsios et al. [32]) backscatter was
calibrated and subtracted from the input images. However,
when backscatter is strong relative to the object signal, sub-
tracting it after image formation leads to lack of dynamic
range and lower signal-to-noise ratios (SNR) [30] that sig-
nificantly degrades deblurring and reconstruction. Here we

show that if the object fluoresces, this can be leveraged
to optically remove the backscatter prior to image forma-
tion (Sec. 8). Fluorescence is the re-emission of photons in
wavelengths longer than the excitation light [6], and there-
fore the backscatter can be eliminated by optically block-
ing the excitation wavelengths and imaging only the fluo-
rescence emission. This improves SNR, especially in high
turbidity. This approach is feasible as many natural under-
water objects such as corals and algae fluoresce naturally.

We demonstrate our method experimentally in a water
tank (Sec. 10) with varying turbidity levels. Deblurring can
be used separately or combined with fluorescence imaging
to significantly improve the quality of photometric stereo
reconstructions, as shown in Fig. 1.

2. Previous Work

The traditional setup for photometric stereo assumes a
Lambertian surface, orthographic projection, distant light
sources, and a non-participating medium [34]. However,
underwater light is exponentially attenuated with distance,
and thus the camera and lights must be placed close to the
scene for proper illumination. This means that the ortho-
graphic camera model, and the distant light assumptions,
are no longer valid. In addition, attenuation and scattering
by the medium need to be accounted for. These effects were
partially considered in previous works.

Near-Field Effects and Exponential Attenuation: Pho-
tometric stereo in air was solved with perspective cam-
eras [17, 27], nearby light sources [14], or both [4, 11].
Kolagani et al. [16] uses a perspective camera, nearby light
sources and includes exponential attenuation of light in a
medium. Their formulation leads to nonlinear solutions for
the normals and heights. We handle these near field effects
but linearize the problem (Sec. 3).

Photometric Stereo with Backscatter: Narasimhan et
al. [20] handles backscatter and attenuation, with the as-
sumption of distant light sources and an orthographic cam-
era. Tsiotsios et al. [32] extends this to nearby point sources
and assumes the backscatter saturates close to the camera
and thus does not depend on the unknown surface height.
Then, it can be calibrated and subtracted from the images.
We use the method in [32] in one of our variants.
Backscatter Removal:  Backscatter was previously re-
moved for visibility enhancement, by structured light [7],
range-gating [15], or using polarizers [29]. Nevertheless,
these methods do not necessarily preserve photometric in-
formation. It is sometimes possible to reduce backscatter
by increasing the camera light source separation [7, 12], but
this often leads to more shadowed regions, creating prob-
lems for photometric stereo.

Fluorescence Imaging: Removing scatter using fluores-
cence is used in microscopy [33], where many objects of
interest are artificially dyed to fluoresce. Hullin et al. [9]
imaged objects immersed in a fluorescent liquid to recon-
struct their 3D structure. It was recently shown that the
fluorescence emission yields photometric stereo reconstruc-
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Figure 2. A perspective camera is imaging an object point at X, with a normal N, illuminated by a point light source at S. The object is
in a scattering medium, and thus light may be scattered in the three ways shown, detailed in Sec. 3.

tions [23, 28] in air that are superior to reflectance images
as the fluorescence emission behaves like a Lambertian sur-
face due to its isotropic emission.

Deblurring Forward Scatter: Zhang et al. [35] and Ne-
gahdaripour et al. [21] handle blur caused by forward scat-
ter using the PSF derived in [12, 18]. Their PSF depends
on the unknown distances, as well as three empirical pa-
rameters, and affects both the path from the light source to
the object and from the object to the camera. They itera-
tively deconvolve and update the depths until a good result
is achieved. Trucco et al. [31] simplify the PSF of [12, 18]
to only depend on two parameters while assuming the depth
is known. Our PSF is nonparametric, independent of the
unknown depths and only affects the path to the camera,
which allows for a direct solution without iteration. While
we look at a Lambertian surface in a scattering medium, In-
oshita et al. [10] and Dong et al. [3] consider the problem of
photometric stereo in air on a surface that exhibits subsur-
face scattering, which blurs the radiance across the surface.
They deconvolve the images to improve the quality of the
normals recovered using linear photometric stereo. Tanaka
et al. [26] also model forward scatter blur as a depth de-
pendent PSF and combine it with multi (spatial) frequency
illumination to recover the appearance of a small number of
inner slices of a translucent material.

3. Overview and Assumptions

In this section we introduce the image formation model,
considering each of the modes of light propagation in a sin-
gle scattering medium, as shown in Fig. 2. We derive ex-
pressions for each component in the following sections.

Consider a perspective camera placed at the origin, with
the image (x,y) coordinates parallel to the world’s (X,Y)
axes, and the Z-axis aligned with the camera’s optical axis.
Let the point X = (X,Y, Z) be the point on the object’s
surface along the line of sight of pixel x = (z,y). Let S
be the world coordinates of a point light source, and define
D(X) = S — X as the vector from the object to the source.

We assume a single scattering medium which allows us
to express the radiance L, reflected by a surface point as the
sum of two terms:

LO(X) = Lq(x) + Ls(x) (D

where L is the direct radiance from the source (Sec. 4), and

L is the radiance from the source which is scattered from
other directions onto X (Sec. 6 and Fig. 2b).

Next, we express the radiance arriving at the camera as
the sum of three terms:

L(x) = Lo(x)e 71Xl 4 Ly(x) + Le(x) 2)

where L,, is the light reflected by the surface point X which
arrives at the camera without undergoing scattering. Note
that it is attenuated by e~ IX|l where ¢ is the extinction
coefficient. Lj is composed of rays of light emitted by the
source that are scattered into x’s line of sight before hit-
ting the surface (Sec. 5 and Fig. 2a). This term is known
as backscatter. Finally, L., is composed of rays of light re-
flected by other points on the surface that are scattered into
pixel x’s line of sight (Sec. 7 and Fig. 2c).

In order to write analytic expressions for these terms and
derive a simple solution we make two assumptions. First,
the surface is Lambertian with a spatially varying albedo
p(X). Second, we assume that surface variations in height
are small compared to object distance from the camera.
We call this the small surface variations approximation and
note that it is weaker than the common distant light sources
and orthographic projection approximations. Let Z be the
average Z coordinate of the surface (assumed to be known).
Then, the approximation claims that for every point on the
surface: | Z(X) — Z| < Z, VX.

The approximation results in a weak perspective such
that the projection x of X in the image plane is given by

x v\ zZ Z 2\

where f is the known focal length. Note that for a given
pixel, since we know its (z,y) coordinates and the aver-
age object distance Z, the world coordinates X are known.
Specifically, D(X) is independent of the unknown object
height Z but still depends on X and Y, whereas in the dis-
tant light sources approximation D(X) is a constant.

Outline of Our Method

Given an input image L we eliminate the backscatter L,
by one of two methods. The first follows [32]: backscatter
from each light source is measured by imaging it with no
objects in the scene, and then the measured backscatter is
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subtracted from the input images. In the second, backscatter
is optically eliminated using fluorescence as we explain in
Sec. 8. Once backscatter is removed, the resulting images
are deblurred, using a calibrated PSF, to recover L, (Sec. 7,
Eq. 18). Next we write L, as a linear equation between the
unknown surface normals, albedo and an equivalent light
source (Sec. 6, Eq. 9), which we approximate as an effective
point source in a purely absorbing medium with effective
extinction coefficient (Sec. 6, Eq. 11). With a minimum
of 3 images under distinct light locations the normals can
be solved for, as in conventional photometric stereo. The
normals are then integrated to recover a smooth surface.

4. Direct Radiance

First, consider the direct reflected radiance from a Lam-
bertian surface[34]:

L =10"px) N @

where N is the unit surface normal and D is the normalized
source-to-object vector. The radiance on the object surface
I1(X) depends on the radiant intensity Iy of the source in

direction! (—D):
1(X) = (Io(= D))~ IPEN) D) . (5)

Eq. 5 accounts for nearby angularly-varying sources, expo-
nential attenuation along the optical path length with extinc-
tion coefficient o, and inverse-square distance falloff.

5. Backscatter

Light is scattered as it travels through a medium. The
fraction of light scattered to each direction is determined by
the phase function P(«a), where o € [0,27] is the angle
between the original ray direction and scattered ray, and 3
is the scattering coefficient.

Light which is scattered directly into the camera by the
medium without reaching the object is termed backscatter
and is given by [19, 25] (Fig. 2a):

1| R
Ly(x) = ﬁ/o I(rX)P(a)e™7"dr (6)

The integration variable r is the distance from the camera
to the imaged object point X along the line of sight (LOS),
that is a unit direction X. The scattering angle « is given by
cos(a) = D - X (recall that D is the direction to the light)
and I(rX) is the direct radiance of the source at point rX
as defined in Eq. 5.

Note that for the small surface variations approximation,
X and hence the limits of the integral are known for a given
pixel. Therefore, the backscatter does not depend on the
unknown height of the object and is a (different) constant
for each pixel, similar to Tsiotsios et al. [32].

Ithe direction is negative as we consider outgoing rays from the source.

6. Single Scattered Source Radiance

Because of the medium, light rays that are not originally
pointed at an object point may be scattered and reach it from
the entire hemisphere of directions €2 (Fig. 2b), termed for-
ward scattered radiance

p(X)

™

Lo(x) = / L@ Nds @)

where L;(w) is the total radiance scattered into the direction
w and is given by

Li(w)=0 I(X + tw)P(a)e 7tdt , ®)
t=0

where ¢ is the distance from the object, and the angle « is
given by cos(ar) = D(X + tw) - w. Note that D is the

direction of the integration point to the light.

Substituting Eqgs. 4,7 into Eq. 1 and rearranging yields:
X N

Lo(X) = La(X) + Lo(X) = "X peax) &, 9)

™

where
Li(w)wdw . (10)

LX) = I(X)D(X) +/€Q

Here, the direct light as well as the integrated scattered con-
tributions can be thought of as an equivalent distant light
source not in a medium, although, this equivalent source
may be different (in direction and magnitude) for each sur-
face point, and thus is not a true distant source. Neverthe-
less, Eq. 9 gives a linear equation for the unknown normals
and albedo, which can be solved for given a minimum of 3
images under distinct light locations.

Unfortunately, evaluating Eq. 10 requires careful calibra-
tion of the scattering parameters /3, 0 and P(«)) which can
be difficult. Instead, we next show through simulations, that
for a wide variety of media, L°4(X) can be approximated
as an effective point source in a purely absorbing medium
with effective extinction coefficient. This allows for simple
calibration.

Effective Point Source Simulations

We approximate L¢4(X) as:

wln( — D(X))e-dIDX)I
fol ﬁg’ggw DX), D

Ee(X) ~

where the effective source has the same position S and in-
tensity distribution I as the real source, but is scaled by «,
and the effective medium has extinction coefficient 6. Note
that « is a global brightness scale, which is the same for all
the lights, and thus does not need to be explicitly calibrated,
as it cancels out in the normal estimation.

For our simulations we used an isotropic point source at a
distance d from a Lambertian surface patch with an angle ¢
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Figure 3. a) The relative error between Lo(d, ¢) and f/o(d, @) for
g = 0.8 and 3 = 0.0026. Note that the spike only reaches 3% and
is located at ¢ = 90° where L, = 0 due to shadowing. ¢ near 90°
and above is not usually relevant for photometric stereo. b) The
mean relative error between L, and L, for § € [07 O.OOS}mm_1
and g € [0,0.9]. The approximation errors are small.

between the surface normal and light direction. For the scat-
tering function, we used the common Henyey-Greenstein
phase function [&] that has a single parameter of the medium
g € [—1,1]. In water, g is usually between 0.7 — 0.9 [19].

We compute L,(d, ¢) for d € [200,600]mm, ¢ € [0, 7],
for a variety of media given by 3 € [0,0.005)mm~! and
g € [0,0.9]. Note that we choose I such that L, (200, 0) is
normalized to 1. To reduce the number of parameters we set
o = 3, which does not influence the analysis”. For each pa-
rameter pair g, 5 we compute the approximation parameters
x and 0 by minimizing:

min Y | Lo(d, ¢) — Lo(d, 9)I* . (12)
7

As an example, Fig. 3a depicts the relative error,
RE(d, ¢) = |Lo(d, ¢)—L,(d, ¢)|, forg = 0.8, 5 = 0.0026,
that fit our setup. Figure 3b depicts the mean relative er-
ror (MRE) for a range of values 3 € [0,.005]mm~! and
g € [0,.9], where the mean is taken over d and ¢. The MRE
was less than 2% across all medium conditions, justifying
our approximation.

7. Single Scatter Object Blur

Similar to the light source blur, radiance from the object
is also blurred while it propagates to the camera (Fig. 2c¢).
As we demonstrate, this effect deteriorates the performance
of photometric stereo, although it has been neglected in pre-
vious works [25].

The contribution of object blur to the pixel intensity is
computed by integrating light scattered into the LOS of X
from all other points on the surface:

(1%l
Le(x) = B/ /eQ Lo(X")P(a)e ) dwdr.

’ (13)
Here r is the distance along the LOS, X’ is the object sur-
face point intersected by the ray starting at point X in di-
rection w. Its radiance is L,(X’) and its distance to the

scatter point in the LOS is given by ¢ = [[rX — X'|| with
scattering angle cosa = w - (—X).

%In general 3 < o, but since 3 purely scales Lg, a smaller value of
beta would make L, closer to L4 and thus Lo would be an even better fit
than we calculated.

We now show that L, can be recovered from
Loe Xl 4+ L, by deconvolution with a constant PSF.

Deblurring Object Scatter

First we rewrite Eq. 13 to integrate over the area of the
object surface dA = dw - t?/ cos 6 instead of solid angle
dw, where t is the distance from X’ to the scattering event,
and 6 is the angle between the normal at X’ and the ray of
light before scattering. Eq. 13 now becomes

(11|
L.(x)=8 . LO(X’)/O P(a)e”

Now we define the scattering kernel
K(X,X') = 86X — X" )e oIXl 4

1| 0
3 / P(a)e=o(t+D) %dr, (15)
0
where §(X — X') is the Dirac delta function. Now,

Lo(x)e Xl L L.(x) = [ K(X,X')L,(X")dA(X') .

x (16)
In general, the kernel K, depends on X, X’ and the un-
known normals N’. For an orthographic camera viewing a
plane at constant depth, K is shift invariant and Eq. 16 can
be written as a convolution with a PSF. Motivated by this,
we found empirically that for a given Z it is approximately
shift invariant (and rotationally symmetric).
Denoting the PSF as h, we get

Lo(x)e Xl 4 Lo(x)~ hxL, . (17)

We emphasize here that we have shown that under a sin-
gle scattering model, the forward scatter from the object can
be written as an integral transform with kernel K. This jus-
tifies approximating the forward scattering as a PSF which
is not obvious in the form of Eq. 13.

We solve Eq. 17 by writing the image as a column vector
and representing the convolution as a matrix operation

L—ILy=HL, (18)

where we have substituted the backscatter compensated im-
age L — L, for Lo.e_f’“XH + L., and H is the matrix rep-
resentation of h. Here H is a large nonsparse matrix and
thus storing it in memory and directly inverting it is infea-
sible. Instead we solve the linear system of Eq. 18 using
conjugate gradient descent. This requires only the matrix
vector operation which can be computed as a convolution
and implemented using a Fast Fourier Transform (FFT).

8. Backscatter Removal Using Fluorescence

While we are able to subtract the backscatter compo-
nent, it is an additive component that effectively reduces
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Figure 4. a) Backscatter is caused by light that is scattered into the
camera by a medium, before it reaches the object and has the same
color as the illumination. Thus, the barrier filter used to block
Sfluorescence excitation also blocks backscatter, while imaging the
signal from the object. We use this property to remove backscatter
in input images. b) Photometric stereo reconstruction of a fluores-
cent sphere using backscatter subtracted reflectance images. One
of the input images is shown on the left, with visible noise and blur.
Blur in the input images flattens the reconstruction. c) Looking
at fluorescence images as an input, the backscatter is eliminated
while maintaining a higher SNR. However the blur still flattens the
reconstruction. d) Deblurring the backscatter subtracted images
recovers the general shape but suffers from noise as seen by the
spiky surface. e) Deblurring the fluorescence results in the correct
shape with much less noise.

the dynamic range of the signal from the object, degrades
the image quality and reduces SNR [30]. As such it is
beneficial to optically remove it when imaging. Here, we
use the observation that for fluorescence images taken with
non-overlapping excitation and emission filters, there is no
backscatter in the image (Fig. 4a). In fluorescence imaging,
the signal of interest is composed of wavelengths that are
longer than that of the illumination, and a barrier filter on
the camera is used to block the reflected light. The backscat-
ter is composed of light scattered by the medium before it
reaches the object. Thus, the backscatter has the same spec-
tral distribution as the light source, which is blocked by the
barrier filter on the camera. This insight enables imaging
without loss of dynamic range even in highly turbid me-
dia. Compared to a backscatter subtracted reflectance im-
age, a fluorescence image has less noise (Fig. 4b,c). This
difference becomes even more apparent after deconvolution
(Fig. 4d,e).

In addition, in [23, 28] it was shown that the fluorescence
emission acts as a Lambertian surface in photometric recon-
structions. Thus, imaging fluorescence has an additional
advantage as it relaxes the need for a Lambertian surface.

In the development of our algorithm we assumed a sin-
gle set of medium parameters 3, o and P(«). However
these quantities are in general wavelength dependent. In re-
flectance imaging, the wavelength of the light is the same on
both pathways: light to object, and object to camera. How-

Front View

Backscatter

Figure 5. [Left] Our experimental setup consists of a camera
looking through a glass port into a tank. [Right] 8 LEDs are
mounted inside the tank around the camera port illuminating the
object placed at the back of the tank.

ever, in fluorescence imaging they are different. Neverthe-
less, the only parameters that require calibration in our so-
lution are the effective extinction coefficient ¢ and the PSF.
The parameter ¢ is estimated for the excitation wavelength
and the PSF is estimated for the emission wavelength, and
as such we do not need to calibrate any extra parameters in
the case of fluorescence imaging.

9. Implementation
9.1. Experimental Setup

Our setup is shown in Fig. 5. We used a Canon 1D cam-
era with a 28mm lens placed 2cm away from a 10 gallon
glass aquarium. All sides except the front (where the cam-
era looks in) were painted black to reduce reflection. In
addition, a black panel was suspended just below the sur-
face of the water to remove reflection from the air-water
interface. The objects were placed at an average distance of
40cm from the front of the tank. For point illumination we
used Cree XML - RGBW Star LEDs. The LEDs were water
proofed by coating the electrical terminals with epoxy. Re-
flection images were taken under white illumination while
fluorescent images were taken under blue illumination with
a Tiffen #12 emission filter on the camera. We used tap
water, and the turbidity was increased using a mixture of
whole milk and grape juice (milk is nearly purely scatter-
ing, while grape juice is nearly purely absorbing and thus
by mixing them we can achieve a variety of scattering con-
ditions [19]). The LEDs were mounted inside the tank on
a square around the camera, four on the corners and four
on the edges. Their positions were measured. Images were
acquired in Raw mode which is linear and the normal inte-
gration was done using the method of [1].

9.2. Geometric and Radiometric Calibration

Images of a checkerboard (in clear water) were used
to calibrate the intrinsic camera parameters (implicitly ac-
counting for refraction) [2]. The location of each light was
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Figure 6. Cross-sections of the spherical cap reconstruction in
turbid medium using various methods compared to ground truth.
The clear water reconstruction resembles the ground truth. Only
correcting for the backscatter (by subtraction or fluorescence)
yields flattened results. Deblurring the backscatter subtracted im-
ages recovers the shape but is degraded by noise (the surface is
jagged). Deblurring the fluorescence images produces the best re-
sults.

measured using a ruler, and transformed to the camera ref-
erence frame. To calibrate each light’s angular intensity dis-
tribution we imaged a matte painted (assumed to be Lam-
bertian) plane at a known position under illumination from
each light in clear water. Using Eq. 4, the known geometry,
and ¢ = 0, we compute Io(—]j), the angular dependence
of the light source.

9.3. Calibration of Medium Parameters

The backscatter component is measured using the cal-
ibration method of [32]. For each light an image is cap-
tured with no object in the field-of-view and subsequently
subtracted from future reflectance images. This is not used
when imaging fluorescence.

The PSF is estimated using a calibration target similar
to [13]. We use a matte painted checkerboard which is im-
aged with its axis aligned to the image plane at the approxi-
mate depth of the objects we plan to reconstruct. As the PSF
is rotationally symmetric its parameters are the values along
a radius [hg, ..., hs], where hg is the center value and h; is
the value on the support radius s. The PSF and the effective
extinction coefficient & are estimated by optimizing

min min > b Lo(x,5) = (L= L) (19)
X

Note that the PSF is not normalized due to loss of energy
(attenuation) from the object to the camera. L, is computed
using the calibrated lights, known geometry, and register-
ing the checkerboard albedo, measured in clear water to the
image in turbid water. The inner optimization is an overde-
termined linear system holding ¢ fixed. We sweep over the
values of & and choose the one with the minimum error.

10. Results

We imaged four objects: a spherical cap, a plastic toy
squirt gun, a plastic toy lobster, and a fluorescent painted
mask in clear water as well as four increasing turbidities
(Figs. 1, 4, 6-8). Each turbidity level corresponded to
adding 1.25ml of milk to the tank. For the spherical cap and
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Figure 7. Errors in the reconstructions of four objects as a func-
tion of turbidity, compared to clear water reconstruction. Top rows
are average percent errors in heights and bottom rows are average
angular errors in normals. Removing backscatter by either sub-
traction or using fluorescence performs similarly. Deblurring the
backscatter compensated images significantly improves the recon-
structions. In high turbidity where the backscatter is strong com-
pared to the object signal deblurring the backscatter subtracted
images degrades due to noise, while deblurring the fluorescence
suffers less, as the fluorescence images have a higher SNR.

the lobster, we also added 15ml of grape juice per turbidity
level to increase absorption.

We employ two error metrics to evaluate the quality
of our reconstructions: The mean absolute difference in
heights (Err Z = mean(Z — Z)) and the mean angular
error in the normals (Err N = mean(acos(N - Ng¢)), where
Z4¢ and Ny, are the ground truth heights and normals. Note
that during integration, random noise in the normals can-
cels out locally, resulting in reconstructions with the correct
overall shape, but with rough surfaces. As such Err Z cap-
tures systematic errors that affect the overall shape, but is
less sensitive to noise in the normals.

We see that the reconstructed spherical cap in clear water
nearly perfectly matches the ground truth (Fig. 6) with an
Err Z of 1.4% and Err N of 3°. This justifies our use of clear
water reconstructions as ground truth for the other objects
where true ground truth is not available.

Fig. 1 depicts the input images and resulting reconstruc-
tions for the toy gun, and Figs. 4, 6 depict results on the
sphere, both in the highest turbidity level. Fig. 8 depicts
images and reconstructions for the toy lobster for turbid-
ity levels 2-4 and the mask in turbidity level 4. In all
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left to right. The fourth column depicts the mask in turbidity 4. [1st row] result of standard photometric stereo (scattering is ignored).
The shape is not reconstructed correctly. [2nd row] Result of removing the backscatter as in [32]. The reconstruction is improved but
still unsatisfactory. [3rd row] Using fluorescence to remove backscatter. The result is slightly better than backscatter subtraction. [4th
row] result of deblurring the backscatter subtracted images. This recovers the shape quite well when the SNR is not too low. However this
is not the case in high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR remains high even in high turbidity
and thus we continue to get excellent quality reconstructions. Note the roughness on the fourth row, second column due to noise.

results, reconstructions from uncorrected images are flat-
tened. Removing backscatter, either by backscatter subtrac-
tion (current state-of-the-art [32]), or using fluorescence,
but without handling blur, also produces flattened results.
For lower turbidities deblurring backscatter subtracted im-
ages produces excellent results, but in the highest turbidity,
where the backscatter dominates the signal, using fluores-
cence reduces the noise and results in a smoother surface.
Quality of results as a function of turbidity level is
demonstrated in Figs. 7, 8. The plots in Fig. 7 show how
Err Z and Err N increase for each method as the turbidity
increases, where the lowest error is achieved using the de-
blurred fluorescence images. In the highest turbidity level,
the deblurred reflectance image often performs worse than
all other methods, as the deblurring degrades with noise.

11. Conclusion

In this paper, we have developed a comprehensive
and novel solution for photometric stereo in a scattering
medium. We address each of the three key modes of sin-
gle scattering, showing how a scattered light source can be
modeled as an unscattered point light source, accounting
for blur due to scattering from the object through a novel

deconvolution framework, and demonstrating how fluores-
cence imaging can optically eliminate backscatter, increas-
ing SNR in high turbidity. With the simple small surface
variations approximation, we reduce the problem to a lin-
ear system for the surface normals, almost identical to con-
ventional photometric stereo. Our practical methods for de-
convolution and fluorescence can be combined to produce
reconstructions almost as accurate as those obtained in air,
and significantly better than previous methods.

Future work includes removing the need to know the av-
erage object distance, the need to calibrate the PSF at that
distance, as well as relaxing the small surface variations
approximation. Although our theory only applies to a sin-
gle scattering medium, in practice, our calibrated PSF may
be taking multiple scattering effects into account. Extend-
ing our theory to multiple scattering would provide further
insight.
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