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Abstract

Photometric stereo is widely used for 3D reconstruction.

However, its use in scattering media such as water, biolog-

ical tissue and fog has been limited until now, because of

forward scattered light from both the source and object, as

well as light scattered back from the medium (backscatter).

Here we make three contributions to address the key modes

of light propagation, under the common single scattering

assumption for dilute media. First, we show through ex-

tensive simulations that single-scattered light from a source

can be approximated by a point light source with a single

direction. This alleviates the need to handle light source

blur explicitly. Next, we model the blur due to scattering of

light from the object. We measure the object point-spread

function and introduce a simple deconvolution method. Fi-

nally, we show how imaging fluorescence emission where

available, eliminates the backscatter component and in-

creases the signal-to-noise ratio. Experimental results in a

water tank, with different concentrations of scattering me-

dia added, show that deconvolution produces higher-quality

3D reconstructions than previous techniques, and that when

combined with fluorescence, can produce results similar to

that in clear water even for highly turbid media.

1. Introduction

Obtaining 3D information about an object submersed in
fog, haze, water, or biological tissue is difficult because of
scattering [5, 15, 22]. In this paper, we focus on photo-
metric stereo, which estimates surface normals from inten-
sity changes under varying illumination. In air, photometric
stereo produces high-quality geometry, even in textureless
regions with small details, and is a widely used 3D recon-
struction method.

In a scattering medium, however, light propagation is
affected by scattering which degrades the performance of
photometric algorithms unless accounted for (Fig. 1). Dis-
tance dependent attenuation caused by the medium has been
dealt with in the past [16]. Here, our contributions lie in
handling three scattering effects (Fig. 2), based on a single
scatter model [25]: 1) light traveling from the source to the

object is blurred due to forward scattering; 2) light travel-
ing from the object to the camera is blurred due to forward
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Figure 1. 3D shape recovery of a squirt gun using photomet-

ric stereo in a scattering medium. [Left] one of the input images,

[Right] reconstruction results. Err Z is the mean absolute error

in the heights and captures the overall shape error, while Err N

is the mean angular error in the normals and captures the error

caused by noise. a) Result of standard photometric stereo in air.

It ignores the medium effects, and thus the shape is not well de-

fined. b) Reconstruction result of a recent method [32]. c) By

applying our method to account for blur due to scattering from

the object, we improve the previous result and recover the correct

shape. However the surface still exhibits noise due to a small dy-

namic range after backscatter subtraction. d) Using fluorescence

to optically eliminate the backscatter prior to deblurring reduces

the noise and produces the best result. e) Result in clear water.
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scattering; 3) light traveling from the source is scattered

back towards the camera without hitting the object. This
is known as backscatter and is an additive component that
veils the object. All these effects are distance dependent
and thus depend on the object 3D surface: the property we
aim to reconstruct. To handle this we introduce the small

surface variations approximation for the object (Sec. 3),
that assumes surface changes are small relative to the dis-
tance from the object (that is assumed to be known). This
assumption removes the dependence on the unknown sur-
face heights Z, but unlike the common distant light/camera
approximations, it still allows for dependencies on spatial
locations X and Y . One important consequence of this is
the ability to model anisotropic light sources, which is not
possible for distant lights.

Forward scatter was previously compensated for itera-
tively for both pathways (light to object and object to cam-
era) simultaneously [21]. We analyze the paths separately.
The resulting algorithm is simpler, requires fewer images
and yields better results. First, consider the blurring of light
traveling to the object from the source (Fig. 2b). The pho-
tometric stereo formulation assumes a point light source,
illuminating from a single direction. However, if the source
is scattered by the medium, this no longer holds: the point
light source is spread, and the direction of light rays inci-
dent on the object changes. Nonetheless, for a Lambertian
surface, illuminated from a variety of directions, we still
get a linear equation between the image intensities and the
surface normals [24]. Here, we show through simulations
in a large variety of single scattering media, that a forward-
scattered light source illuminating a Lambertian surface can
be well approximated by a non-blurred light source in an ef-
fective purely absorbing medium (Sec. 6). This allows for
much easier calibration in practice.

Next, we observe that the blur caused by scattering from

the object to the camera (Fig. 2c) significantly affects the
shape of the surface reconstructed by photometric stereo.
This important effect has been neglected in many previous
works. In general, the point-spread function (PSF) for an
object is spatially varying and dependent on the unknown
scene depths. However, we demonstrate that a spatially in-
variant approximation can still achieve good results, when
calibrated for the desired medium and approximate object
distance. We estimate the PSF and use it to deconvolve the
images after backscatter has been removed (Sec. 7). These
corrected images are used as input to a linear photometric
stereo algorithm to recover the surface normals, which are
then integrated. This results in much higher quality 3D sur-
faces across varying turbidity levels.

Finally, consider the backscatter component (Fig. 2a).
In a previous work (Tsiotsios et al. [32]) backscatter was
calibrated and subtracted from the input images. However,
when backscatter is strong relative to the object signal, sub-
tracting it after image formation leads to lack of dynamic
range and lower signal-to-noise ratios (SNR) [30] that sig-
nificantly degrades deblurring and reconstruction. Here we

show that if the object fluoresces, this can be leveraged
to optically remove the backscatter prior to image forma-
tion (Sec. 8). Fluorescence is the re-emission of photons in
wavelengths longer than the excitation light [6], and there-
fore the backscatter can be eliminated by optically block-
ing the excitation wavelengths and imaging only the fluo-
rescence emission. This improves SNR, especially in high
turbidity. This approach is feasible as many natural under-
water objects such as corals and algae fluoresce naturally.

We demonstrate our method experimentally in a water
tank (Sec. 10) with varying turbidity levels. Deblurring can
be used separately or combined with fluorescence imaging
to significantly improve the quality of photometric stereo
reconstructions, as shown in Fig. 1.

2. Previous Work

The traditional setup for photometric stereo assumes a
Lambertian surface, orthographic projection, distant light
sources, and a non-participating medium [34]. However,
underwater light is exponentially attenuated with distance,
and thus the camera and lights must be placed close to the
scene for proper illumination. This means that the ortho-
graphic camera model, and the distant light assumptions,
are no longer valid. In addition, attenuation and scattering
by the medium need to be accounted for. These effects were
partially considered in previous works.

Near-Field Effects and Exponential Attenuation: Pho-
tometric stereo in air was solved with perspective cam-
eras [17, 27], nearby light sources [14], or both [4, 11].
Kolagani et al. [16] uses a perspective camera, nearby light
sources and includes exponential attenuation of light in a
medium. Their formulation leads to nonlinear solutions for
the normals and heights. We handle these near field effects
but linearize the problem (Sec. 3).

Photometric Stereo with Backscatter: Narasimhan et
al. [20] handles backscatter and attenuation, with the as-
sumption of distant light sources and an orthographic cam-
era. Tsiotsios et al. [32] extends this to nearby point sources
and assumes the backscatter saturates close to the camera
and thus does not depend on the unknown surface height.
Then, it can be calibrated and subtracted from the images.
We use the method in [32] in one of our variants.

Backscatter Removal: Backscatter was previously re-
moved for visibility enhancement, by structured light [7],
range-gating [15], or using polarizers [29]. Nevertheless,
these methods do not necessarily preserve photometric in-
formation. It is sometimes possible to reduce backscatter
by increasing the camera light source separation [7, 12], but
this often leads to more shadowed regions, creating prob-
lems for photometric stereo.

Fluorescence Imaging: Removing scatter using fluores-
cence is used in microscopy [33], where many objects of
interest are artificially dyed to fluoresce. Hullin et al. [9]
imaged objects immersed in a fluorescent liquid to recon-
struct their 3D structure. It was recently shown that the
fluorescence emission yields photometric stereo reconstruc-
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Figure 2. A perspective camera is imaging an object point at X, with a normal N, illuminated by a point light source at S. The object is

in a scattering medium, and thus light may be scattered in the three ways shown, detailed in Sec. 3.

tions [23, 28] in air that are superior to reflectance images
as the fluorescence emission behaves like a Lambertian sur-
face due to its isotropic emission.
Deblurring Forward Scatter: Zhang et al. [35] and Ne-
gahdaripour et al. [21] handle blur caused by forward scat-
ter using the PSF derived in [12, 18]. Their PSF depends
on the unknown distances, as well as three empirical pa-
rameters, and affects both the path from the light source to
the object and from the object to the camera. They itera-
tively deconvolve and update the depths until a good result
is achieved. Trucco et al. [31] simplify the PSF of [12, 18]
to only depend on two parameters while assuming the depth
is known. Our PSF is nonparametric, independent of the
unknown depths and only affects the path to the camera,
which allows for a direct solution without iteration. While
we look at a Lambertian surface in a scattering medium, In-
oshita et al. [10] and Dong et al. [3] consider the problem of
photometric stereo in air on a surface that exhibits subsur-
face scattering, which blurs the radiance across the surface.
They deconvolve the images to improve the quality of the
normals recovered using linear photometric stereo. Tanaka
et al. [26] also model forward scatter blur as a depth de-
pendent PSF and combine it with multi (spatial) frequency
illumination to recover the appearance of a small number of
inner slices of a translucent material.

3. Overview and Assumptions

In this section we introduce the image formation model,
considering each of the modes of light propagation in a sin-
gle scattering medium, as shown in Fig. 2. We derive ex-
pressions for each component in the following sections.

Consider a perspective camera placed at the origin, with
the image (x, y) coordinates parallel to the world’s (X,Y )
axes, and the Z-axis aligned with the camera’s optical axis.
Let the point X = (X,Y, Z) be the point on the object’s
surface along the line of sight of pixel x = (x, y). Let S
be the world coordinates of a point light source, and define
D(X) = S−X as the vector from the object to the source.

We assume a single scattering medium which allows us
to express the radiance Lo reflected by a surface point as the
sum of two terms:

Lo(x) = Ld(x) + Ls(x) (1)

where Ld is the direct radiance from the source (Sec. 4), and

Ls is the radiance from the source which is scattered from
other directions onto X (Sec. 6 and Fig. 2b).

Next, we express the radiance arriving at the camera as
the sum of three terms:

L(x) = Lo(x)e
−σ‖X‖ + Lb(x) + Lc(x) (2)

where Lo, is the light reflected by the surface point X which
arrives at the camera without undergoing scattering. Note
that it is attenuated by e−σ‖X‖ where σ is the extinction
coefficient. Lb is composed of rays of light emitted by the
source that are scattered into x’s line of sight before hit-
ting the surface (Sec. 5 and Fig. 2a). This term is known
as backscatter. Finally, Lc, is composed of rays of light re-
flected by other points on the surface that are scattered into
pixel x’s line of sight (Sec. 7 and Fig. 2c).

In order to write analytic expressions for these terms and
derive a simple solution we make two assumptions. First,
the surface is Lambertian with a spatially varying albedo
ρ(X). Second, we assume that surface variations in height
are small compared to object distance from the camera.
We call this the small surface variations approximation and
note that it is weaker than the common distant light sources
and orthographic projection approximations. Let Z̄ be the
average Z coordinate of the surface (assumed to be known).
Then, the approximation claims that for every point on the
surface: |Z(X)− Z̄| ≪ Z̄, ∀X.

The approximation results in a weak perspective such
that the projection x of X in the image plane is given by

x =

(

f
X

Z̄
, f

Y

Z̄

)t

; X =

(

Z̄

f
x,

Z̄

f
y, Z̄

)t

, (3)

where f is the known focal length. Note that for a given
pixel, since we know its (x, y) coordinates and the aver-
age object distance Z̄, the world coordinates X are known.
Specifically, D(X) is independent of the unknown object
height Z but still depends on X and Y , whereas in the dis-
tant light sources approximation D(X) is a constant.

Outline of Our Method
Given an input image L we eliminate the backscatter Lb

by one of two methods. The first follows [32]: backscatter
from each light source is measured by imaging it with no
objects in the scene, and then the measured backscatter is
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subtracted from the input images. In the second, backscatter
is optically eliminated using fluorescence as we explain in
Sec. 8. Once backscatter is removed, the resulting images
are deblurred, using a calibrated PSF, to recover Lo (Sec. 7,
Eq. 18). Next we write Lo as a linear equation between the
unknown surface normals, albedo and an equivalent light
source (Sec. 6, Eq. 9), which we approximate as an effective
point source in a purely absorbing medium with effective
extinction coefficient (Sec. 6, Eq. 11). With a minimum
of 3 images under distinct light locations the normals can
be solved for, as in conventional photometric stereo. The
normals are then integrated to recover a smooth surface.

4. Direct Radiance

First, consider the direct reflected radiance from a Lam-
bertian surface[34]:

Ld(x) = I(X)
ρ(X)

π
D̂(X) · N̂ , (4)

where N̂ is the unit surface normal and D̂ is the normalized
source-to-object vector. The radiance on the object surface
I(X) depends on the radiant intensity I0 of the source in

direction1 (−D̂):

I(X) =
(

I0
(

− D̂(X)
)

e−σ‖D(X)‖
)

/‖D(X)‖2 . (5)

Eq. 5 accounts for nearby angularly-varying sources, expo-
nential attenuation along the optical path length with extinc-
tion coefficient σ, and inverse-square distance falloff.

5. Backscatter

Light is scattered as it travels through a medium. The
fraction of light scattered to each direction is determined by
the phase function P (α), where α ∈ [0, 2π] is the angle
between the original ray direction and scattered ray, and β
is the scattering coefficient.

Light which is scattered directly into the camera by the
medium without reaching the object is termed backscatter

and is given by [19, 25] (Fig. 2a):

Lb(x) = β

∫ ‖X‖

0

I(rX̂)P (α)e−σrdr (6)

The integration variable r is the distance from the camera
to the imaged object point X along the line of sight (LOS),

that is a unit direction X̂. The scattering angle α is given by

cos(α) = D̂ · X̂ (recall that D is the direction to the light)

and I(rX̂) is the direct radiance of the source at point rX̂
as defined in Eq. 5.

Note that for the small surface variations approximation,
X and hence the limits of the integral are known for a given
pixel. Therefore, the backscatter does not depend on the
unknown height of the object and is a (different) constant
for each pixel, similar to Tsiotsios et al. [32].

1the direction is negative as we consider outgoing rays from the source.

6. Single Scattered Source Radiance

Because of the medium, light rays that are not originally
pointed at an object point may be scattered and reach it from
the entire hemisphere of directions Ω (Fig. 2b), termed for-
ward scattered radiance

Ls(x) =
ρ(X)

π

∫

ω∈Ω

Li(ω)(ω · N̂) dω . (7)

where Li(ω) is the total radiance scattered into the direction
ω and is given by

Li(ω) = β

∫ ∞

t=0

I(X+ tω)P (α)e−σtdt , (8)

where t is the distance from the object, and the angle α is

given by cos(α) = D̂(X + tω) · ω. Note that D is the
direction of the integration point to the light.

Substituting Eqs. 4,7 into Eq. 1 and rearranging yields:

Lo(X) = Ld(X) + Ls(X) =
ρ(X)

π
L

eq(X) · N̂ , (9)

where

L
eq(X) = I(X)D̂(X) +

∫

ω∈Ω

Li(ω)ω dω . (10)

Here, the direct light as well as the integrated scattered con-
tributions can be thought of as an equivalent distant light
source not in a medium, although, this equivalent source
may be different (in direction and magnitude) for each sur-
face point, and thus is not a true distant source. Neverthe-
less, Eq. 9 gives a linear equation for the unknown normals
and albedo, which can be solved for given a minimum of 3
images under distinct light locations.

Unfortunately, evaluating Eq. 10 requires careful calibra-
tion of the scattering parameters β, σ and P (α) which can
be difficult. Instead, we next show through simulations, that
for a wide variety of media, Leq(X) can be approximated
as an effective point source in a purely absorbing medium
with effective extinction coefficient. This allows for simple
calibration.

Effective Point Source Simulations

We approximate Leq(X) as:

L̃
eq(X) ≈

κI0
(

− D̂(X)
)

e−σ̃‖D(X)‖

‖D(X)‖2
D̂(X) , (11)

where the effective source has the same position S and in-
tensity distribution I0 as the real source, but is scaled by κ,
and the effective medium has extinction coefficient σ̃. Note
that κ is a global brightness scale, which is the same for all
the lights, and thus does not need to be explicitly calibrated,
as it cancels out in the normal estimation.

For our simulations we used an isotropic point source at a
distance d from a Lambertian surface patch with an angle φ
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Figure 3. a) The relative error between Lo(d, φ) and L̃o(d, φ) for

g = 0.8 and β = 0.0026. Note that the spike only reaches 3% and

is located at φ = 90◦ where L̃o = 0 due to shadowing. φ near 90◦

and above is not usually relevant for photometric stereo. b) The

mean relative error between Lo and L̃o for β ∈ [0, 0.005]mm−1

and g ∈ [0, 0.9]. The approximation errors are small.

between the surface normal and light direction. For the scat-
tering function, we used the common Henyey-Greenstein
phase function [8] that has a single parameter of the medium
g ∈ [−1, 1]. In water, g is usually between 0.7− 0.9 [19].

We compute Lo(d, φ) for d ∈ [200, 600]mm, φ ∈ [0, π],
for a variety of media given by β ∈ [0, 0.005]mm−1 and
g ∈ [0, 0.9]. Note that we choose I0 such that Lo(200, 0) is
normalized to 1. To reduce the number of parameters we set
σ = β, which does not influence the analysis2. For each pa-
rameter pair g, β we compute the approximation parameters
κ and σ̃ by minimizing:

min
κ,σ̃

∑

d,φ

|Lo(d, φ)− L̃o(d, φ)|
2 . (12)

As an example, Fig. 3a depicts the relative error,

RE(d, φ) = |Lo(d, φ)−L̃o(d, φ)|, for g = 0.8, β = 0.0026,
that fit our setup. Figure 3b depicts the mean relative er-
ror (MRE) for a range of values β ∈ [0, .005]mm−1 and
g ∈ [0, .9], where the mean is taken over d and φ. The MRE
was less than 2% across all medium conditions, justifying
our approximation.

7. Single Scatter Object Blur

Similar to the light source blur, radiance from the object
is also blurred while it propagates to the camera (Fig. 2c).
As we demonstrate, this effect deteriorates the performance
of photometric stereo, although it has been neglected in pre-
vious works [25].

The contribution of object blur to the pixel intensity is
computed by integrating light scattered into the LOS of X
from all other points on the surface:

Lc(x) = β

∫ ‖X‖

r=0

∫

ω∈Ω

Lo(X
′)P (α)e−σ(t+r) dωdr.

(13)
Here r is the distance along the LOS, X′ is the object sur-
face point intersected by the ray starting at point rX in di-
rection ω. Its radiance is Lo(X

′) and its distance to the

scatter point in the LOS is given by t = ‖rX̂ − X
′‖ with

scattering angle cosα = ω · (−X̂).

2In general β ≤ σ, but since β purely scales Ls, a smaller value of

beta would make Lo closer to Ld and thus L̃0 would be an even better fit
than we calculated.

We now show that Lo can be recovered from
Loe

−σ‖X‖ + Lc by deconvolution with a constant PSF.

Deblurring Object Scatter
First we rewrite Eq. 13 to integrate over the area of the

object surface dA = dω · t2/ cos θ instead of solid angle
dω, where t is the distance from X

′ to the scattering event,
and θ is the angle between the normal at X′ and the ray of
light before scattering. Eq. 13 now becomes

Lc(x) = β

∫

X′

Lo(X
′)

∫ ‖X‖

0

P (α)e−σ(t+r) cos θ

t2
dr dA.

(14)
Now we define the scattering kernel

K(X,X′) = δ(X−X
′)e−σ‖X‖ +

β

∫ ‖X‖

0

P (α)e−σ(t+r) cos θ

t2
dr, (15)

where δ(X−X
′) is the Dirac delta function. Now,

Lo(x)e
−σ‖X‖ +Lc(x) =

∫

X′

K(X,X′)Lo(X
′) dA(X′) .

(16)
In general, the kernel K, depends on X, X′ and the un-

known normals N̂′. For an orthographic camera viewing a
plane at constant depth, K is shift invariant and Eq. 16 can
be written as a convolution with a PSF. Motivated by this,
we found empirically that for a given Z̄ it is approximately
shift invariant (and rotationally symmetric).

Denoting the PSF as h, we get

Lo(x)e
−σ‖X‖ + Lc(x) ≈ h ∗ Lo . (17)

We emphasize here that we have shown that under a sin-
gle scattering model, the forward scatter from the object can
be written as an integral transform with kernel K. This jus-
tifies approximating the forward scattering as a PSF which
is not obvious in the form of Eq. 13.

We solve Eq. 17 by writing the image as a column vector
and representing the convolution as a matrix operation

L− Lb = HLo (18)

where we have substituted the backscatter compensated im-
age L − Lb for Loe

−σ‖X‖ + Lc, and H is the matrix rep-
resentation of h. Here H is a large nonsparse matrix and
thus storing it in memory and directly inverting it is infea-
sible. Instead we solve the linear system of Eq. 18 using
conjugate gradient descent. This requires only the matrix
vector operation which can be computed as a convolution
and implemented using a Fast Fourier Transform (FFT).

8. Backscatter Removal Using Fluorescence

While we are able to subtract the backscatter compo-
nent, it is an additive component that effectively reduces
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