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Abstract

Unsupervised and weakly-supervised visual learning in

large image collections are critical in order to avoid the

time-consuming and error-prone process of manual label-

ing. Standard approaches rely on methods like multiple-

instance learning or graphical models, which can be com-

putationally intensive and sensitive to initialization. On the

other hand, simpler component analysis or clustering meth-

ods usually cannot achieve meaningful invariances or se-

mantic interpretability. To address the issues of previous

work, we present a simple but effective method called Se-

mantic Component Analysis (SCA), which provides a de-

composition of images into semantic components.

Unsupervised SCA decomposes additive image repre-

sentations into spatially-meaningful visual components that

naturally correspond to object categories. Using an over-

complete representation that allows for rich instance-level

constraints and spatial priors, SCA gives improved results

and more interpretable components in comparison to tradi-

tional matrix factorization techniques. If weakly-supervised

information is available in the form of image-level tags,

SCA factorizes a set of images into semantic groups of su-

perpixels. We also provide qualitative connections to tradi-

tional methods for component analysis (e.g. Grassmann av-

erages, PCA, and NMF). The effectiveness of our approach

is validated through synthetic data and on the MSRC2 and

Sift Flow datasets, demonstrating competitive results in un-

supervised and weakly-supervised semantic segmentation.

1. Introduction

In the last decade, image classification has become an in-

credibly active research topic with widespread applications.

Most methods for visual recognition are fully-supervised

and make use of bounding boxes or pixel-wise segmenta-

tions to locate objects of interest. However, this type of

manual labeling is time consuming, error-prone, and poten-

tially suboptimal [29]. On the other hand, the increasing

prevalence of large image collections emphasizes the need

Figure 1. An overview of Semantic Component Analysis (SCA)

applied to the task of unsupervised object discovery. (a) From a

set of images containing multiple classes, (b) Bag-of-Words fea-

tures are extracted pooling information from the entire image. (c)

SCA decomposes these global representations into component his-

tograms associated with meaningful component objects. The seg-

ments corresponding to these object histograms are shown in (d).

for fully- or partially-automated techniques for analyzing

and archiving their content.

Real-world images are often composed of a number of

distinct (but semantically-related) regions. A natural aim

of visual learning is to find these meaningful regions in an

unsupervised or weakly-supervised manner. For instance,

consider Fig. 1(a): it is clear that there are four component

objects that can explain the given images. The question is

how to recover these semantic components with minimal

supervision. Algorithms that approach this problem face

many challenges, primarily in dealing with large intra-class

variability in appearance, illumination, and pose.

A generative model for image formation can be consid-

ered as mixing a number of semantic components: one for

each class present within an image. While the same local

image features (e.g. quantized sift descriptors) may ap-

pear in instances from different classes, the distributions of

features within semantic regions are often distinct across

classes. If these global image features could be unmixed

into their semantic components–each representing consis-

tent segmentations belonging only to a single class–then

1484



recognition tasks could be simplified dramatically. This

problem motivates a component analysis (CA) approach to

image understanding in which an image is decomposed into

semantic components.

Image decomposition is often accomplished through ma-

trix factorization techniques, such as Principal Compo-

nent Analysis (PCA) [38], Non-negative Matrix Factoriza-

tion (NMF) [21], or Probabilistic Latent Semantic Analy-

sis (pLSA) [36]. These methods approximate data as linear

combinations of latent factors by minimizing total recon-

struction error. While some variations of these approaches

can result in localized, semantically-meaningful, or parts-

based image decompositions, they are generally unable to

adhere to a key property of image formation: objects are

occlusive, i.e. image formation is nonlinear in pixel space

because an object occludes everything behind it. Thus, im-

ages tend to consist of contiguous groups of pixels that be-

long only to a single object class. On the other hand, matrix

decompositions represent each pixel as a superposition of

multiple components. Since they rely on a shared basis that

only approximates the original data, modifying these meth-

ods to enforce semantically-meaningful components by in-

corporating such nonlinear pixel-level constraints with real-

word, unaligned images is nontrivial.

This paper introduces Semantic Component Analysis

(SCA), a novel method for visual data decomposition that

finds semantic factorizations of visual data. Fig. 1 illustrates

SCA applied to Bag-of-Words (BoW) histograms extracted

from input images. Our algorithm decomposes these global

image features into class-specific histograms (Fig. 1c) con-

structed from partitions of semantically-related image seg-

ments (Fig. 1d). While existing factorization methods use

a global basis common to all images, the key idea of SCA

is the introduction of instance-specific sets of components

allowing for more complex image constraints and priors.

Specifically, we enforce that object partitions be spatially-

consistent. This type of coherence would not be not possi-

ble with a global basis because instances of the same class

vary in appearance and location across images.

For completeness, we analyze the relationship between

SCA and existing techniques for traditional component

analysis, empirically showing qualitative and quantitative

similarities with PCA, NMF, and the Grassmann aver-

age [12]. These relations suggest that SCA be considered as

a spatially-invariant extension to CA that adheres to pixel-

level assumptions about image formation without explicitly

requiring a parametric model of image transformation.

The effectiveness of SCA is validated through synthetic

data and on the MSRC2 and Sift Flow datasets, demonstrat-

ing the qualitatively-meaningful unsupervised clustering of

image regions and competitive results in weakly-supervised

semantic segmentation.

2. Related Work

Component Analysis (CA) and Matrix Factorization:

CA methods play a key role in many computer vision appli-

cations due to its ability for linear and non-linear dimen-

sionality reduction, denoising, feature extraction and ex-

ploratory data analysis. See [6] for a review of CA meth-

ods. Though successful, early CA applications such as

Eigenfaces [38] were unable to produce interprettable com-

ponents. This was partially resolved through NMF, which

demonstrated the ability to decompose images into more

natural components corresponding to localized parts [21].

Numerous extensions have since been proposed to im-

prove interpretability through localization constraints [23]

or sparsity-inducing regularization [15]. Other approaches

have explicitly modeled the physical process of occlusion

by introducing additional latent variables that encode the

ordering of objects in the scene [13]. However, all of these

methods still require that all objects in different images be

aligned, which is impractical for real images.

Transformation-Invariant Representations: Other

methods have attempted to explicitly address this need for

representations that are invariant to uninformative image

variations. This is usually accomplished by simultaneously

aligning and decomposing the images in an alternating man-

ner. For example, [8] introduced discrete latent variables

that select from predefined linear image transformations.

Similarly, [18] learned translation-invariant appearance and

occlusion models for videos. To be able to scale to higher

parametric models, [7] proposed parameterized CA. How-

ever, these types of methods are typically restricted to small

parametric classes of image transformations (e.g. transla-

tion or rotation) and cannot account for multiple objects or

strong changes in pose.

Object Localization and Segmentation: Identifying

and localizing the semantic classes within an image is an

example of a task for which invariances cannot be easily

parametrized. In addition to accounting for non-rigid trans-

formations, large intra-class appearance variations must

also be considered. Thus, none of the CA techniques

described above would be able to give a semantically-

meaningful separation into classes.

Instead, most approaches to this problem incorporate

prior knowledge about class appearance and image com-

position to guide image segmentations or bounding box

localizations. If fully-supervised training data is avail-

able, the most effective method is to train discriminative

models that can be used to directly classify individual im-

age regions. These local predictions are typically guided

towards global consistency using prior knowledge such

as local similarity [4, 9, 19], contextual geometric con-

straints [37], or agreement between multiple independent

segmentations [1, 16]. More recently, convolutional neural
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networks (CNNs) have been applied to region classification

with great success [10, 27].

Without pixel-wise labeling of training images, simple

discriminative models are no longer viable. Some weakly-

supervised approaches attempt to simultaneously learn dis-

criminative classifiers alongside object locations through al-

ternating methods like multiple-instance learning [14, 5] or

matrix completion [3]. Others use graphical models that

enforce consistency both within and across images to en-

sure class similarity [39, 41, 42]. However, exact infer-

ence in these models is typically intractable, so approxi-

mate methods must be used instead. Furthermore, all of

these methods require large, non-convex optimization prob-

lems that are sensitive to initialization and do not scale well

to large data sets. Leveraging the recent work in the op-

timization of deep networks, approaches based on CNNs

have resulted in high-quality segmentations even without

full supervision [33, 30, 34, 31, 32]. However, none of these

approaches can be used like SCA for the unsupervised clus-

tering of images into semantically-meaningful regions.

3. Semantic Component Analysis

Data decomposition techniques that rely on matrix fac-

torization approximate a matrix X (with data instances xi as

its columns) as the product of two lower-rank matrices W

and B, i.e. X ≈ BW⊺ (see notation 1). In other words, data

points are represented as linear combinations of a shared set

of basis components, i.e. xi ≈ Bwi =
∑

j wijbj where bj
are the columns of B and wi are the columns of W. While

modifications can be made depending on the application of

interest through constraints on the factors (e.g. NMF), dif-

ferent loss functions for measuring reconstruction error (e.g.

robust PCA), or regularization terms (e.g. sparse coding),

matrix factorization approaches are limited in their ability to

incorporate more complicated priors. It is also unclear how

they could be effectively applied to structured tasks like im-

age segmentation in which semantic regions are known to

be spatially localized in distinct, non-overlapping regions.

SCA addresses these issues by allowing for rich, instance-

level constraints that can depend on image content.

3.1. Semantic Constraints for Segmentation

Ideally, we seek a semantically-interpretable technique

for CA that represents each class as a single component.

In order to encourage that this be the case in the absence

of pixel-level annotations, we must rely on priors and con-

straints that summarize assumptions about how classes are

represented in images. Specifically, we note that images

tend to be separated into spatially-consistent partitions of

1 Bold capital letters X denote a matrix; Xi represents the ith column

of the matrix X. Bold lower-case letters a column vector x; xj denotes

the scalar in the jth element of x. All non-bold letters represent scalars.

object classes. However, because of intra-class variabil-

ity and differing spatial layouts across images, these con-

straints would be inconsistent and impossible to enforce in

traditional matrix factorization approaches.

Instead, we propose an exact data decomposition of each

image feature xi into it’s own distinct set of instance com-

ponents Hi (with columns hij) in lieu of a shared basis:

xi = Hiwi =
m
∑

j=1

wijhij ∀i = 1, . . . , n. (1)

Here, n represents the size of the dataset and m represents

the total number of semantically-related groups of compo-

nents (i.e. object classes) that we consider. Observe that

having a separate set of components for each image–where

the basis Hi depends on the image index i–differs from

traditional CA methods which use a global basis common

to every image. While learning m × n components from

only n training examples may seem intractable, we show

in Section 3.2 how this can be accomplished by enforcing

similarity between instance components with same index

j, i.e those belonging to the same object class. Expos-

ing these latent components allows for easily incorporat-

ing instance-level semantic constraints related to a priori

knowledge about individual data points, such as the layout

and composition of objects within images. Specific exam-

ples of these constraints are given in Section 4 for the appli-

cation of semantic segmentation, which allow hij to con-

tain the image features corresponding to the pixels in the ith

image assigned to the jth class.

This formulation assumes additive image representa-

tions, meaning that an image’s global feature vector can be

expressed as the sum of its segment feature vectors. Note

that many shallow representations share this property, in-

cluding all average-pooled local features. However, the re-

cently popularized deep features (extracted from interme-

diate activations in a convolutional neural network [17])

do not have this property due to the complicated nonlin-

ear interactions within the network. In this paper, we use as

image representations simple ℓ1-normalized Bag-of-Words

histograms over dense SIFT descriptors [28] quantized to

d = 1024 dictionary elements.

The rest of this section describes the intuitive instance

constraints that we enforce in order to encourage the se-

mantic interpretability of components.

3.1.1 Superpixel Oversegmentation

To introduce local consistency and reduce computational re-

quirements, we begin with an over-segmentation of each

image into pi locally-consistent superpixel feature vectors

of dimensionality d. Let Si ∈ R
d×pi be a matrix with the ith

image’s normalized superpixel features sik as its columns.

Let qik represent the proportion of the image taken up by the
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(a) Image (b) Ground Truth (c) λ = 0.05 (d) λ = 0

Figure 2. A comparison of segmentation results both with (c) and

without (d) spatial consistency regularization.

kth superpixel and denote by qi the vector with these values

as its elements. Thus, due to its additivity, xi = Siqi. That

is, the image histogram xi is a convex combination of its

superpixel histograms sik.

To account for object class occlusion in the image, we

enforce that the instance components hij come from non-

overlapping partitions of superpixels by defining indicator

variables zijk ∈ {0, 1} that are 1 if the kth superpixel be-

longs only to the j th class and 0 otherwise. Let zij be

the column vector formed by stacking the zijk for all k.

Then, the weighted component histograms can be written

as wijhij = Sidiag(qi)zij , where wij represents the pro-

portion of the ith image belonging to the jth class. This

also constrains the component by wij = q
⊺

i zij so that

0 ≤ wij ≤ 1 and
∑m

j=1
wij = 1.

3.1.2 Spatial Consistency via Spectral Clustering

While the over-segmentation of images into superpixels

provides some local spatial consistency, many superpixels

could still make up a single object. Thus, we incorporate an

additional regularization term borrowed from the spectral

clustering and co-segmentation literature [19] that promotes

smoothness between superpixels. Specifically, we define a

similarity matrix Wi that assigns each pair of superpixels

in an image a weight determined by their spatial proximity

and color similarity. Denote by Li the normalized graph

Laplacian constructed from Wi. Enforcing that the quan-

tity z
⊺

ijLizij be small (less than a threshold parameter ρ)

encourages nearby superpixels with similar color to take on

the same label. Fig. 2 shows an example of this.

3.1.3 Constraint Relaxation

Note that this set of constraints is non-convex since we en-

force zijk to be binary, which would make optimization dif-

ficult. Thus, we first relax this constraint by allowing zijk
to take on values within the continuous interval [0, 1]. Since
∑m

j=1
zijk = 1, zijk can be interpreted as the degree to

which the kth superpixel in the ith image belongs to the jth

class. The solution can then be rounded by selecting the

class with the highest value in order to produce a discrete

segmentation.

Combining this with the constraints in the previous sec-

tion allows us to write our semantic instance constraints as

follows in Eq. 2:

Ci =
{

wij ,hij : wijhij = Sidiag(qi)zij , z
⊺

ijLizij ≤ ρ,

wij = q
⊺

i zij ,

m
∑

j=1

zijk = 1, 0 ≤ zijk ≤ 1
}

(2)

This constraint set is very general and can be easily adapted

to include additional image priors or modified to be appli-

cable to tasks even beyond image segmentation. Even so,

these simple, intuitive constraints surprisingly still result in

semantically-meaningful decompositions. Furthermore, be-

cause this set is convex, it allows for convenient optimiza-

tion, as discussed later in Section 3.3.

3.2. Problem Formulation

While these instance-level constraints limit the segmen-

tations possible within a single image, there is no informa-

tion shared between images to aid in the consistent assign-

ment of classes. However, we can assume that regions be-

longing to the same class should be more similar than those

belonging to different classes, and so too should their corre-

sponding instance components. We formalize this intuition

with the optimization problem in Eq. 3, which constrains

the global image feature vector xi to equal a linear combi-

nation of its instance components hij while minimizing the

sum of weighted distances to exemplar components bj that

are representative of the semantic classes.

argmin
wij ,hij ,bj

n
∑

i=1

m
∑

j=1

w2

ij ‖hij − bj‖
2

2

s.t.

m
∑

j=1

wijhij = xi, {wij ,hij} ∈ Ci

(3)

This formulation attempts to regularize the solution for hij

by shrinking them towards other instance components of the

same class while adhering to the instance-level constraints

in Ci. Effectively, instead of minimizing the total recon-

struction error of each image, we minimize the variation

within classes. Inference in this paradigm for CA amounts

to finding instance components that adhere to image con-

straints and exactly reconstruct the data while being as close

as possible to shared exemplar components, in contrast to

traditional matrix factorization approaches which simply

project the data onto a shared basis.

3.3. Optimization

Because Eq. 3 is not jointly convex, we take an alter-

nating minimization approach for finding its solution that

is similar in spirit to Lloyd’s algorithm for k-means [26].
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