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Abstract

Large scale object detection with thousands of classes

introduces the problem of many contradicting false positive

detections, which have to be suppressed. Class-independent

non-maximum suppression has traditionally been used for

this step, but it does not scale well as the number of classes

grows. Traditional non-maximum suppression does not

consider label- and instance-level relationships nor does it

allow an exploitation of the spatial layout of detection pro-

posals. We propose a new multi-class spatial semantic reg-

ularisation method based on affinity propagation cluster-

ing [8, 22], which simultaneously optimises across all cat-

egories and all proposed locations in the image, to improve

both the localisation and categorisation of selected detec-

tion proposals. Constraints are shared across the labels

through the semantic WordNet hierarchy. Our approach

proves to be especially useful in large scale settings with

thousands of classes, where spatial and semantic interac-

tions are very frequent and only weakly supervised detec-

tors can be built due to a lack of bounding box annotations.

Detection experiments are conducted on the ImageNet and

COCO dataset, and in settings with thousands of detected

categories. Our method provides a significant precision im-

provement by reducing false positives, while simultaneously

improving the recall.

1. Introduction

Human assistance technologies or question answering

require a precise and detailed object recognition of a visual

scene. Recently, large scale detection approaches have been

proposed which aim to distinguish hundreds or thousands

of object categories [1, 3, 11, 12, 23]. While impressive

progress has been shown, they suffer from competing object

category candidate detections as can be seen in Figure 1 (a).

Commonly, non-maximum suppression (NMS) is used to

select the bounding boxes with the highest detection score

for each category. This method is not globally optimal as

only locally overlapping boxes are suppressed by the high-

est scoring box. Further, in the multi-class case, it does not

take semantic relations between objects into account, e.g.
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(a) Competing box proposals from different categories

(b) Non-Maximum Suppression (NMS) (c) MAPC (ours)

Figure 1. Raw and spatially regularised detection of 7,404 classes

using the LSDA extension [12] of the R-CNN method [9]. (a)

Top 50 scoring candidate detections and associated categories are

listed: all proposals which support the depicted cat are green, for

chair blue. Black entries do not describe any object in this picture.

(b) NMS clusters boxes only according to their overlap not accord-

ing to their class leading to multiple detections of different fine-

grained classes for the same object. (c) Our approach (MAPC)

exploits category relationships, clustering overlapping boxes with

similar classes together which results in less false positives on the

same object and enables to detect classes which are suppressed by

NMS because of their overlap.

the couch, floorstool and beanbag proposals should support

the settee candidate detection box in Figure 1, such that it is

not suppressed by doggy bag as in Figure 1(b).

With thousands of different object categories, semantic

relationships become a valuable source of information. Us-

ing semantics, consistency can be ensured across different

detections. Hence, this work examines the benefit of a se-

mantic hierarchy to object detection of thousands of object

categories. We show that in such a large scale setting se-

mantic constraints significantly improve detection.
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The key contribution of this work is a large scale spatial

semantic regulariser for the correct selection of candidate

object detection proposals. Under the framework of Affinity

Propagation Clustering (APC) [8], our developed method is

characterised by two new ideas.

First, we present an approach which unifies within and

across class selection of candidate object detections. Our

new multi-class affinity propagation clustering (MAPC) al-

lows for global reasoning over the whole image simulta-

neously, rather than reasoning locally over image parts or

single classes separately, to determine the correct setup of

an image. Unlike NMS or [20], which perform the selec-

tion separately for each class, our algorithm uses the rela-

tionships of highly related fine-grained categories in a large

scale detection setting. Based on WordNet relationships,

our algorithm knows that golden retrievers, dalmatians and

dachshunds are all different dog breeds and should support

each other, rather than suppress, if the corresponding boxes

cover almost identical regions of interest in the image.

Second, we propose a large scale detection evaluation in-

cluding over a thousand categories, which requires discrim-

inating among competing classes, in contrast to standard de-

tection challenges, which focus on a per category mean Av-

erage Precision (mAP) evaluation. We demonstrate that our

algorithm improves performance in two challenging scenar-

ios. First, for a large number of objects per image, we show

results on COCO. Second, for a large number of categories,

we evaluate on a subset of ImageNet, which is labeled with

bounding boxes of 1,825 categories, a large scale detection

scenario, which has not been previously evaluated.

2. Related Work

Our work is most related to spatial regularisation over

detection proposals. In most detection methods, detection

proposals (raw bounding box outputs with scores from de-

tectors) need to be regularised over space to remove dou-

ble detections on the same object, prune false positives, and

improve localisation. Although greedy non-maximum sup-

pression (NMS) is the most often used spatial regularisation

approach, other approaches, such as merging nearby detec-

tion boxes, are sometimes shown to be more robust [25].

In [28], overlapping detections are averaged and a thresh-

old is set based on overlapping box numbers. In [25], a

greedy merge strategy is proposed to group detection pro-

posals together and reward bounding box coherence. Spa-

tial and cooccurrence priors are introduced in [2, 27] to

prune detection results. In [7], labels of detection proposals

are obtained via approximate inference over several types

of spatial relationships instead of greedy NMS. Recently,

Affinity Propagation Clustering (APC) [8], an unsupervised

clustering method based on message passing, has been used

to cluster proposed bounding boxes of the same class based

on their overlap [22]. In [22], background and repellence

terms are introduced to APC to allow the suppression of

false positives and to avoid selecting object proposals lying

too close to each other. Our work builds on [22], but is dif-

ferent in that: (1) our algorithm clusters object proposals

of the same and different classes simultaneously, whereas

[22] is applied only within each class, (2) we introduce new

constraints to ensure that one label per detection proposal is

selected, and (3) we design our similarity measure such that

semantically close objects get clustered together.

Another line of related work is exploiting semantic cat-

egory hierarchies in visual recognition and detection [4, 6,

11, 14, 15, 17, 20, 24, 29]. Real world object categories of-

ten form a hierarchical structure, which can provide useful

information for large scale detection. Such hierarchical re-

lationships can be obtained from predefined semantic struc-

tures such as WordNet, or learned by data-driven methods.

In [4], a conditional random field based hierarchy-exclusion

Graph is proposed to represent subsumption and exclusion

relationships between classes. In [11, 14], the ImageNet

hierarchy, which is based on WordNet, is used to transfer

bounding box annotations and segmentations to semanti-

cally close categories. In [6], an accuracy-specificity trade-

off based on the ImageNet hierarchy is optimised through

the DARTS algorithm. PST [20] uses the WordNet hierar-

chy to transfer knowledge from known to novel categories

and propagates information between instances of the novel

categories. In [24] a visual hierarchy is discovered based

on the Chinese Restaurant Prior and used to share detector

parameters between classes. [15] learn a semantic hierar-

chy based on visual and semantical constraints. Our work

is complementary to previous methods in this area, as we in-

tegrate a semantic hierarchy into Multi-class Affinity Prop-

agation Clustering (MAPC) for spatial regularisation, while

hierarchies have been only used to train classifiers or share

features in previous methods.

Our work is also related to large scale detection. In [3],

large scale detectors on over 100,000 classes are trained

based on hashing. In [1], NEIL, a semi-supervised learning

system, is proposed to train detectors from Internet images.

One major obstacle for large scale detection is the lack of

bounding box annotations, which has been recently partially

resolved by weakly supervised methods such as knowl-

edge transfer [11], Multiple Instance Learning [26, 18], do-

main adaptation [12] or combined approaches [13]. Among

these methods, LSDA [12] is a framework for classifier-to-

detector adaptation, and was shown to effectively train large

scale detectors based on image-level labels. Thus, in this

paper we use LSDA to train a baseline detector on 7,404

leaf classes of the ImageNet hierarchy. However, we note

that our spatial regularisation method does not depend on

how detectors are trained, and can be applied to arbitrary

sets of detectors.

To our knowledge, this is the first time that hierarchical
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Figure 2. MAPC message passing. Messages are passed between

all candidate detections until a subset of detections gets selected

as exemplars. IoU stands for Intersection over Union, and simLin

is the Lin measure. For simplicity not all messages are depicted.

semantic relationships are used together with spatial infor-

mation to determine the correct scene configuration from

contradicting candidate object detections. Furthermore, it

is even more challenging to apply this algorithm on a large

scale setting, as it requires inference over thousands of fine-

grained and diverse categories. Our detection system is

unique in its amount of categories, both in terms of the de-

gree of fine-grained detail, for instance incorporating dif-

ferent dog breeds, and the variety of categories, including

various animals, plants, fruits, and man-made structures.

3. Spatial semantic regulariser

In this section we describe our spatial semantic regu-

lariser. Our method is based on Affinity Propagation Clus-

tering (APC), which has shown to outperform other cluster-

ing techniques such as k-means clustering [8]. [22] success-

fully adapted APC to the task of selecting candidate object

detections of the same class. This method is denoted as

Single-class APC (SAPC) in the following.

Our main contributions are to extend the previous work

on APC [8, 10, 22] to multi-class detection and a large scale

setting with thousands of fine-grained classes. Therefore,

we incorporate a new constraint ensuring that each bound-

ing box exemplar gets assigned only one label. Similar to

[22], we use an intercluster repellence term and a back-

ground category to remove false positives. Additionally, in

order to leverage the visual similarity of semantically re-

lated fine-grained classes, we introduce hierarchical label

relations into APC to cluster semantically similar objects.

The resulting Multi-class APC (MAPC) algorithm is pre-

sented in Figure 2 after introducing standard APC.

3.1. Standard affinity propagation clustering

APC is a message passing based clustering method. It

uses data similarities to identify exemplars such that the

sum of similarities between cluster exemplars and cluster

members is maximised. Let s(i, j) denote the similarity be-

tween data points i and j 2 {1, ..., N} with N being the

number of data points. s(i, j)  0 indicates how well j

would serve as an exemplar for i [8]. The self-similarity

s(i, i) indicates how likely a certain point will be chosen

as an exemplar. Using the binary formulation of [10], we

encode the exemplar assignment with a set of N2 binary

variables cij : cij = 1 if i is represented by j and cij = 0
otherwise. A valid clustering must hold two constraints: (i)

each point is represented by exactly one exemplar and (ii)

when j represents any other point i, then j must be an exem-

plar representing itself. In the following objective function,

I represents constraint (i) and E represents constraint (ii):

EAPC({cij}) =
X

i,j

Sij(cij) +
X

i

Ii(ci1, ..., ciN )

+
X

j

Ej(c1j , ..., cNj)
(1)

Sij(cij) =

(
s(i, j) if cij = 1

0 otherwise
(2)

Ii(ci1, ..., ciN ) =

(
−1 if

P
j cij 6= 1

0 otherwise
(3)

Ej(c1j , ..., cNj) =

8
><
>:

−1 if cjj = 0 and 9i 6= j

s.t. cij = 1

0 otherwise

(4)

Max-sum message passing is applied to maximise equa-

tion (1) [8, 10] consisting of two messages: The responsi-

bility ρij (sent from i to j) describes how suited j would

be as an exemplar for i. The availability αij (sent from j

to i) reflects the accumulated evidence for point i to choose

point j as its exemplar:

αij =

(P
k 6=j max(ρkj , 0) for i = j

min(0, ρjj +
P

k/2{k,j} max(ρkj , 0)) for i 6= j

(5)

ρij = s(i, j)−max
q 6=j

(s(i, j) + αiq) (6)

3.2. Affinity propagation clustering for multi-class
object detection

We introduce our novel Multi-class Affinity Propagation

Clustering (MAPC) algorithm, which extends SAPC [22]

from single-class to multi-class detection. In multi-class de-

tection most object detectors propose multiple category la-

bels with a certain confidence score for each bounding box.

However, the label with the highest confidence is not always

the correct one. Hence, not only the correct location but also
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the correct class for each box has to be inferred. Therefore,

we redefine each data point i or j as a combined box-class

detection, e.g. box1-dog, box1-cat, or box2-cat. This allows

us to define a similarity measure s(i, j) between detections

which includes both the spatial relation between bounding

boxes and the relation between their labels (7):

s(i, j) = λ IoU(i, j) + (1− λ) simLin(i, j) (7)

Whereas SAPC bases its similarities solely on the IoU

between bounding boxes [22], our similarity measure clus-

ters overlapping detections, represented by the IoU(i, j)
term, as well as semantically similar detections, represented

by the simLin(i, j) term. An example can be seen in Fig-

ure 3. λ is a weighting factor trading off spatial and se-

mantic similarity. The Intersection over Union is defined

as IoU(i, j) =
|Ai\Aj |
|Ai[Aj |

, where Ai is the area of the image

covered by the bounding box of i. It is used to describe

the overlap and hence the visual similarity of two detec-

tions. The Lin measure simLin(i, j) =
2IC(lcs(Ci,Cj))
IC(Ci)IC(Cj)

de-

notes how semantically similar the labels of two detections

are. lcs(Ci, Cj) denotes the lowest common subsumer of

the classes Ci of i and Cj of j in the WordNet hierarchy

and IC(C) = log p(C) equals to the information content

of a class, where p(C) is the probability of encountering an

instance of the class C in a corpus. The relative corpus fre-

quency of C and the probabilities of all child classes that C

subsumes are used to estimate the probability p(C) [19, 21].

The self-similarity is defined as s(i, i) = − 1
p−θbg

, where

p is the detection score generated by the object detector and

θbg is a background threshold used to discard detections

scoring lower than θbg before APC inference.

To further avoid that contradicting detections are chosen

as exemplars, we introduce a new constraint: If class Ci is

an exemplar for a specific box k (i.e. cii = 1), no other

class can be an exemplar for box k:

eEk(c11, ..., cNN ) =

(
−1 if

P
j with box k cjj > 1

0 otherwise
(8)

The remaining algorithm exactly follows [22], which

uses a repellence term R =
P

i 6=j Rij(cii, cjj), but with

r(i, j) = −(s(i, j) + 1) to avoid selecting semantic-

spatially close exemplars, and a background category to

allow for false positives to be suppressed, denoted by the
eIi(ci1, ..., ciN ) term in equation (9). Linearly combining

all of the terms presented yields in the following objective

function to be maximised:

eEAPC = wa

X

i

Sii + wb

X

i 6=j

Sij + wc

X

i

eIi

+ wd

X

i<j

Rij + we

X

j

Ej + wf

X

k

eEk

(9)

Spatial similarity

Semantic similarity

Semantic-Spatial similarity Final cluster representative

Figure 3. Combining spatial and semantic similarity in MAPC. All

red boxes form one cluster in which the blue box emerged as their

exemplar. With a semantic-spatial similarity, semantically simi-

lar and spatially localised detections get clustered which finally

results in a well localised true positive detection.

All function arguments in equation (9) were left out for the

sake of clarity. To solve this optimisation problem the mes-

sage passing paradigm of [22] is used. All messages are ini-

tialised with zero and iteratively updated until convergence.

4. Experiments

In this section we evaluate the performance of MAPC

in a large scale setting. At this time, there is no standard-

ised large scale dataset with both a large amount of object

instances within one image as well as a large amount of

different object categories. Hence, we evaluate MAPC on

two different datasets. We use the Microsoft COCO dataset

[16] for the evaluation on a large amount of object instances

within one image. To evaluate on a large amount of fine-

grained categories, we create a new dataset built of images

with bounding box annotations from ImageNet [5]. This

dataset covers 1,825 categories, but contains only a few ob-

ject instances per image due to incomplete annotations.

However, we believe that in a setting with both, thou-

sands of fine-grained categories as well as dozens of ob-

ject instances per image, our method would perform best.

Hence, we also present qualitative results in the supplemen-

tal material, where we show the performance of our MAPC

algorithm on all 7,404 LSDA categories [12].

We mainly use precision and recall as well as the F1-

score, which is the harmonic mean of precision and re-

call, to evaluate MAPC on these datasets. The mAP met-

ric, which is usually used to evaluate the performance on

detection tasks, is not an appropriate performance measure

for our multi-class detection setup. mAP is a metric for re-

trieval tasks. Traditionally, single-class detection has been

seen as a retrieval task: all window detections that contain

an object of the given class are to be retrieved. As most

object detectors were designed as window-scoring methods

it was obvious to rank all window detections according to
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their scores. With the clustering view, there is no absolute

score which could be used for a global ranking and mAP

can not be used correctly. The multi-class setting makes it

even less suited. mAP favors multiple detections for each

class and overall punishes across class selection of object

proposals. In contrast, our method actually tries to provide

a better way of selecting detections across classes. Hence,

we can not use mAP to evaluate this task. For a true under-

standing of a depicted scene we have to focus especially on

a high precision and F1-score for selecting object proposals

across classes, while trying to maintain the recall. It is ob-

vious that a high recall could also be achieved by selecting

many object proposals without doing across class suppres-

sion. As can be seen in Figure 1(a) within class suppression

alone—which would be desirable for the mAP measure—

still leaves the question unanswered which objects are actu-

ally depicted in an image. For a more detail investigation of

wrong detections, we examine whether a false positive oc-

curred due to a wrong localisation or classification. Wrong

label is the amount of all false positives with wrong labels

of all false positives. Wrong overlap is the amount of all

false positives with a wrong location of all false positives.

To setup MAPC and determine all of its parameters, we

use grid search on a training set obtained from ImageNet

[5] as follows: First, we search for all ImageNet categories

with available bounding box annotations. Next, we deter-

mine which of these categories overlap with the 7,404 cate-

gories of the LSDA detector [12]. This results in 1,825 cat-

egories with annotated images. Next, we discard all images

used during the LSDA training and in the ImageNet test set

described in section 4.2. We obtain our final training set by

randomly selecting two annotated images per category from

the remaining images. After performing grid search on this

training set the MAPC parameters are set such that recall

and precision are maximised.

In all our experiments common non-maximum suppres-

sion (NMS) is used as the baseline. More specifically, de-

tections of the same category overlapping more than a de-

fined IoU threshold are suppressed in a first step. Then, all

the remaining detections are suppressed across all classes

with a different IoU threshold. Both NMS thresholds were

determined using grid search as previously described. The

best configuration resulted in a higher IoU threshold for

within class suppression than for across class suppression.

The intuition for this is that detections of the same class in-

stance are typically located at similar positions in the image.

Thus, in order to suppress within classes a higher thresh-

old is necessary. This baseline will be denoted as Within

Class and Across Class NMS (WC+AC-NMS). MAPC is

also compared against SAPC [22]. However, SAPC was de-

signed for single-class detection. As we evaluate in a multi-

class detection scenario, we simply accumulate the per class

output of SAPC across all classes for a first SAPC version.

However, accumulating all detections without suppressing

across classes is more suitable for an object retrieval task

than for multi-class object detection. Thus, in a second ver-

sion, we use across class NMS (AC-NMS) on top of the

accumulated SAPC output to select object detections also

across classes. This makes SAPC [22] better comparable to

our method. The IoU threshold for this across class NMS

was also determined using grid search.

4.1. Multiple instance detection on COCO

The Microsoft COCO dataset [16] consists of images

that depict objects in their real world context rather than

centered objects. Because of this, the detection on COCO

is much more challenging than on the mostly centered Ima-

geNet pictures. Hence, this dataset is chosen to evaluate the

performance of our semantic spatial regulariser in a contex-

tual setup with numerous object instances per image.

4.1.1 Experimental setup

COCO consists of 80 different categories with on average 7

object instances per image. In a first experiment, we use the

latest LSDA setup with 7,404 fine-grained categories [12].

15 COCO categories neither overlap with the leaf node cate-

gories of LSDA nor with either of their parents in the Word-

Net hierarchy1. For those of the remaining 65 categories

which overlap with a parent category, we use all of their

children as an input to our method and the baselines. For

example we detect beagle and dachshunds instead of their

parent category dog. This results in 1,133 fine-grained child

categories, which all methods have to infer on. We simply

relabel the children output after inference to their parent cat-

egories to compare it with the COCO ground truth. We nei-

ther train LSDA nor adapt the MAPC paramters to COCO.

In a second experiment, we fine-tune our detection net-

work on the COCO training set using all 80 COCO cate-

gories as input to our method and the baselines. Both ex-

periments are evaluated on the COCO validation set.

4.1.2 Experimental results

Table 1 shows the detection results of our first experiment

without finetuning our detector on COCO on the COCO val-

idation set. As can be seen MAPC outperforms WC+AC-

NMS by 3.16% in terms of precision when maintaining

the recall. This performance gain can be explained by less

wrongly labeled (65.13%) and wrongly localised (74.31%)

detections. The F1 score for the chosen setup is 13.46% for

WC+AC-NMS versus 15.09% for MAPC. In Figure 5(c) &

(d) we vary the IoU evaluation threshold above which a de-

tection is counted as a true positive. As can be seen MAPC

1traffic light, fire hydrant, stop sign, snowboard, person, kite, fork,

sandwich, hot dog, pizza, donut, cake, potted plant, book, teddy bear
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MAPC (optimal precision) MAPC (optimal F1)

Figure 4. Different optimisation criteria. When optimised for F1

score instead of precision, MAPC selects more detections, result-

ing in more true and false positives.

is always better than WC+AC-NMS. In general, almost

all operating points of MAPC lie above WC+AC-NMS as

can be seen in the precision-recall curve depicted in Fig-

ure 5(a). These results clearly show that MAPC is superior

to WC+AC-NMS in scenarios with a lot of object instances

per image. Also when compared to SAPC [22] our MAPC

method shows an improvement over all numbers, except for

the recall of 20.72% since no across class suppression is

applied. Hence, many detections are selected resulting in

a cluttered outcome, which manifests in the low precision

value of 5.25% and decreases the F1-score to 8.38%. As

[22] was designed for within class suppression and does

not suppress across classes, these results are not surprising.

However, when across class NMS (AC-NMS) is applied on

the accumulated outcome of [22] the precision increases to

14.66% at the cost of a recall decrease. Overall the F1-score

increases to 13.12%. However, MAPC performs best on the

COCO validation set amongst all tested methods.

The greater precision of MAPC can be especially seen

when we look at example images. The pictures in Figure 6

show the output of WC+AC-NMS and MAPC after opti-

mising both algorithms for the highest precision with com-

parable recall. The detector not fine-tuned on COCO was

used. Green boxes are true positive detections. Red boxes

are false positive detections. WC+AC-NMS reaches its pre-

cision limit after suppressing all overlapping boxes, while

MAPC can also suppress non-overlapping boxes. At the

same time, MAPC still enables the selection of overlapping

object proposals as can be clearly seen in the example pic-

tures. Allowing a greater overlap for WC+AC-NMS would

increase true positives at the cost of lower precision and a

cluttered detection output. In general, MAPC outputs less

false positives and better localised true positives.

If required, MAPC can also be optimised towards a

higher recall. Figure 4 examplarily compares a F1 score

optimised MAPC to a precision optimised MAPC. Clearly

Method Pre- Re- Wrong Wrong F1

cision call Label Overlap Score

WC+AC-NMS 13.44 13.47 79.39 88.97 13.46

SAPC [22] 5.25 20.72 74.79 72.73 8.38

SAPC + AC-NMS 14.66 11.86 81.36 87.15 13.12

MAPC (ours) 16.60 13.84 65.13 74.31 15.09

Table 1. Detection results on COCO without finetuning, in %.

Method Pre- Re- Wrong Wrong F1

cision call Label Overlap Score

WC+AC-NMS 23.50 24.80 62.99 94.97 24.10

SAPC [22] 15.66 32.61 69.01 72.43 21.17

SAPC + AC-NMS 30.01 21.97 74.95 92.90 25.39

MAPC (ours) 37.64 24.23 55.47 71.79 29.50

Table 2. Detection results on COCO, fine-tuned on COCO, in %.

Method Pre- Re- Wrong Wrong F1

cision call Label Overlap Score

WC+AC-NMS 8.34 11.29 91.90 85.53 9.59

SAPC [22] 3.46 22.57 93.69 68.05 6.00

SAPC + AC-NMS 9.76 10.34 91.02 81.54 10.04

MAPC (ours) 10.94 16.22 86.41 68.57 13.07

Table 3. Detection results on ImageNet without finetuning, in %.

more boats get detected when we optimise towards F1, but

also more false positives are selected. All in all, MAPC

can be optimised towards a high recall and a high precision,

while WC+AC-NMS reaches its precision limit when try-

ing to suppress non overlapping boxes. Thus, MAPC can

be preciser in selecting the correct bounding box proposals.

In our second experiment, we fine-tune our object de-

tector on COCO. The results can be seen in table 2. As

expected all of our metrics highly improve. Most striking

the MAPC precision rises to 37.64%, while the recall re-

mains comparable, which increases the F1 score difference

between MAPC and WC+AC-NMS to 5.40%. Also the F1

score of SAPC strongly improves to 21.17%. All methods

obviously greatly profit from better detections. Thus, a de-

tector which provides good candidate detections in the first

place is crucial for all of the examined methods.

4.2. Fine-grained multi-class detection on ImageNet

In this section we evaluate MAPC on a large scale multi-

class detection setup constructed from ImageNet data [5].

Since there is no standardised dataset with thousands of cat-

egories, we construct our own dataset to evaluate MAPC on

a large amount of fine-grained categories. The final dataset

covers 1,825 categories, but only a few object instances per

image due to incomplete annotations of ImageNet.

4.2.1 Experimental setup

In order to construct a dataset with numerous fine-grained

categories, we search for all ImageNet categories with avail-

able detection annotations. As we use the LSDA detector
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