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Abstract

In recent years, contextual models that exploit maps have

been shown to be very effective for many recognition and lo-

calization tasks. In this paper we propose to exploit aerial

images in order to enhance freely available world maps.

Towards this goal, we make use of OpenStreetMap and for-

mulate the problem as the one of inference in a Markov

random field parameterized in terms of the location of the

road-segment centerlines as well as their width. This pa-

rameterization enables very efficient inference and returns

only topologically correct roads. In particular, we can seg-

ment all OSM roads in the whole world in a single day using

a small cluster of 10 computers. Importantly, our approach

generalizes very well; it can be trained using only 1.5 km2

aerial imagery and produce very accurate results in any lo-

cation across the globe. We demonstrate the effectiveness

of our approach outperforming the state-of-the-art in two

new benchmarks that we collect. We then show how our

enhanced maps are beneficial for semantic segmentation of

ground images.

1. Introduction

Over the past decades many contextual models have been

developed to improve object recognition [41, 20, 24, 18, 19,

14, 15, 6, 10, 31, 39, 11, 16, 3, 13]. Particularly success-

ful are approaches that use maps to improve localization

[22], layout estimation [22] and holistic scene understand-

ing [36]. Most self-driving cars (e.g., Google car, partici-

pants of the DARPA urban challenge) rely on detailed maps

of the environment to facilitate navigation and perception.

These maps are typically obtained via costly manual inter-

vention, limiting the applicability of current approaches.

An alternative are online resources such as the Open-

StreetMap (OSM) project 1, which contains a cartographic

map of the road topology with good coverage over almost

the full world, with around 33,968,739 km of road data.

1www.openstreetmap.org

This is advantageous as it is freely available on the web and

the quality and quantity of the annotations are growing over

time, as more users contribute to the project. However, the

map information is noisy and partially missing as for exam-

ple most roads do not contain information about their width.

In this paper we proposed to exploit aerial images in or-

der to enhance open-source maps (e.g., with road geome-

try). This is not an easy task as despite decades of research,

large-scale automatic road segmentation from aerial images

remains an open problem. Most approaches either do not

deliver a topologically correct road network and/or rely on

classifiers that have to be re-trained for each location in or-

der to properly capture appearance variations. As a con-

sequence they require tedious manual annotation for each

region of the globe to be segmented. This annotation task

takes around 8 hours per km2, therefore, current approaches

focus on a small set of locations.

In contrast, instead of framing the problem as seman-

tic segmentation, we propose to use OpenStreetMap (OSM)

to formulate the problem as inference in a Markov random

field (MRF) which is directly parameterized in terms of the

centerline of each OSM road segment as well as its width.

This parameterization enables very efficient inference and

returns the same topology as OSM. In particular, we can

segment the OSM roads of the whole world in only 1 day

when using a small cluster of 10 computers. Furthermore,

our approach can be trained using only 1.5 km2 of aerial

imagery over Germany and is able to generalize to the en-

tire world and produce state-of-the-art results without any

further manual interaction. As we reason about the location

of the centerline, we can handle and correct OSM mistakes

as well as geo-localization/projection errors. This is not an

easy task as illustrated in Fig. 1 due to shadows, occlu-

sions and misalignments. Our energy encodes the appear-

ance of roads, edge information, car detection, contextual

features, relations between nearby roads as well as smooth-

ness between the line segments. All our energy terms can

be computed very efficiently via local, non-axis aligned in-

tegral images. Learning can also be done very efficiently

using structured SVMs [33] taking 1 minute on a desktop
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(a) shadow (b) occlusion

(c) vehicles (d) misaligned centerline
Figure 1. Road segmentation is challenging due to shadows, oc-

cluding trees and vehicles which make the appearance heteroge-

neous as well as OSM/projection misalignment errors.

computer.

The coverage of OSM is very high in most areas, and

thus by employing our parameterization we did not miss

roads in our datasets. We had to exclude lower road cat-

egories as they include forest tracks and pedestrian areas,

which are not sufficiently visible in the aerial images. In

other regions of the globe the coverage is not as dense and

our approach might miss some roads. We refer the reader

to the OSM project2 for a more detailed explanation of the

coverage and its growth, and 3 for a comparison with other

maps. Detecting new roads that are missing in OSM is our

plan for future work.

We demonstrate the effectiveness of our approach by ex-

tracting road information from aerial images from different

camera sensors taken around the whole world (e.g., Toronto,

Sydney, New York, Manila, Nairobi). Importantly, we only

employ 1.5 km2 imagery over Germany captured by one

camera sensor for training, illustrating the ability of our ap-

proach to generalize (domain adaptation). The aerial image

datasets we are aware of are not labeled with the geomet-

ric information we want to extract. They either consider

the road as a single centerline or label the other surfaces in-

stead, e.g., the ISPRS 4 contains the ”impervious surfaces”

class but no roads. Therefore we collect two new datasets

namely Bavaria and aerial KITTI, which we manually an-

notate and show that our approach significantly outperforms

all competitors. We then demonstrate the usefulness of our

road priors for the task of semantic segmentation on KITTI

ground images, and show that we can provide better carto-

graphic priors than [36]. We will release code and datasets

to reproduce all results on the paper.

2http://wiki.openstreetmap.org/wiki/Stats
3http://tools.geofabrik.de/mc
4http://www2.isprs.org/commissions/comm3/wg4/

semantic-labeling.html

Figure 2. Illustration of the road centerline with the width param-

eterized by the center offset h and symmetrical width y. The di-

rection and length of the rectangle Ωi is defined by the pi, pi−1

points given by the street database. The context is depicted as Σ.

2. Related Work

Road segmentation in aerial images has draw a lot atten-

tion for decades in the computer vision and remote sensing

communities. However, it still remains an open-problem

due to the difficulties in handling appearance variations and

producing topologically correct segmentations. Early ap-

proaches search for objects that fulfill a pre-defined crite-

ria. [2] defines a geometric-stochastic model and estimates

the roads by tiling the input image. [32] use a Point Pro-

cess to simulate and detect a network of connected line

segments. We refer the reader to [25] for a detailed liter-

ature review and comparison. These approaches, however,

share a common drawback: they require manual parame-

ter tuning. Learning based methods have been proposed to

be more robust to appearance variations. Mnih and Hinton

[26] proposed a two stage approach, where first a neural net

is used to label patches independently. Road topology is

then corrected using a post-processing step. This was ex-

tended in [27] to deal with noisy training labels by employ-

ing a robust loss function. However, this method suffers

from block effects due to the patch-based prediction. [37]

model the road classification as a CRF, where the high-order

cliques are sampled over straight segments or junctions to

maintain a road-like network structure. In [28] height-field

contextual information captured from dense stereo match-

ing is used to improve segmentation. This approach is com-

putationally very expensive and results were shown in a sin-

gle location. [4] sample graph junction-points using image

consistency and shape priors, resulting in long computation

times ( 4 min/image). [34] formulate the delineation of lin-

ear loopy structures as an Integer program. However, only

simple suburban scenes were tackled.

Map information has been used in both computer vision

and robotics communities. Aerial image and land cover

attribute maps are exploited in [21] for single image geo-

localization. Kalogerakis et al. [17] built a human travel

prior from maps to geolocalize time-stamped photographs.

Brubaker et al. [3] use road networks for self-localization.
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Figure 3. Output of the car detector. This task is challenging due

to the small resolution of the target objects. The left image was

captured from Google Earth while the right is part of the Bavaria

dataset which was used for training the detector.

In [24] various maps of New York city were used to detect

and localize cars from ground images. [22] use floor plans

to localize and reconstruct in 3D single images in apart-

ments. [36] use OSM to generate a geographic prior for out-

door holistic scene understanding improving performance

in 3D object detection, pose estimation, semantic segmen-

tation and depth reconstruction.

In [30] the road segmentation in aerial images is for-

mulated as a weakly supervised classification problem, in

which superpixels that overlap with road vector data are

adopted as positive samples. However, inaccuracies of the

road vector data are not taken into account and the solution

does not preserve topology. [40] consider road segmenta-

tion as a width estimation problem. By analyzing the spa-

tial distribution of superpixel boundaries along the direction

of the road, the road width is retrieved for each line seg-

ment independently. However, their approach is not robust

to shadows and occlusion.

3. Enhancing Road Maps from Aerial Images

In this section we show how to enhance world maps by

parsing aerial images. In particular, we frame the problem

as the one of inference in a Markov random field where the

noisy cartographic map is employed to directly parameter-

ize the problem. This parameterization is very robust and

enables efficient inference.

3.1. Energy Formulation

In OSM, each road centerline is defined as a polyline

chain (i.e., piece-wise linear curve) but no information

about the road width is typically available. Unfortunately

OSM roads are not very accurate as they are either edited

by volunteers without explicit quality control, or computed

automatically from GPS trajectories. Furthermore, geo-

localization and projection errors make the vertices of the

polyline poorly aligned with the center of the road in aerial

images. We refer the reader to Fig. 1 for an illustration

of the difficulties of the problem. Thus we re-reason about

their true location. Given a geo-localized aerial image, we

model each road with a set of random variables representing

for each vertex of the polyline an offset in the normal direc-

tion as well as the width of the road segment. We refer the

reader to Fig. 2 for an illustration of our parameterization.

More formally, let hj = {hj
1, · · · , h

j
lj
} be a set of ran-

dom variables encoding the offsets of each vertex of the

polyline that defines the j-th road, where lj is the number

of vertices for that road and h
j
i ∈ [−30, 30] pixels. Our

images have a resolution of 13 cm/pixel. Denote yj =
{yj1, · · · , y

j
lj
} the width of each segment that compose the

j-th road, with yj ∈ [24, 50] pixels. Note that the hypoth-

esis spaces for h and y are defined based on our empirical

estimate of maximal road width and OSM projection error.

Further, let h = {h1, · · · ,hL} and y = {y1, · · · ,yL} be

the set of offsets and widths for all roads respectively. De-

note x the input aerial image. We define the energy of our

road segmentation as a sum of potentials encoding the im-

age evidence, the presence of car detections, smoothness

between widths and offsets of consecutive road segments

and overlap constraints between nearby parallel roads

E(h,y) =
L∑

j=1

lj∑

i=1

wT
roadφroad(h

j
i , y

j
i ,x)

+
L∑

j=1

lj∑

i=1

wT
apφap(h

j
i , y

j
i ,x) +

L∑

j=1

lj∑

i=1

wT
carφcar(h

j
i , y

j
i ,x)

+
L∑

j=1

lj−1∑

i=1

wT
smφsm(hj

i , y
j
i , h

j
i+1, y

j
i+1)

+
∑

i,j,k,m∈P

φol(h
j
i , y

j
i , h

m
k , ymk ) (1)

Note that the overlap energy does not have a weight as it

is a hard constraint. We use three types of appearance fea-

tures: distance to edges, homogeneity of the region as well

as its context, i.e., φapp = [φedge, φhom, φcontext]. We now

describe our potentials in more details.

Road classifier: We employ a road classifier to compute

for each pixel the likelihood of being road/non-road. The

potential for each segment φroad(h
j
i , y

j
i ) is simply the sum

of the likelihoods of all pixels in the non-axis aligned rect-

angle Ωj
i defined by h

j
i , y

j
i (see Fig. 2 for an example).

φroad(h
j
i , y

j
i ) =

∑

p∈Ωj

i
(hj

i
,y

j

i
)

ϕ(p) (2)

with ϕ(p) the classifier score at pixel p. Note that this can

be very efficiently computed using non-axis aligned integral

images. Since we know the orientation of each segment,

only a single integral image is necessary per segment. The

integral image is also local to the segment, as the hypothesis

space covers regions near the original OSM vertices.
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Method

Bavaria Aerial KITTI

IoU F1
∆h[m] ∆y[m]

IoU F1
∆h[m] ∆y[m]

GT Oracle GT Oracle GT Oracle GT Oracle

Road Unary [38] 49.7 48.3 66.4 65.1 – – 32.8 31.2 49.4 47.6 – –

OSMxSeg 61.6 60.6 76.2 75.5 – – 50.3 48.8 67.0 65.6 – –

FSeg [40] 63.0 65.3 77.3 79.0 2.11 1.15 55.4 58.6 71.3 73.9 2.32 1.25

OSMFixed 64.7 66.9 78.6 80.2 1.75 1.45 51.0 53.8 67.6 70.0 2.38 1.21

Ours 73.5 77.2 84.8 87.2 1.30 0.97 71.8 77.5 83.6 87.4 0.91 0.79

Oracle 86.5 100 92.7 100 0 0 84.2 100 91.4 100 0 0

Table 1. Performance of our method vs baselines. The IoU and F1 values are in %, while ∆h,∆y are the mean absolute error of the offset

and width measured in meters.

Method

Bavaria Aerial KITTI

IoU F1
∆h[m] ∆y[m]

IoU F1
∆h[m] ∆y[m]

GT Oracle GT Oracle GT Oracle GT Oracle

Road+Edge+Car 72.2 75.7 83.8 86.2 1.57 1.10 70.7 76.3 82.8 86.5 1.05 0.84

Road+Edge+Car+‖ 72.8 76.4 84.2 86.7 1.39 1.03 71.8 77.6 83.6 87.4 0.91 0.79

Edge+Hom+Context+Car 64.8 68.4 78.6 81.2 1.58 1.26 63.6 67.2 77.8 80.3 1.61 1.36

Edge+Hom+Context+Car+‖ 69.7 72.6 82.1 84.2 1.52 1.09 63.5 67.4 77.7 80.5 1.49 1.26

All 73.0 76.2 84.4 86.5 1.51 1.08 71.2 76.8 83.2 86.9 1.05 0.84

All+‖ 73.5 77.2 84.8 87.2 1.30 0.97 71.8 77.5 83.6 87.4 0.91 0.79

Domain shift (train on one dataset, test on the other)

Road+Edge+Car 70.0 74.3 82.4 85.2 1.45 1.06 66.0 71.0 79.5 83.0 1.33 0.89

Road+Edge+Car+‖ 70.7 75.2 82.8 85.8 1.30 0.99 66.8 72.0 80.1 83.7 1.18 0.83

Edge+Hom+Context+Car 69.1 71.5 81.7 83.4 1.73 1.11 59.3 63.5 74.4 77.6 1.63 1.17

Edge+Hom+Context+Car+‖ 70.4 73.4 82.7 84.6 1.43 0.98 62.0 65.7 76.5 79.3 1.57 1.36

All 70.8 75.1 82.8 85.8 1.37 1.02 67.7 72.8 80.7 84.3 1.20 0.84

All+‖ 71.7 76.1 83.5 86.4 1.27 0.93 67.7 73.2 80.7 84.6 1.08 0.79

Table 2. Performance on Bavaria and Aerial KITTI with various features configurations. The IoU and F1 values are in %, while ∆h,∆y

are the mean absolute error of the offset and width measured in meters. The ‖ symbol denotes the overlap potential between parallel roads.

Edge: We expect the boundaries of road segments to

match image appearance boundaries. Towards this goal, we

compute edges using the line detector of [7], and define the

potential as the distance d from each rectangle boundary

pixel to the closest image edge

φedge(h
j
i , y

j
i ) =

∑

p∈∂Ωj

i
(hj

i
,y

j

i
)

min
e∈E

d(p, e) (3)

with ∂Ω the boundary of the rectangle Ω, p a pixel and E
the set of all lines returned by the line detector. We adopt

the distance transform of [8] to accelerate the computation.

Object detector: We train a car detector using the de-

tector of [23]. Note that this task is extremely challeng-

ing as on average a car has only 30 × 12 pixels (see Fig.

3). We form a 2D feature for each car by computing

[s · sin(∆α), s · cos(∆α)], with ∆α the angle between the

segment and the car and s the confidence of the detector.

The car potential φcar is simply the sum of the features of

all the detected cars that are inside the rectangle. Given the

car features, the potentials can be computed efficiently us-

ing accumulators in a local region around each segment.

Homogeneity: An important property of roads is that they

are typically free of obstacles (otherwise we could not drive

on them) and therefore we expect their appearance to be

homogeneous. This is violated if there are vehicles, shad-

ows or if our aerial view of the road is obstructed by trees,

bridges or tunnels. In those cases we expect the other po-

tentials to correct the mistakes. We capture homogeneity

by first transforming the image into Luv space and comput-

ing for each channel the standard deviation of the appear-

ance inside the rectangle. This potential can be efficiently

computed using two non-axis aligned integral images per

channel: one computing the sum of intensities and the other

the sum of square intensities. Note that this calculation was

used in [35] to normalize the Haar-like features in a sub-

window.

Context features: This feature encodes the fact that the

road looks different than the area around it. Similar to [35],

we compute the difference between the means of pixel in-

tensities in the context and road rectangles, Σj
i and Ωj

i re-

spectively (see Fig. 2). The potential is computed by ag-

gregating the difference across all Luv channels. Again, we

use integral images for efficiency.
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(Toronto: Pearson Airport) (NYC: Times square) (Nairobi, Kenya)*

(Manila, Philippines) (Mexico City) (Kyoto: Kinkakuji )

(Sydney: At Harbour bridge) (St. Moritz, Switzerland) (Manaus, Brazil)*
Figure 4. Segmentation results on several cities over the world using the edge, homogeneity, context, car and overlap features. Note that

the MRF was trained only on 1.5 km2 imagery from the Aerial KITTI dataset. * Indicates satellite image.

Smoothness: The widths and offsets along the same road

tend to be similar in nearby segments. Our smoothness po-

tentials for both h and y are defined between consecutive

segments along the same road as a weighted sum of ℓ0 and

ℓ2 norms.

Overlap: This is a hard constraint encoding the fact that

two parallel roads can not overlap. We enforce this for all

roads that have similar orientation (within 20 degrees) and

are close enough that they could overlap.

3.2. Inference

Inference in our model can be done by computing the

minimum energy configuration

{h∗,y∗} = argminh,yE(h,y) (4)

with E(h,y) the total energy defined in Eq. (1). Note that

due to the overlap constraint, the graphical models might

contain loops. As a consequence exact inference is not pos-

sible. When there is no overlap, the graphical model is com-

posed of set of chains and dynamic programing yields the

exact solution. Inspired by the stereo work of [5], we em-

ploy block coordinate descent (BCD) to perform approxi-

mated inference. Towards this goal, we define each block

in BCD to form a chain since we can then solve each step

to optimality. We then alternate between going over all

horizontal and vertical chains to propagate the information.

Note that since we solve each sub-step to optimality this

procedure is guaranteed to converge. We refer the reader

to Fig. 5 for an illustration, where to simplify the figure

we have collapsed the width and offset variables in a single

variable g
j
i = (hj

i , y
j
i ). It is important to note that each of

the BCD steps (i.e., optimization over a subset of variables)

involve conditioning, and thus the pairwise potentials be-

tween a variable in the chain and a connected variable not

in the chain are folded as unaries. Prior to BCD, we initial-

ize all variables by performing inference along each road

chain and ignoring the connections between nearby parallel

roads. We refer the reader to Algorithm 1 for more details

about the block coordinate descent.
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(a) (b) (c)

Figure 5. Illustration of our BCD inference. Note that g
j

i = (hj

i , y
j

i ). (a) Graphical model consisting of 3 roads that have overlapping

constraints (i.e., vertical edges). We alternate between performing inference (b) over each road one at a time (red, green, blue), and (c)

along chains on the vertical direction encoding the horizontal constraints, also one at a time (orange, yellow, pink, green, purple). Note that

these operations involve conditioning, and thus the pairwise potentials between a variable in the chain and a connected variable not in the

chain are folded as unaries.

Algorithm 1 Block coordinate descent inference (BCD)

1: Initialize (h,y) by minimizing Eq. (1) ignoring the

overlap potentials

2: repeat

3: for all roads Rj do

4: Minimize Eq. (1) w.r.t hj ,yj holding the rest

fixed.

5: end for

6: for all overlap chains Oi do

7: Minimize Eq. (1) over the variables in the overlap

chain

8: end for

9: until no energy reduction or max number iterations

3.3. Learning

We learn the parameters of the MRF using a structural

SVM (S-SVM)[33] by minimizing

min
w∈RD

1

2
||w||2 +

C

N

N∑

n=1

ξn

s.t. δ(h,y) ≥∆(h,y)− ξn, ∀(h,y) ∈ H × Y \ (yn, hn), ∀n
(5)

with δ(h,y) = E(h,y)−E(hn,yn) and H×Y the space

of all possible labelings for (h,y). Note that our defini-

tion is opposite from the one in [33], as we have defined

the features in terms of an energy minimization and not a

score maximization. We employ the parallel cutting plane

implementation of [29] to learn the parameters. We use the

intersection-over-union between the configuration and the

ground-truth labels as our task loss. This can be computed

as a pairwise term, and thus loss augmented inference can

be done efficiently.

4. Experimental Evaluation

We perform our experiments on three different datasets:

Bavaria, Aerial KITTI and World which were captured with

different sensors. Note that we have access to RGB images

without any elevation information. We conduct road pixel-

wise annotations in all Bavaria and Aerial KITTI images.
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Figure 6. (Left) Precision-recall curve of the road classifier;

(Right) Segmentation performance as a function of the structural

SVM C parameter.

Note that the parameters not learned by S-SVM were set

via four-fold cross-validation.

Bavaria: This dataset is a collection of ortho-rectified

aerial images captured by a DSLR camera mounted on a

plane flying around the Bavaria region in Germany 5. It cov-

ers urban, suburban and rural areas with motorways. The

resolution is 13 cm/pixel on the ground. The total area is

4.95 km2 containing 103 km of road.

Aerial KITTI: This dataset consists of aerial images

downloaded from Google Earth Pro over the city of Karl-

sruhe, Germany, covering the same area as the KITTI track-

ing benchmark [12]. The total area is 5.96 km2 with 84
km of road. We resampled the images to be 13 cm/pixel

resolution to be consistent with the Bavaria dataset.

World: This dataset consists of aerial images downloaded

from Google Earth Pro of landmarks all over the world,

including metropolitan areas in Toronto, New York, Syd-

ney, Mexico City, Manaus, etc., as well as rural areas in St.

Moritz and Kyoto. For this dataset there is no annotation.

We use four metrics to measure performance: intersec-

tion over union, F1 score, and mean of the absolute error

of h and y. We consider two different ground truth labels

when evaluating the performance: our human labeled road

annotations as well as the maximum achievable score with

respect to our model hypothesis, refer to as Oracle. The

5We will release these images and the ground truth upon publication.
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Features
Time (s) per km

Accumulator Inference

Road+Edge+Car 0.07 0.031

Road+Edge+Car+‖ 0.069 0.092

All 0.126 0.032

All+‖ 0.122 0.095

Table 3. Running time for feature accumulator calculation and in-

ference under various configurations. In sec per km of road.

later can be computed by performing our MRF inference, by

replacing our unary potentials with ground truth segmenta-

tions. For all quantitative experiments we perform four-fold

cross-validation.

To compute our road classifier, we first convert the image

to opponent Gaussian color space and extract a dense filter

response map, with a filterbank composed of 17 edge-like

filters [38]. We oversegment the image using SLIC [1] and

calculate the mean and std of the filter responses in each

superpixel. We then train a random forest classifier [7] with

this 34D input feature. Note that this road classifier was

used in [37] as unary potential. Fig. 6 shows the Precision-

Recall curve of the road classifier on Bavaria and Aerial

KITTI.

Comparison to baselines: We compare our approach to

four baselines: The first one is the road classifier unary po-

tential of [37], denoted Road Unary. The second baseline,

denoted as OSMxSeg, is computed by segmenting the im-

age into superpixels using [9] and labeling each super pixel

as road if it is crossed by a road segment in OSM. We also

reproduce the state-of-the-art method of [40], denoted as

FSeg, which also uses the OSM road data. To illustrate the

effectiveness of our cartographic prior, the last baseline, de-

noted OSMFixed, projects OSM into the image and utilizes

an empirical estimate of the road width. As shown in Ta-

ble 1 our approach significantly outperforms all baselines

in both Bavaria and aerial KITTI datasets. (see qualitative

results in Fig. 8). Fig. 10 shows a comparison to [40].

Importance of the features: Table 2 depicts inference re-

sults for different combinations of features. Note that every

feature contributes, and good performance can be achieved

without using a road classifier. As a consequence, we do

not need new training data for each different location in the

world as the other features are very robust to appearance

changes.

Segmenting the world: Fig. 4 shows qualitative results

from the World dataset with our model trained only on

AKITTI. Our model works very well under many complex

scenarios even with significant appearance changes, illus-

trating the generalization capabilities of our approach. Note

that no re-training is necessary as we do not use the road

classifier in our potentials.

(a) (b) (c)
Figure 7. Failure modes: (a) Missing turn lane intersection. (b)

The extracted road is too narrow. (c) Road covered by trees.

Sky Build Road Sidewalk Vege Car

[36] 32.41 59.25 63.01 36.41 7.36 35.65

Ours 32.41 59.10 78.71 41.96 7.36 35.65

Table 4. Our method improves the geographic priors of [36]. All

values are IoU in %.

Domain Adaptation: We next show our method’s do-

main adaptation ability. Towards this goal, we trained one

model on Aerial KITTI and evaluate its performance on

Bavaria, and vise versa. As shown in Table 2 our algo-

rithm outperforms all baselines despite the fact that it is

trained with different imagery. Furthermore, performance

drops less than 5% IoU when compared when we train on

the same dataset we test on.

Processing time: We implemented our method in C++

without multi-threading and test it on a laptop with an In-

tel Core i7-4600M processor. As shown in Table 3, our

approach takes less than 0.13 s for computing all feature ac-

cumulators per km of road and less than 0.1 s per km for in-

ference. The feature computation (road classifier, edge, car

detector) relies on external code which takes around 0.1s per

km of road. According to this performance, we estimate our

algorithm could approximately segment all the OSM roads

in the world in 1 day using a small cluster of 10 machines.

We use the parallel cutting-plane structured SVM of [29] to

learn the parameters of the model. This takes only 1 minute

on a desktop computer.

Ground-level Scene Understanding: In this experiment

we show that our enhanced maps can be used to improve

semantic segmentation of ground images from KITTI. To-

wards this goal, we replace the road prior used in [36] by the

estimations of our method. This improves the geographic

unary prior for the road class by 15%, see the Table 4. Qual-

itative results are shown in Fig. 9.

Failure modes and limitations: Fig. 7 depicts failure

modes. (a) At intersections the OSM might not include the

turn lanes and our model can not recover from this. (b) In

some cases our features/weights are not good for the scene.

This is more likely to happen in the strong generalization

case. (c) The road can be (partly) covered, and we only ex-

tract the visible part of the road. Additional challenges are
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(Bavaria: Motorway) (Bavaria: Urban 1) (Bavaria: Urban 2)

(AKITTI 1) (AKITTI 2) (AKITTI 3)
Figure 8. Results on Bavaria and Aerial KITTI.

Figure 9. (Top) Our road extracted from aerial images (green) projected into Kitti ground images. (2nd row): Geographical unary of [36].

(3rd row): Geographical unary with our road estimate. (Bottom) Ground truth. Road (pink), sidewalk (blue), building (red), car (purple).

Image [40] Ours Ground truth
Figure 10. Comparison to [40]: Our approach works significantly better than the baseline.

posed by historical city centers were the roads might not be

visible as well as developing countries, where only satel-

lite images with much lower resolution than aerial images

might be available.

5. Conclusion

We have presented an approach to enhance world maps

by parsing aerial images. By parameterizing the problem

in terms of OSM road segment centerlines and widths, we

were able to extract road properties very efficiently. In par-

ticular, we can process the whole world in a single day

using a small cluster. Importantly, our approach can be

trained with as little as 1.5 km2 aerial imagery from a single

area and it is able to generalize to the full world. We have

demonstrated the effectiveness of our approach in three dif-

ferent datasets captured by different sensors in different re-

gions of the world.

1696



References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. PAMI, 2012. 7

[2] M. Barzohar and D. Cooper. Automatic finding of main

roads in aerial images by using geometric-stochastic models

and estimation. PAMI, 1996. 2

[3] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging

the crowd for probabilistic visual self-localization. In CVPR,

2013. 1, 2

[4] D. Chai, W. Forstner, and F. Lafarge. Recovering line-

networks in images by junction-point processes. In CVPR,

2013. 2

[5] Q. Chen and V. Koltun. Fast mrf optimization with applica-

tion to depth reconstruction. In CVPR, 2014. 5

[6] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and

M. Hebert. An empirical study of context in object detec-

tion. In CVPR, 2009. 1

[7] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, 2013. 4, 7

[8] P. Felzenszwalb and D. Huttenlocher. Distance transforms

of sampled functions. Technical report, Cornell University,

2004. 4

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-

based image segmentation. IJCV, 2004. 7

[10] S. Fidler, S. Dickinson, and R. Urtasun. 3d object detec-

tion and viewpoint estimation with a deformable 3d cuboid

model. In NIPS, 2012. 1

[11] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d

traffic scene understanding from movable platforms. PAMI,

2014. 1

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. IJRR, 2013. 6

[13] J. Hays and A. A. Efros. Im2gps: estimating geographic

information from a single image. In CVPR, 2008. 1

[14] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009. 1

[15] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context

from a single image. In ICCV, 2005. 1

[16] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in

perspective. IJCV, 2008. 1

[17] E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros, and

A. Hertzmann. Image sequence geolocation with human

travel priors. In ICCV, 2009. 2
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