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Abstract

In this work, we investigate the problem of automatically

inferring the lattice structure of near-regular textures (NRT)

in real-world images. Our technique leverages the Patch-

Match algorithm for finding k-nearest-neighbor (kNN) cor-

respondences in an image. We use these kNNs to recover an

initial estimate of the 2D wallpaper basis vectors, and seed

vertices of the texture lattice. We iteratively expand this lat-

tice by solving an MRF optimization problem. We show that

we can discretize the space of good solutions for the MRF

using the kNNs, allowing us to efficiently and accurately

optimize the MRF energy function using the Particle Belief

Propagation algorithm. We demonstrate our technique on a

benchmark NRT dataset containing a wide range of images

with geometric and photometric variations, and show that

our method clearly outperforms the state of the art in terms

of both texel detection rate and texel localization score.

1. Introduction

From building facades to printed patterns on our cloth-

ing, texture patterns are ubiquitous in our daily lives. Tex-

ture patterns can be best understood and modeled through

symmetry detection. In particular, translational symmetry

is one of the most commonly occurring symmetries in nat-

ural and man-made structures. In this paper, we focus our

discussion on texture images that fall under the wallpaper

category, i.e., textures with translational symmetries. How-

ever, most real-world textures cannot be simply explained

by tiling a basic element regularly; they exhibit both geo-

metric and photometric deviations from a regular congruent

tiling [11]. These are termed near-regular textures (NRT).

Understanding the regularities in such textures is an impor-

tant vision and graphics problem with applications rang-

ing from shape-from-texture (which seeks to estimate sur-

face orientation from the geometric distortions in texture

elements [5]), to texture editing and texture-aware resiz-

Figure 1: Automatic lattice detection. Our technique works

on a wide range of textures and is robust to the photometric

and strong geometric deformations that are common in real-

world images.

ing [11, 17, 8].

Detecting regularities on 2D wallpaper patterns is a chal-

lenging task because of the chicken-and-egg nature of the

problem; given the basic repeating pattern of the texture we

can infer the lattice, and vice versa. However, estimating

both automatically is very hard, especially for real-world

images with complex local variations. The notion of near-

regular textures was first introduced by Liu et al. [11], who

proposed a semi-automatic lattice extraction algorithm for

texture manipulation applications. Subsequently, Hays et

al. [7] developed the first automated lattice extraction algo-

rithm for NRTs with local distortions by casting regularity

modeling as a higher-order correspondence problem. Park

et al. [15] further improved the performance of lattice de-

tection by solving the problem in an MRF setting. How-

ever, both these techniques rely on interest point detectors

to find repetitive patterns. As the interest points could be

sparse, they may fail to correlate with the regularity of the

texture, affecting not only the lattice model (texel) detec-

tion, but also the subsequent lattice expansion that relies on

the found texel for template matching.

We address these issues by leveraging the Generalized

PatchMatch algorithm (GPM) to a) find correspondences

between self-similar elements within the texture, and b)

make the lattice estimation efficient. First, we adapt GPM to

efficiently match transformed repeated patterns. The dense
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k nearest neighbor (kNN) field from GPM allows matching

of regions that may not have strong responses to common

interest point detectors. It is able to handle large appear-

ance variations, allowing stable detection of seed texture

units and lattice basis vectors. Similar to [15], we expand

the lattice from the seeds using an MRF to predict and refine

the localization of the lattice vertices. However, because the

space of solutions is continuous, they maximize the MRF

posterior probability using a mean-shift-based mode finding

technique. In contrast, we use the GPM kNNs to directly

find a small discrete set of modes of the posterior proba-

bility. We use the Particle Belief Propagation algorithm to

efficiently evaluate these modes and infer the lattice. As we

show in our results, using GPM to drive the feature search

and the lattice inference leads to both better detection and

localization of the texture lattice, and to faster convergence.

2. Related Work

In general, the texture modeling pipeline consists of two

phases: texel discovery and regularity modeling. Texels are

the basic texture elements that repeat spatially to form a

repetitive pattern. Regularity modeling usually comes in

the form of lattice fitting to reveal the spatial tiling of tex-

els. The two phases complement each other.

Repetitive Feature Detection. The first step toward au-

tomatic texel discovery is the detection of repeated inter-

est points present in the image. They form vertices of the

lattice. Many existing approaches [7, 17, 15, 8] use some

interest point detectors such as Maximally Stable Extremal

Region (MSER) [14] and KLT [13] corner features. The key

trade-off, as pointed out by [15], is to extract enough inter-

est points to reveal some repeated structure reliably with-

out overwhelming the subsequent lattice finder with false

positives. Repetitive patterns are identified by grouping

the detected interest points based on feature description or

normalization schemes that are invariant to certain geomet-

ric/photometric properties. Both [17] and [15] use Mean

Shift clustering to group points with similar appearance to-

gether for texel discovery. Detecting all transformed copies

of the same interest point is challenging, since some of them

might have undergone heavy distortion and their similarity

scores with respect to a canonical appearance template can

be significantly lower. For complex scenes such as non-

rigidly deformed fabrics, it is difficult to account for the

large appearance variations using a global canonical tem-

plate. Such clustering based techniques aim to recover only

a sparse set of repeated features as “seeds”, deferring the

detection of missing repeated features to the lattice growing

stage. In this work, we propose to use a modified version

of the Generalized PatchMatch (GPM) algorithm [3] to find

self-similar patches within an input image. GPM is an effi-

cient approach for finding an approximate nearest neighbor

field (NNF) for every w × w patch in an image. We search

for k nearest neighbors in this work. As GPM produces

a dense NNF and allows explicit modeling of the relative

transformation between patches, it is more efficient at es-

timating the lattice, and more robust to local deformations

than a global canonical appearance model that may not be

able to capture heavily distorted patch appearance. Further,

the kNNs obtained by GPM offers more accurate localiza-

tion of repeated features, hence more reliable local evidence

for the lattice estimation.

Regularity Modeling. According to the group theory of

wallpaper patterns, all translational symmetric patterns can

be represented by a pair of shortest translation vectors t1
and t2. Liu et al. [11] introduced a lattice extraction algo-

rithm with human interaction. Hays et al. [7] developed

the first automated lattice extraction algorithm for an ar-

bitrarily distorted (local and global) NRT image without

segmentation. The lattice-finding problem was formulated

as a second-order correspondence problem in the spectral

clustering setting. It seeks assignments that maximize both

pair-wise visual similarity as well as geometric consistency.

However, since the affinity matrix is large (albeit sparse),

solving for the eigenvalues for such spectral clustering is

computationally expensive.

Another seminal work by Park et al. [15] solved the

lattice fitting problem in an MRF setting with a degree-4

graph. Optimization is accelerated by Mean Shift belief

propagation in a continuous state space, which only requires

sampling a small local grid of belief values. However, since

its prior density is estimated from one global appearance

model, it is more susceptible to localization errors when lo-

cal deformation on the lattice is heavy.

3. Problem Formulation

An NRT image can be modeled as a regularly repeated

pattern with spatially dependent photometric and geometric

deformations. The intensity I(x) of a pixel at coordinate

x = [x, y]T can be written as:

I(x) = S(x)R(T (x)) (1)

where S is a scalar quantity representing the shading

component. T denotes the transformation field that maps

the coordinate from a deformed lattice to a regular one. R

is the reflectance map of a regular grid pattern. We can

view R as an albedo map formed by tiling the reflectance

of a texel. As is done in most geometry-based modeling

techniques, such as stereo matching, the effects of shading

are often accounted for via color normalization or it can be

ignored by using image gradient information, thus simplify-

ing the model to deal purely with geometric deformations.

Following this logic, we can drop the shading term S(x)
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Figure 2: An overview of the proposed lattice detection

pipeline.

and our goal becomes one of estimating the transformation

T based on the locations of lattice vertices.

An overview of our proposed lattice detection technique

is shown in Fig. 2. We first adapt GPM to search for re-

peated features in textures (Sec. 3.1), and recover a lattice

basis proposal (Sec. 3.2). We rectify the image via a ho-

mography to bring it closer toward a wallpaper pattern and

initialize the lattice with seed points. In the rectified space,

we iteratively expand the lattice by solving an MRF to en-

force global consistency in both appearance and geometry

(Sec. 4). During each iteration, we remove local geometric

distortions using a thin-plate spline. The following sections

discuss each of these steps in detail.

3.1. PatchMatch­based self­similarity discovery

Generalized PatchMatch [3] supports searching for k

self-similar patches while taking into account both geomet-

ric transformations (rotations, scales) and photometric vari-

ations (additive and multiplication factors on the observed

intensities). In our examples, we accounted for only ge-

ometric distortions. For the purpose of lattice extraction,

we adapted GPM to our problem by restricting the ini-

tialization and the random search components of GPM to

local pixel neighborhoods while disallowing collisions in

the matches. The search for k nearest neighbors can sim-

ply be extended by repeating the single-neighbor Patch-

Match k times. We associate each pixel location with k

randomized nearest neighbor candidates with parameters

Θi = {txi, tyi, si, θi}, i = {1, · · · , k}, representing trans-

lation in x- and y- directions, scale, and rotation angle, re-

spectively.

Initialization: Instead of randomly initializing pixel dis-

placements to be in the range of the image dimensions as

in [2], we initialize txi and tyi to be within a radius of 5w
from every pixel location, where w is the patch width, in

the range of 15 to 31 pixels. This is based on the assump-

tion that wallpaper patterns have immediate correspondence

in the 8-connected neighborhood in which the repeated

patches deform smoothly. We found that this initialization

strategy provides more structured kNN matches and leads

to faster convergence. In this work, we set k = 10.

kNN with Scales and Rotation: During the propagation

phase, we examine the ith neighbor’s adjacent patches one

by one and maintain a list to prevent duplicate matches. If

it offers a matching cost better than the worst distance and

is not in the list, we propagate from the adjacent patch and

insert it into the list. After looping through this k times, we

sort the list and keep only the k best candidates. The ran-

dom search phase works in a similar way. Lastly, the k best

neighbors are kept while the worse ones are removed. We

also make sure that the query patch itself is excluded from

the list of kNN candidates for the initialization, propagation

and random search phases. Results of the kNN search are

shown in Fig. 3, where the red box marks the query patch

and the green ones mark the kNNs.

Figure 3: kNN results for various texture images (k = 10).

The query patches are marked in red and the kNNs are

marked in green. The best neighbor is marked in magenta.

3.2. Lattice Basis Proposal

We begin by randomly selecting a query patch center-

ing at (xq, yq), to retrieve its k nearest matches found by

GPM. To avoid taking indistinctive query patches from uni-

form regions, we select patches with sufficient gradient in-

formation. To do this, we use simple sum-square differ-

ences (SSD) between every patch and its displaced versions

in its 4-connectivity as a measure of saliency:

Sa(x, y) = min(SSD(P(x, y),P(xi, yi)) (2)

where P(x, y) denotes a patch centered at (x, y) with width

w, where the parameter w is omitted here. (xi, yi) are (x+
1, y), (x− 1, y), (x, y + 1) and (x, y − 1), respectively.

Instead of using a global threshold on the saliency score,

we perform thresholding in a block-wise manner to allow

it to adapt locally. The thresholds are set to be the 95 per-

centile in each block. An example of the detected salient

points is shown in Fig. 4.

For each set of randomly selected kNN points, we fol-

low the RANSAC-based approach of [16] to vote for the

best lattice basis. Subsets of 3 points are drawn randomly,

forming an “L”-shape pair of {t1, t2} basis hypothesis.

We compute the affine transformation to map these

points to regular lattice coordinate {(0, 0), (0, a), (a, 0)},

where a is the average magnitude of the two basis vectors.

We then test the validity of the estimated affine transforma-

tion using other kNN matches. The pair of {t1, t2} proposal
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Figure 4: Block-

wise thresholding

for the detection

of salient points

(plotted in red).

that gives the most inliers are taken as the lattice basis. In

addition, we identify a fourth point diagonally across the

origin of the lattice basis vectors, to form a quadrilateral,

that is used to estimate a homography, H. This homography

is applied to the entire image to rectify it initially. Examples

of the found lattice basis vectors are presented in Fig. 5.

Figure 5: The lattice basis vectors found by RANSAC are

drawn in blue. The query point is marked in cyan, and its

kNN correspondences are marked in green.

4. Lattice Formation

The analysis in the previous section gives us an initial

set of texture lattice vertices and the corresponding lattice

basis vectors {t01, t
0
2}. In addition, we construct an appear-

ance template for the texture, P0, that is initialized to the

patch centered at the origin of the lattice basis proposal.

We iteratively grow this initial lattice by adding new ver-

tices that are consistent with the current lattice in terms of

both their appearance and their geometry. Note that the out-

put from GPM is a k-nearest-neighbor field at every pixel;

however, the kNNs may not be distributed in a consistent

fashion and can not be used directly to build the lattice. To

infer a globally consistent lattice grid, we adopt a Markov

Random Field (MRF) framework to iteratively expand the

lattice from a seed unit while enforcing both appearance

similarity and topological consistency. Park et al. [15] use

a similar framework to infer a lattice structure from texture

images; however they solve a continuous MRF (using Mean

Shift Belief Propagation) where the probability of all possi-

ble vertex locations in the local grids need to be evaluated.

In contrast, we make an important observation – the GPM

kNNs of the current lattice vertices are a good set of can-

didates to choose new lattice vertices from, and the next-

period lattice vertices will not deviate significantly from the

t01 and t02 basis vectors. This allows us to restrict the set

of possible MRF states to a manageable size and we solve

the resulting discrete optimization using the Particle Belief

Propagation method. This makes our technique faster and,

in practice, gives us better localization of the lattice vertices.

We denote the lattice after t − 1 iterations by Lt−1 =
(Vt−1, Et−1), where Vt−1 = {vi} denotes the vertices (with

positions {xi}) and Et−1 = {eij = (vi, vj)} describes the

edges of a 2-D grid. In order to grow this lattice, we con-

struct a lattice Lt by adding new vertices along the perime-

ter of the old lattice, i.e., Lt = (Vt−1

⋃
dV, Et−1

⋃
dE) and

dE = {eij = (vi, vj)|vi ∈ Vt−1, vj ∈ dV}. The problem

of growing the lattice is thus a problem of inferring the po-

sitions, xi, of these new vertices. We do this by optimizing

the following classical MRF objective function:

E(x) =
∑

vi∈dV

Φ(xi) +
∑

(vi,vj)∈dE

Ψ(xi,xj), (3)

where xi takes on values in a 2D domain Xi (known as the

state space of the MRF). Φi and Ψi,j are the potential func-

tions for the unary and binary terms, respectively. Optimiz-

ing the objective function in Eq. (3) is equivalent to max-

imizing the joint probability over all the vertex locations,

which can be factored as:

p(x1, . . . ,xn) =
1

Z

∏

vi∈dV

Φ(xi)
∏

(vi,vj)∈dE

Ψ(xi,xj) (4)

where Z is a scalar chosen to normalize the joint distribu-

tion.

The belief propagation (BP) algorithm can be employed

to take advantage of the factorization and perform infer-

ence efficiently. However, the problem becomes intractable

when the state space is large or is continuous. The key to

solving BP lies in the representation chosen for messages

and beliefs, and one useful strategy is to sample the state

space and evaluate only some chosen samples. In our case,

the state space of possible vertex locations, xi, spans the

dimensions of the image, making the optimization compu-

tationally expensive. However, the kNN correspondences

at a current vertex (discovered by GPM) give us a good set

of candidates for predicting the neighboring vertex’s local-

ization. We take advantage of this by performing inference

using the GPM kNNs as particles in the Particle Belief Pro-

pogation algorithm.

Our unary (data) term measures the appearance similar-

ity between a chosen state xi and the global appearance

template. Specifically, we define it as:

Φ(xi) = exp(−α(1−NCC(P0,P(xi)))), (5)

where NCC is the normalized cross-correlation, P0 is the

global appearance template, and P(xi) the image patch

centered at state xi.
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The binary (smoothness) term measures the geometric

consistency of neighboring vertices on the lattice, and bi-

ases the translation between two connected vertices towards

the global lattice basis vectors, {t01, t
0
2}. The translation

vector for vertex vi is computed as ti = xi − xj , where

vj is a neighboring vertex of vi. We define the consistency

between two translation vectors as:

h(ti, tj) =
‖ti − tj‖2

‖ti‖2
, (6)

and in turn, define the pairwise potential as:

Ψ(xi,xj) = exp(−β(h(xi − xj , t
0
a))

2), a = 1 ∨ 2. (7)

This translation vector is matched against either t01 or t02
depending on the direction of the the edge (vi, vj). β is a

parameter that is set to 5 for our examples.

We compare the translational offsets to the global lat-

tice basis vectors because this allows us to formulate the

smoothness term as a pairwise term; defining it as the

smoothness of the offsets themselves will lead to higher or-

der potentials on xi. However, it enforces a strong global

constraint on the lattice and could lead to issues in texture

with perspective effects and local deformations. We handle

this using a local rectification step that accounts for these

effects, and will be described later.

PatchMatch-guided Particle Sampling. As noted be-

fore, the kNN matches from GPM give us a set of good

candidates for the locations of the new vertices of the lat-

tice. We construct this set as:

C =
⋃

vi∈Vt−1

(xi

⋃

vj∈KNN(vi)

xj). (8)

This candidate set expands as more vertices are added to the

lattice.

In addition, the repetitive nature of a texture implies that

given a vertex in the current lattice, the candidates for the

next-period vertex can be predicted using the t01 and t02
tiling vectors. For every new vertex vi ∈ dV with neighbor

vi−1 ∈ Vt−1, we construct a set of the candidates D = {y}
satisfying the following conditions:

‖y − (xi−1 ± t0a)‖2 ≤ r, a = 1, 2; and

NCC(P(y),P(xi−1)) > 0.8,

where r defines the radius of the search region around a

predicted location. The set D is introduced in case GPM

fails to locate nearest-neighbors that are immediately one

period away from vertex vi−1. For each candidate in the

combined pool C ∪ D, we evaluate its NCC score against

the patch P(xi−1) and use the best k candidates to build

a per-vertex particle set Si. An illustration of the lattice

expansion is shown in Fig. 6. We can observe how GPM

guided particle selection helps to quickly locate modes in

the posterior density.

Posterior  

density 

Figure 6: Evolution of the lattice expansion. Modes in

the posterior density are progressively exposed with GPM

guided sampling.

Particle Belief Propagation. We use the Particle Belief

Propagation algorithm [9] to minimize Eqn. 3. In PBP, all

messages and beliefs evaluated at any node are in terms of

a set of particles instead of the entire state space. The mes-

sage passed from vertex vj as the sender to vertex vi as the

receiver is defined as:

mj→i(xi) = max
xj∈Sj

Φ(xj)Ψ(xi,xj)
∏

u∈N (vj)\vi

mu→j(xj),

(9)

where Sj denotes the particle set associated with vertex vj .

The un-normalized belief function at xi is given by:

b(xi) = Φ(xi)
∑

u∈N (vi)

mu→i(xi) (10)

At the end of each iteration at vertex vi, we update its as-

sociated set of particles Si to represent the belief at this ver-

tex. Instead of using sampling techniques such as MCMC

as in conventional PBP, we repeat the same sampling proce-

dure as described earlier, updating the best k particle candi-

dates.

Lattice Verification and Update. At the end of each it-

eration of lattice expansion, we verify if the converged ver-

tices have kNNs that coincide with the previously grown

vertices. This gives us a safety measure to make sure the

found vertex positions are sufficiently accurate, since it will

affect the next iteration’s lattice expansion. We also update

the global texel template at the end of each lattice growing

iteration. We fit a regularized local thin-plate spline warp to

the current lattice vertices to invert the geometric distortions

of the found vertices. The global template P0 is computed

by stacking the rectified and aligned texture vertex patches

and computing a per-pixel median.

The next iteration of lattice growing is then applied in

this rectified space. Doing this is important because it

makes the regularization on translational offsets in Eqn. 6

meaningful. Although this rectification is local since it is
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based on a partially constructed lattice, assuming continuity

in the geometric deformation in a local neighborhood, this

flattening operation helps to reduce the distortion in the next

texel and allows for better prediction of vertex locations.

Relation to PatchMatch Belief Propagation. Conceptu-

ally, our proposed method is closely related to PatchMatch

Belief Propagation (PMBP) [4]. PMBP interleaves Patch-

Match (PM) with Belief Propagation, using PM as a mech-

anism to resample particles for each node by considering

its neighbor’s particles. In contrast, we first run GPM to

find kNNs; this can be thought of as an initial optimiza-

tion of the unary term in the MRF. In a later joint optimiza-

tion over both the unary and binary terms, we use the found

kNNs as particles at each node for message passing. These

short-listed candidates help speed up the particle sampling

process for the BP, leading to faster convergence.

5. Experiment

We verify our proposed method by testing it on the data

used in Symmetry Detection from Real World Images Com-

petition 2013 [10], here referred to as Set A. The data set

contains 90 images for translational symmetry detection

with manually annotated ground truth. The set is further

divided into 3 subsets: general, look through (fence-like)1

and urban scenes. In addition, we also tested our algorithm

on a set of 15 images from the NRT data set [1], where more

challenging test cases are selected. We refer to this as Set

B. For evaluation purposes, we obtained the ground truth by

manually annotating the lattice.

We first present a visual comparison between our lattice

detection results and those of two state-of-the-art automatic

lattice detection algorithms: the methods of Park et al. [15]

and Hays et al. [7]2. Sample results presented in Fig. 7 show

that the proposed method has comparable results to the two

methods; it performs better on the fabric case where local

deformation is stronger. More results for various subsets of

the test data are presented in Fig. 8 through Fig. 12.

We are interested in evaluating the performance on lat-

tice detection from two aspects: 1) the success rate of texel

detection and 2) the accuracy in the localization of lattice

vertices.

Texel Detection. For evaluation of texel detection, we fol-

low the methodology described in [15] to measure the suc-

cess rate of the detection. Let Lgt be ground truth lattice and

Lest be the detected one, every lattice point in Lest marks

the lattice point in Lgt that is the closest to it as a match.

The same is done in a reverse manner to identify points with

1We excluded evaluations on this subset as both [15] and our method

failed to produce stable results.
2The visual results are taken directly from the paper’s figures.

Hays et al. Park et al. Ours 

Figure 7: Sample results of general scenes from Set A com-

pared against [7] and [15].

Failure 

cases

OursPark et al.

Figure 8: Selected results of general scenes from Set A.

Failure cases are shown at the bottom.

mutual matching agreement. Lest is moved toward to Lgt

by a global offset estimated from the point matches. A texel
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Park et al. Ours 

Figure 9: Selected results of urban scenes from Set A. The

proposed method performs better on scenes with stronger

geometric distortions.

Park et. al Ours

Figure 10: Selected results from Set B. The lattice detected

by the proposed method has finer granularity.

is counted as successfully detected if there exists a complete

quadrilateral in Lgt and that its four corners has matches in

Lest. Results of the lattice detection comparison are shown

in Table 1. The lower detection rate on the general scene

subset (Set A) is due to failure in detecting lattices for cer-

tain images. Sample failure cases are shown in Fig. 8.

Lattice Localization. To examine the performance on lat-

tice localization, we propose a new metric to measure the

homogeneity in the appearance of detected texels. For ev-

ery detected texel on the lattice, we applied a homography

to rectify the quadrilateral to a 50 × 50 image patch so

Precision = 0.881,    Recall = 0.983 Precision = 0.894,    Recall = 0.983

Precision = 0.507,    Recall = 0.583 Precision = 0.983,    Recall = 0.983

Initialization

Park et. al Ours

Figure 11: Sensitivity to lattice basis initialization on a se-

lected image from Set B. We fixed the initialization for both

methods. Our method gives more stable detection with dif-

ferent initializations.

oursPark et al.

Figure 12: Selected results of fence-like scenes from Set A.

Both [15] and our method suffer from the problem of high

appearance variations in lattice features.

that their area can be normalized. Ideally, the homogeneity

score will be low if the lattice vertices align well with the

repeated landmarks on an image. The homogeneity score is

computed as:

H = median{std(I(1)), . . . , std(I(m))} (11)

where std(I(i)) denotes the standard deviation of pixel in-

tensity for the ith pixel location in normalized texel patches.

m is the total number of pixels in a normalized texel patch.

We found that taking the median value of per-pixel standard

deviation is more reliable than using the mean as in the A-

score proposed in [11], since the mean value is less sen-

sitive to misalignment if the texel contains uniform regions

within it. Table 2 shows that our localization is consistently

better for the 3 test subsets. In particular, our performance
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Detection Set A Set B

Rate(%) General Urban

[15] 65.80± 35.27 77.30± 21.79 75.03± 21.60

Ours 69.60± 30.96 82.11± 11.92 91.10± 14.46

Table 1: Performance comparison on lattice detection rate

between the proposed method and [15]. We report detection

rates in terms of mean and standard deviation.

H-score Set A Set B

General Urban

[15] 36.18 ± 11.25 31.19 ± 15.21 50.12 ± 11.22

Ours 33.99 ± 10.36 28.62 ± 10.79 34.00 ± 9.31

HGT 36.50 ± 11.23 27.91 ± 9.37 31.50 ± 8.10

Table 2: Comparison on lattice localization. Localization

accuracy is measured in terms of homogeneity score. We re-

port the mean and standard deviation of homogeneity scores

in each test set. The statistics for the ground truth are shown

in the last row. This evaluation is done on images with suc-

cessfully detected texels, excluding failure cases.

is significantly better on deformable surfaces. While our

method outperforms [15] on both metrics on all subsets,

note that our performance is significantly better on Set B

(whose geometric and shading variations are stronger than

majority in Set A). This can be attributed to the fact that our

method is more robust to these deviations. We also com-

pared the two methods’ sensitivity to lattice basis initial-

ization using data from Set B. A typical result presented in

Fig. 11 shows that our method gives more consistent lattice

detection output under different initializations. This is be-

cause GPM is more robust against local deformations. Ad-

ditional results are presented in the supplemental material.

On a Dell i7 6-core machine, our method with GPM im-

plemented in C++ and the rest in MATLAB, processes a

typical 480×640 image in about 150s: 80s for GPM and 70s

for inference and unwarping. The implementation of [15]

in C++/Mex and MATLAB takes about 162s: 16s for fea-

ture extraction and 146s for inference and unwarping. Our

current implementation of GPM is not optimized; given the

performance of other implementations [3], we believe it can

be sped up significantly. While not an apples to apples com-

parison, our inference is about 2 times faster than the that

of [15], as it uses GPM to find good modes.

Application: Retextureing The proposed method is able

to detect lattices reliably. It provides accurate geometric

correspondences for the estimation of a warping field be-

tween deformed texture and its rectified counterpart, allow-

ing us to edit the reflectance layer. We used the intrinsic im-

age decomposition method [18] to extract the shading map

of an input image. The shading map is multiplied with the

edited reflectance layer to create the final rendering. Ex-

amples of re-texturing is illustrated in Fig. 13. We can see

that our method captures the geometric deformations of the

original images well and the renderings look realistic.

Input image Shading map Retextured results

Figure 13: Retexturing based on detected lattice.

6. Discussion and Conclusion

Limitation. Despite geometric and photometric deforma-

tions, GPM on image intensities performs well on opaque

objects with a near-regular texture. However, GPM in

this form falls short on texture within see-through or semi-

transparent surfaces such as fences. Such images re-

main a challenge to current state-of-the-art techniques (see

Fig. 12).The key reason is that patch intensities are not dis-

tinctive enough to represent the key points on such texture,

due to confusion arising from the background scene. How-

ever, instead of using per-pixel SSDs as an error metric, we

would like to extend this work to use more robust repre-

sentations such as HOG [6] or SIFT [12] to improve GPM

correspondences on such images.

In conclusion, we have presented an approach for auto-

matic lattice detection in real-world NRT images with trans-

lational symmetries. Our main observation is that we can

make automatic lattice detection more robust and efficient

by leveraging the Generalized PatchMatch algorithm to find

repeated features in the image. We formulate the lattice

growing problem as a discrete-state MRF, where the state

sampling is guided by the nearest-neighbor matches found

by GPM, providing efficient estimation of lattice vertices.

Our results compare favorably to the state-of-the art meth-

ods – in particular, the localization of our lattice is better

even under strong geometric distortions. For future work,

we would like to extend our matching and regularity model-

ing to the detection of other symmetry types, e.g., rotational

symmetry. We will analyse the current algorithm in a theo-

retically more rigorous manner. We will also look into the

densification of lattice mesh for more general applications

such as shape recovery and texture rendering.
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