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Abstract

In this work, we address the human parsing task with a
novel Contextualized Convolutional Neural Network (Co-
CNN) architecture, which well integrates the cross-layer
context, global image-level context, within-super-pixel con-
text and cross-super-pixel neighborhood context into a uni-
fied network. Given an input human image, Co-CNN pro-
duces the pixel-wise categorization in an end-to-end way.
First, the cross-layer context is captured by our basic local-
to-global-to-local structure, which hierarchically combines
the global semantic information and the local fine details
across different convolutional layers. Second, the global
image-level label prediction is used as an auxiliary objec-
tive in the intermediate layer of the Co-CNN, and its out-
puts are further used for guiding the feature learning in sub-
sequent convolutional layers to leverage the global image-
level context. Finally, to further utilize the local super-pixel
contexts, the within-super-pixel smoothing and cross-super-
pixel neighbourhood voting are formulated as natural sub-
components of the Co-CNN to achieve the local label con-
sistency in both training and testing process. Comprehen-
sive evaluations on two public datasets well demonstrate the
significant superiority of our Co-CNN over other state-of-
the-arts for human parsing. In particular, the F-1 score on
the large dataset [15] reaches 76.95% by Co-CNN, signifi-
cantly higher than 62.81% and 64.38% by the state-of-the-
art algorithms, M-CNN [2]] and ATR [15], respectively.

1. Introduction

Human parsing, which refers to decomposing a human
image into semantic clothes/body regions, is an important
component for general human-centric analysis. It enables
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many higher level applications, e.g., clothing style recogni-
tion and retrieval [5], clothes recognition and retrieval [30],
people re-identification [33], human behavior analysis [29]
and automatic product recommendation [ 14].

While there has been previous work devoted
to human parsing based on human pose estima-
tion [31] [6] [32] [20] [19], non-parametric label transfer-
ring [30][21] and active template regression [15], none of
previous methods has achieved excellent dense prediction
over raw image pixels in a fully end-to-end way. These
previous methods often take complicated preprocessing as
the requisite, such as reliable human pose estimation [4],
bottom-up hypothesis generation [1] and template dictio-
nary learning [23], which makes the system vulnerable to
potential errors of the front-end preprocessing steps.

Convolutional neural network (CNN) facilitates great ad-
vances not only in whole-image classification [26], but also
in structure prediction such as object detection [10] [16],
part prediction [27] and general object/scene semantic seg-
mentation [7][8]. However, they usually need supervised
pre-training with a large classification dataset, e.g., Ima-
geNet, and other post-processing steps such as Conditional
Random Field (CRF) [¢] and extra discriminative classi-
fiers [24][11]. Besides the above mentioned limitations,
there are still two technical hurdles in the application of
existing CNN architectures to pixel-wise prediction for the
human parsing task. First, diverse contextual information
and mutual relationships among the key components of hu-
man parsing (i.e. semantic labels, spatial layouts and shape
priors) should be well addressed during predicting the pixel-
wise labels. For example, the presence of a skirt will hinder
the probability of labeling any pixel as the dress/pants, and
meanwhile facilitate the pixel prediction of left/right legs.
Second, the predicted label maps are desired to be detail-
preserved and of high-resolution, in order to recognize or
highlight very small labels (e.g. sunglass or belt). However,
most of the previous works on semantic segmentation with
CNN can only predict the very low-resolution labeling, such
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as eight times down-sampled prediction in the fully convo-
lutional network (FCN) [22]. Their prediction is very coarse
and not optimal for the required fine-grained segmentation.

In this paper, we present a novel Contextualized Con-
volutional Neural Network (Co-CNN) that successfully ad-
dresses the above mentioned issues. Given an input human
image, our architecture produces the correspondingly-sized
pixel-wise labeling maps in a fully end-to-end way, as il-
lustrated in Figure 1. Our Co-CNN aims to simultaneously
capture cross-layer context, global image-level context and
local super-pixel contexts by using the local-to-global-to-
local hierarchical structure, global image-level label pre-
diction, within-super-pixel smoothing and cross-super-pixel
neighborhood voting, respectively.

First, our basic local-to-global-to-local structure hierar-
chically encodes the local details from the early, fine layers
and the global semantic information from the deep, coarse
layers. Four different spatial resolutions are used for cap-
turing different levels of semantic information. The feature
maps from deep layers often focus on the global structure
and are insensitive to local boundaries and spatial displace-
ments. We up-sample the feature maps from deep layers
and then combine them with the feature maps from former
layers under the same resolution.

Second, to utilize the global image-level context and
guarantee the coherence between pixel-wise labeling and
image label prediction, we incorporate global image label
prediction into our pixel-wise categorization network, illus-
trated as the global image-level context part of Figure 1.
An auxiliary objective defined for the global image label
prediction (i.e. Squared Loss) is used, which focuses on
global semantic information and has no relation with lo-
cal variants such as pose, illumination or precise location.
We then use the predicted image-level label probabilities to
guide the feature learning from two aspects. First, the pre-
dicted image-level label probabilities are utilized to facili-
tate the feature maps of each intermediate layer to generate
the semantics-aware feature responses, and then the com-
bined feature maps are further convolved by the filters in the
subsequent layers, shown as the image label concatenation
part of Figure 1. Second, the predicted image-level label
probabilities are also used in the prediction layer to explic-
itly re-weight the pixel-wise label confidences, shown as the
element-wise summation part of Figure 1.

Finally, the within-super-pixel smoothing and cross-
super-pixel neighborhood voting are leveraged to retain the
local boundaries and label consistencies within the super-
pixels. They are formulated as natural sub-components of
the Co-CNN in both the training and the testing process.

Comprehensive evaluations and comparisons on the ATR
dataset [15] and the Fashionista dataset [30] well demon-
strate that our Co-CNN yields results that significantly sur-
pass all previously published methods, boosting the cur-

rent state-of-the-arts from 64.38% [15] to 76.95%. We also
build a much larger dataset “Chictopial Ok”, which contains
10,000 annotated images. By adding the images of “Chic-
topialOk™ into the training, the F-1 score can be further
improved to 80.14%, 15.76% higher than the state-of-the-
arts [15] [30].

2. Related Work

Human Parsing: Much research has been devoted to
human parsing [31][30][6][32][28][ 1 8][25][21]. Most pre-
vious works used the low-level over-segmentation, pose es-
timation and bottom-up hypothesis generation as the build-
ing blocks of human parsing. For example, Yamaguchi et
al. [31] performed human pose estimation and attribute la-
beling sequentially and then improved clothes parsing with
a retrieval-based approach [30]. Dong et al. [6] proposed to
use a group of parselets under the structure learning frame-
work. These traditional hand-crafted pipelines often re-
quire many hand-designed processing steps, each of which
needs to be carefully designed and tuned. Recently, Liang
et al. [15] proposed to use two separate convolutional net-
works to predict the template coefficients for each label
mask and their corresponding locations, respectively. How-
ever, their design may lead to sub-optimal results.

Semantic Segmentation with CNN: Our method
works directly on the pixel-level representation, similar
to some recent research on semantic segmentation with
CNN [22] [11] [8]. These pixel-level representations are in
contrast to the common two-stage approaches[24] [10] [12]
which consist of complex bottom-up hypothesis generation
(e.g. bounding box proposals) and CNN-based region clas-
sification. For the pixel-wise representation, by directly us-
ing CNN, Farabet et al. [7] trained a multi-scale convolu-
tional network from raw pixels and employed the super-
pixel tree for smoothing. The dense pixel-level CRF was
used as the post-processing step after CNN-based pixel-
wise prediction [2] [3] [9]. More recently, Long et al. [22]
proposed the fully convolutional network for predicting
pixel-wise labeling.

The main difference between our Co-CNN and these
previous methods is the integration of cross-layer context,
global image-level context, local super-pixel contexts into
a unified network. It should be noted that while the fully
convolutional network [22] also tries to combine coarse and
fine layers, they only aggregate the predictions from dif-
ferent scales in the final output. In contrast, in our local-
to-global-to-local hierarchical structure , we hierarchically
combine feature maps from cross-layers and further feed
them into several subsequent layers for better feature learn-
ing, which is very important in boosting the performance as
demonstrated in the experiments.
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Figure 1. Our Co-CNN integrates the cross-layer context, global image-level context and local super-pixel contexts into a unified network. It
consists of cross-layer combination, global image-level label prediction, within-super-pixel smoothing and cross-super-pixel neighborhood
voting. First, given an input 150 x 100 image, we extract the feature maps for four resolutions (i.e., 150 x 100, 75 x 50, 37 x 25 and
18 x 12). Then we gradually up-sample the feature maps and combine the corresponding early, fine layers (blue dash line) and deep,
coarse layers (blue circle with plus) under the same resolutions to capture the cross-layer context. Second, an auxiliary objective (shown
as “Squared loss on image-level labels™) is appended after the down-sampling stream to predict global image-level labels. These predicted
probabilities are then aggregated into the subsequent layers after the up-sampling (green line) and used to re-weight pixel-wise prediction
(green circle with plus). Finally, the within-super-pixel smoothing and cross-super-pixel neighborhood voting are performed based on
the predicted confidence maps (orange planes) and the generated super-pixel over-segmentation map to produce the final parsing result.
Only down-sampling, up-sampling, and prediction layers are shown; intermediate convolution layers are omitted. For better viewing of all
figures in this paper, please see original zoomed-in color pdf file.

3. The Proposed Co-CNN Architecture

can capture more structure information with high-level se-
mantics. We combine the local fine details and the high-
level structure information by cross-layer aggregation of
early fine layers and up-sampled deep layers. We transform
the coarse outputs (e.g., with resolution 18 x 12) to dense
outputs (e.g., with resolution 37 x 25) with up-sampling in-
terpolation of factor 2. The feature maps up-sampled from

Our Co-CNN exploits the cross-layer context, global
image context and local super-pixel contexts in a unified
network, consisting of four components, i.e., the local-
to-global-to-local hierarchy, global image label prediction,
within-super-pixel smoothing and cross-super-pixel neigh-

borhood voting, respectively.
3.1. Local-to-global-to-local Hierarchy

Our basic local-to-global-to-local structure captures the
cross-layer context. It simultaneously considers the local
fine details and global structure information. The input to
our Co-CNN is a 150 x 100 color image and then passed
through a stack of convolutional layers. The feature maps
are down-sampled three times by the max pooling with a
stride of 2 pixels to get three extra spatial resolutions (75 x
50, 37 x 25, 18 x 12), shown as the four early convolutional
layers in Figure 1. Except for the stride of 2 pixels for down-
sampling, the convolution strides are all fixed as 1 pixel.
The spatial padding of convolutional layers is set so that the
spatial resolution is preserved after convolution, e.g., the
padding of 2 pixels for 5 x 5 convolutional filters.

Note that the early convolutional layers with high spatial
resolutions (e.g., 150 x 100) often capture more local details
while the ones with low spatial resolutions (e.g., 18 x 12)

the low resolutions and those from the high resolutions are
then aggregated with the element-wise summation, shown
as the blue circle with plus in Figure 1. Note that we se-
lect the element-wise summation instead of other operations
(e.g. multiplication) by experimenting on the validation set.
After that, the following convolutional layers can be learned
based on the combination of coarse and fine information.
To capture more detailed local boundaries, the input image
is further filtered with the 5 x 5 convolutional filters and
then aggregated into the later feature maps. We perform the
cross-layer combination four times until obtaining the fea-
ture maps with the same size as the input image. Finally,
the convolutional layers are utilized to generate the C' con-
fidence maps to predict scores for C labels (including back-
ground) at each pixel location. Our loss function is the sum
of cross-entropy terms for all pixels in the output map.
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Figure 2. Comparison of label confidence maps between Co-CNN
and that without using global labels. By using the global image
label probabilities to guide feature learning, the confidence maps
for skirt and dress can be corrected.
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3.2. Global Image-level Context

An auxiliary objective for multi-label prediction is used
after the intermediate layers with spatial resolution of 18 x
12, as shown in the pentagon in Figure 1. Following the
fully-connected layer, the C'-way softmax which produces
a probability distribution over the C class labels is ap-
pended. Squared loss is used during the global image label
prediction. Suppose for each image I in the training set,
Yy = [y1,Y2, - ,yc] is the ground-truth multi-label vec-
tor. yo = 1,(c = 1,--- ,C) if the image is annotated with
class ¢, and otherwise yc = 0. The ground-truth probability
vector is normalized as pe = i ;’E — and the predictive proba-
bility vector is p = [p1, P2, - P ,bc]- The squared loss to be
minimized is defined as J = f:::l (pe —Pe)?. During train-
ing, the loss of image-level labels is added to the total loss
of the network weighted by a discount factor 0.3. To utilize
the predicted global image label probabilities, we perform
two types of combination: concatenating the predicted la-
bel probabilities with the intermediate convolutional layers
(image label concatenation in Figure 1) and element-wise
summation with label confidence maps (element-wise sum-
mation in Figure 1).

First, consider that the feature maps of the m-th convo-
lutional layer are a three-dimensional array of size A™ x
w™ x d™, where h™ and w™ are spatial dimensions, and
d™ is the number of channels. We generate C' additional
probability maps {zP}$ with size A™ x w™ where each
xﬁj;c at location (4, j) is set as the predicted probability p
of the c-th class. By concatenating the feature maps ™ of
the m-th layer and the probability maps {22}, we gener-
ate the combined feature maps 2™ = [z™, 2z}, 25, .-+ | 2R]
of the size h™ x w™ x (d™ + C). The outputs =] ** at

input

™ { e

Figure 3. Comparison of example results of using local super-
pixel contexts. For each image, we show the results from Co-CNN
and “Co-CNN w/o sp”, i.e. no local super-pixel information used.

location (4, j) in the next layer are computed by

el = f{@ i e Yo 6 k) (1)
where k is the kernel size, and fy is the corresponding con-
volution filters. We perform this concatenation after each
combination of coarse and fine layers in Section 3.1, as
shown in Figure 1.

Second, we element-wisely sum the predicted confi-
dence maps with the global image label probabilities. If
the class ¢ has a low probability of appearing in the im-
age, the corresponding pixel-wise probability will be sup-
pressed. Given the probability rijc of the c-th confidence
map at location (3, j), the resulting probability 7ij,c is cal-
culated by #ijc = rijec + Pc for the c-th channel. The
incorporation of global image-level context into label con-
fidence maps can help reduce the confusion of competing
labels.

3.3. Local Super-pixel Context

We further integrate the within-super-pixel smoothing
and the cross-super-pixel neighborhood voting into the
training and testing process to respect the local detailed in-
formation. They are only performed on the prediction layer
(i.e. C confidence maps) instead of all convolutional layers.
It is advantageous that super-pixel guidance is used at the
later stage, which avoids making premature decisions and
thus learning unsatisfactory convolution filters.

Within-super-pixel Smoothing: For each input image
I, we first compute the over-segmentation of I using the
entropy rate based segmentation algorithm [17] and ob-
tain 500 super-pixels per image. Given the C' confidence
maps {zc}$ in the prediction layer, the within-super-pixel
smoothing is performed on each map x.. Let us denote the
super-pixel covering the pixel at location (4, j) by sj; , the
smoothed confidence maps Z. can be computed by

- 1 X
Tijie = m Ti%j %c, 2)

Vo592
where ||sj || is the number of pixels within the super-pixel
sij and (i% j°) represents all pixels within sjj .
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