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Abstract

State of the art approaches for Semi-Supervised Learn-

ing (SSL) usually follow a two-stage framework – construct-

ing an affinity matrix from the data and then propagating

the partial labels on this affinity matrix to infer those un-

known labels. While such a two-stage framework has been

successful in many applications, solving two subproblems

separately only once is still suboptimal because it does not

fully exploit the correlation between the affinity and the la-

bels. In this paper, we formulate the two stages of SSL into a

unified optimization framework, which learns both the affin-

ity matrix and the unknown labels simultaneously. In the

unified framework, both the given labels and the estimated

labels are used to learn the affinity matrix and to infer the

unknown labels. We solve the unified optimization problem

via an alternating direction method of multipliers combined

with label propagation. Extensive experiments on a synthet-

ic data set and several benchmark data sets demonstrate the

effectiveness of our approach.

1. Introduction

In real world applications, one often faces the scenario

that the acquisition of data with labels is quite costly in hu-

man labor, whereas a large amount of unlabeled data are rel-

atively easy to obtain. Therefore, Semi-Supervised Learn-

ing (SSL) was proposed to incorporate both unlabeled data

and labeled data for classification [26, 6, 7, 33].

1.1. Related Work

In the past decade, graph-based SSL approaches have at-

tracted much attention for its simple and elegant formula-

tion and a number of algorithms have been proposed, e.g.,

[26, 34, 17, 31, 4, 18, 28, 19, 11, 30, 15]. For a more de-

tailed survey, please refer to [33].

The central idea behind the graph-based SSL approach-

es is to explore the pairwise affinity between data points to

infer those unknown labels. More concretely, the unknown

labels should be consistent with both the given partial labels

and the pairwise affinity. In this sense, graph-based SSL ap-

proaches are usually interpreted as a process of propagating

labels through the pairwise affinity of data points, which is

called label propagation [31, 33, 8].

The affinity to measure the similarity of data points

and the mechanism to infer those unknown labels are t-

wo fundamental components in SSL. Roughly speaking,

different approaches differ in the way to induce the affin-

ity matrix, e.g., [34, 31, 32, 28, 11, 30, 10, 15, 36],

and/or the mechanics to infer those unknown labels, e.g.,

[26, 34, 17, 31, 32, 16, 1, 28, 19].

The existing approaches to define the affinity can be

roughly divided into three categories: a) the Euclidean dis-

tance based approaches, which use the k nearest neighbors

rule to find the local neighborhood and encode the proximi-

ty among data points as binary weights or as “soft” weight-

s by a heat kernel, e.g., [5, 34, 6, 12]; b) the local self-

expressiveness model based approaches, which induce the

affinity by expressing each data point as a linear combina-

tion of local neighbors, e.g., [25, 28]; c) the global self-

expressiveness model based approaches, which induce the

affinity by expressing each data point as a linear combina-

tion of all other data points, e.g., sparsity induced affini-

ty [11, 30, 15, 36] and low-rankness induced affinity [23].

The Euclidean distance based approaches and the local self-

expressiveness model based approaches depend upon the

local neighborhood parameter (e.g., k) and there is no re-

liable approach to determine its optimal value.

While the mechanics to infer those unknown labels being
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interpreted as a process of propagating labels through the

pairwise affinity, their implementation strategies are differ-

ent, e.g., Markov random walks [26], the harmonic function

approach [34], spectral graph transducer [17], the local and

global consistency approach [31], the Green’s function ap-

proach [32], the online approach [16], the Gaussian process

[1], and the robust label propagation [19].

Recent advances in SSL are more emphasizing on con-

structing an informative affinity matrix [28, 11, 30, 10, 29,

15, 36]. Although these approaches have been very success-

ful in many applications, an important shortcoming is that

they divide the SSL problem into two separate stages:

• Construct the affinity matrix, using, e.g., heat ker-

nel [6], local linear representation [25, 28], sparse rep-

resentation [11, 30, 10, 15], and low-rank representa-

tion [23].

• Infer the unknown labels, using, e.g., label propagation

via harmonic function [34], and the local and global

consistency approach [31].

While the two subproblems can be easily solved separately,

the major disadvantage is that the natural relationship be-

tween the affinity matrix and the labels of the data is not

fully exploited. Notice that in the approaches mentioned

above, the affinity matrix is induced by using neither the

given labels nor the estimated labels, and the label propa-

gation is conducted by using the given labels only. A very

interesting work is [35], in which the given partial labels

are used to construct a kernel and then a transductive sup-

port vector machine is adopted to estimate unknown label-

s. While the value of the partial labels for inducing a bet-

ter affinity matrix was verified, neither the estimated labels

were exploited nor a unified single objective was built.

In this paper, we attempt to integrate the two separate

stages into a single unified optimization framework. One

important observation is that the estimated labels of the da-

ta can provide useful “weakly” supervised information for

building a better affinity matrix and facilitate label propaga-

tion. Because of this, if we feed back the “weakly” super-

vised information induced from the estimated labels prop-

erly, it is possible to yield a better affinity matrix and more

accurate estimation of the unknown labels.

Paper Contributions. We propose to integrate the separate

two stages of SSL into a unified optimization framework,

in which both the given labels and the estimated labels are

used to learn the affinity matrix and to infer the unknown

labels. Different from the previous two-stage approaches,

our unified optimization framework fully exploits both the

given labels and the estimated labels. To the best of our

knowledge, this is the first attempt to build a unified opti-

mization framework for SSL to fully exploit the given la-

bels and the inferred labels to revise the affinity matrix and

Figure 1. Illustrations of the “single pass” two-stage SSL paradigm

and the proposed unified optimization framework. (a) Construct

an affinity matrix. (b) Infer the unknown labels. (c) Incorporate

the given and inferred labels to revise the affinity matrix and to

facilitate the label propagation.

to facilitate the label propagation. In experiments, we will

show that the classification accuracy could be boosted sig-

nificantly during the iterations.

2. A Unified Optimization Framework for

Semi-Supervised Learning

This paper considers with the following problem.

Problem 2.1 (Semi-Supervised Learning). Given a data

set X = {x1,x2, . . . ,xn,xn+1, . . . ,xN} which consists

of m classes, where data point xj ∈ IRd, and a few la-

bels Yn = {y1,y2, . . . ,yn}, where the label yj is an m-

dimensional indicator vector (in which yij = 1 correspond-

s to the i-th class), n is the number of labeled data points,

N −n is the number of unlabeled data points, and n≪ N .

The goal of SSL is to estimate the unknown labels for the

remaindering N − n data points.

Without loss of generality, we arrange the labeled data

points as the columns of matrix X(n) =
[

x1,x2, . . . ,xn

]

,

the unlabeled data points as the columns of matrix X(u) =
[

xn+1,xn+2, . . . ,xn+u

]

, where N = n + u, and hence

we have X =
[

X(n), X(u)
]

. Accordingly, we divide the

label matrix Y as Y =
[

Y (n), Y (u)
]

, in which Y (n) =
[

y1, · · · ,yn

]

is the known label matrix and Y (u) =
[

yn+1, · · · ,yN

]

is the unknown label matrix. Since each

data point lies in only one class, we have Y ⊤1 = 1, where

1 is the vector of all 1’s of appropriate dimension. Notice

also that the number of classes is equal to m and thus we

have rank(Y ) = m. Consequently, we define the space of

label matrices as

Y = {Y ∈ {0, 1}m×N : Y ⊤1 = 1, rank(Y ) = m}. (1)

Note that in the setting of SSL, what we need to do is to

construct an affinity matrix and then estimate the unknown

part Y (u) based on a few labels in Y (n).

2.1. Reformulating Semi­Supervised Learning

Recall that existing approaches [33, 28, 11, 30] for SSL

usually divide the problem into two separate stages: com-
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puting an affinity matrix and then inferring the unknown

labels. For the affinity matrix, we expect that the connec-

tions among data points from different classes are as weak

(or sparse) as possible; whereas the connections among data

points within each class are as strong (or dense) as possible.

Ideally, the sufficient condition for perfect classification is

that the affinity matrix should be block-diagonal in which

each block is connected and corresponds to data points from

the same class.

At this moment, suppose that the label matrix Y was

known. An interesting fact is that the block-diagonal pat-

terns of an ideal affinity matrix A and the labels in matrix

Y are related. Notice that ideally whenever data points i

and j belong to different classes, we must have Aij = 0. In

another words, we have Aij ̸= 0 if and only if data points i

and j are in the same class, and thus we must have yi = yj

where yi and yj are the i-th and the j-th columns of matrix

Y , respectively. Therefore, we can quantify the disagree-

ment between the affinity matrix A and the label matrix Y

by using the following measure:

δ(A, Y ) =
∑

i,j

|Aij |(
1

2
∥yi − yj∥

2)

= ∥Θ⊙A∥1,

(2)

where Θij = 1
2∥yi − yj∥

2, the operator ⊙ indicates the

element-wise product, and ∥·∥1 is the vector ℓ1 norm. We

call δ(A, Y ) as a disagreement measure of A with respec-

t to (w.r.t.) the label matrix Y . Since Θij ∈ {0, 1}, the

disagreement measure δ(A, Y ) in (2) effectively counts the

times that A and Y disagree and weights this count by |Aij |.
Note that in the ideal case – that is, the affinity matrix A is

block-diagonal and each block corresponds to a class, i.e.,

Aij = 0 whenever points i and j are in different classes,

then the disagreement measure vanishes; otherwise it is pos-

itive.

In the practical setting of SSL, the label matrix Y is not

completely known. Nevertheless, the disagreement mea-

sure δ(A, Y ) still provides a useful measure for the incon-

sistency between the affinity matrix A and the estimated la-

bels in Y . Recall that the main idea of graph-based SSL

approaches is to estimate the unknown labels that are con-

sistent with the pairwise affinities and the given initial la-

bels whenever possible [34, 8]. Therefore, those unknown

labels Y (u) can be estimated by minimizing the disagree-

ment measure δ(A, Y ) over Y subject to the given labels in

Y (n). Precisely, we summarize the two-stage paradigm of

the existing SSL as follows:

• Step 1. Computing the affinity matrix A by solving

min
A

ρ(X,A) s.t. A ≥ 0, (3)

where ρ(·, ·) is an implicit or explicit function which

corresponds to the specific approach for constructing

the affinity matrix A based on data matrix X , and the

constraint A ≥ 0 is for guaranteeing the nonnegativity

of the entries in A.

• Step 2. Estimating the label matrix Y (u) by solving

min
Y

δ(A, Y ) s.t. Y (n) = Y
(n)
0 , Y ∈ Y, (4)

where Y =
[

Y (n), Y (u)
]

is the label matrix in which

Y (n) is given but Y (u) is unknown.

We illustrate the “single pass” two-stage procedure for SSL

in Fig. 1 (a) and (b). Notice that the two-stage paradigm

is sub-optimal, because dividing an SSL problem into two

separate steps and solving each of them individually in a s-

ingle pass do not fully exploit the correlation between the

affinity matrix and the labels. To be more specific, the ex-

isting approaches for computing the affinity matrix A as in

(3) exploit neither the given labels in Y (n) nor the estimat-

ed labels in Y (u), and the existing approaches for inferring

the unknown labels exploit only the given labels.

2.2. Building a Unified Framework for Semi­
Supervised Learning

In this paper, we formulate the SSL problem into a uni-

fied optimization framework over the affinity matrix A and

the space of label matrices Y simultaneously as follows:

min
A,Y

ρ(X,A) + γδ(A, Y )

s.t. A ≥ 0, Y (n) = Y
(n)
0 , Y ∈ Y,

(5)

where γ > 0 is a tradeoff parameter. As illustrated in Fig. 1,

by building a feedback path as in (c), the given partial labels

and the estimated labels can be automatically incorporated

to induce the affinity matrix and facilitate the label propa-

gation in the next iteration.

The proposed optimization framework in (5) generalizes

the existing SSL paradigm because, instead of first solving

for the affinity matrix A and then applying, e.g., label prop-

agation techniques [34, 31], to obtain the unknown labels,

we simultaneously search for the affinity matrix A and the

unknown labels Y (u). In practice, the problem in (5) can be

solved alternately as below:

• Given A and Y (n), the problem for solving Y (u) is a

standard label propagation problem in SSL.

• Given Y , the problem is to incorporate the supervised

and weakly supervised information in Y to update the

affinity matrix A.

Solving Y when A and Y (n) are given. Note that δ(A, Y )
can be rewritten as

δ(A, Y ) =
∑

i,j

|Aij |(
1

2
∥yi − yj∥

2) = trace(Y L̄Y ⊤), (6)
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where L̄ = D̄ − Ā is the graph Laplacian, Ā = 1
2 (A +

A⊤) and D̄ is a diagonal matrix whose diagonal entries are

D̄jj =
∑

i Āij . Then given A we can find Y by solving the

problem

min
Y

trace(Y L̄Y ⊤) s.t. Y (n) = Y
(n)
0 , Y ∈ Y , (7)

which is the problem solved approximately by label propa-

gation approaches [34, 31].

Recomputing A when Y is updated. Recall that the state

of the art approaches induce the affinity matrix A via the

coefficients of a self-expressiveness model by using, e.g.,

A = 1
2 (|C| + |C

⊤|) where C is the coefficients matrix, in

which each data point is expressed as a linear combination

of other data points, i.e., X = XC, e.g., LLR [25, 28], SR

[30, 11, 13], LRR [23]. Formally, the state of the art self-

expressiveness models, e.g., SR [30, 11, 13], LRR [23, 22],

compute the coefficients matrix C by solving the following

problem:

min
C,E
∥C∥κ + λ∥E∥ℓ s.t. X = XC + E, diag(C) = 0, (8)

where ∥ · ∥κ and ∥ · ∥ℓ are two properly chosen norms on C

and E, respectively, diag(C) = 0 is an optional constraint

to rule out the trivial solution, and λ > 0 is a tradeoff pa-

rameter. This process virtually addresses problem (3), that

is, the implicit functional ρ(X,A) corresponds to solving

problem (8) at first and then defining the affinity matrix A

via 1
2 (|C∗|+ |C

⊤
∗ |), where C∗ is the optimal solution of C.

Notice that in our unified optimization framework (5),

when Y is given, the affinity matrix A is induced by solving

the following problem:

min
A

ρ(X,A) + γδ(A, Y ) s.t. A ≥ 0. (9)

Note that not only the partial supervision information in la-

bel matrix Y (n) but also the estimated label matrix Y (u) can

be automatically incorporated in computing or revising the

affinity matrix A. By substituting the self-expressiveness

model (8) into problem (9), we have a semi-supervised self-

expressiveness model:

min
C,E
∥C∥κ + γ∥Θ⊙ C∥1 + λ∥E∥ℓ

s.t. X = XC + E, diag(C) = 0,
(10)

where δ(A, Y ) is replaced by ∥Θ ⊙ C∥1. The partial su-

pervision information in given labels Y (n) and the weakly

supervised information in the estimated labels Y (u) is en-

coded in the semi-supervised structure matrix Θ.1

When using the nuclear norm ∥·∥∗ to replace ∥·∥κ,

we have a Semi-Supervised Low-Rank Representation

1As shown in Section 3.2 that, the nonnegativity constraints over the

entries of A are implicitly guaranteed.

(S2LRR) which solves the following problem:

min
C,E
∥C∥∗ + γ∥Θ⊙ C∥1 + λ∥E∥ℓ

s.t. X = XC + E, diag(C) = 0,
(11)

where the norm ∥ · ∥ℓ on the error term E depends upon the

prior knowledge about the pattern of noise or corruptions.

When using the ℓ1 norm ∥ · ∥1 to replace ∥ · ∥κ, we ob-

tain a Semi-Supervised Sparse Representation (S3R) which

solves the following problem:

min
C,E
∥C∥1 + γ∥Θ⊙ C∥1 + λ∥E∥ℓ

s.t. X = XC + E, diag(C) = 0.
(12)

By employing S2LRR or S3R to induce the affinity ma-

trix, the unified optimization framework in (5) is imple-

mented as follows:

min
C,E,Y

∥C∥κ + γ∥Θ⊙ C∥1 + λ∥E∥ℓ

s.t. X=XC+E, diag(C) = 0, Y (n)=Y
(n)
0 , Y∈Y,

(13)

where ∥C∥κ is a properly chosen norm, e.g., ∥C∥∗ or ∥C∥1.

Remark 1. Note that when only a few labels are available,

inferring labels over an imperfect affinity matrix via label

propagation is not a well-posed problem, which is sensitive

to several factors, e.g., the quality of the affinity matrix and

the number of partial labels. In our unified model, the given

partial labels and the estimated labels are combined togeth-

er to refine the affinity matrix during the iterations. The

better the affinity matrix is, the more stable and accurate the

estimation of those unknown labels is. On the other hand,

in our unified model, both the given partial labels and the

estimated labels are available to infer the unknown labels

in the next iteration. On average, the more the given labels

are, the more stable and accurate the inferring of the un-

known labels is. Because of the feedback of inferred labels

to induce the affinity matrix and to facilitate label propa-

gation, we call the unified optimization framework (13) as

Self-Taught Semi-Supervised Learning (STSSL).

Remark 2. While there exist other variants of self-

expressiveness model, e.g., nonnegative local linear repre-

sentation [27, 20], nonnegative sparse representation [15],

and nonnegative low-rank and sparse representation [36],

we extend only the models in [13, 23] because, the nonneg-

ative constraint can easily be adopted in our model (13).

3. Alternating Minimization Algorithm for

Solving the Unified Optimization Problem

We propose to solve the optimization problem in (13) by

solving the following two subproblems alternately:

1. Find C and E given Y by solving a semi-supervised

low-rank or sparse representation problem.
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2. Find Y given C and E by label propagation.

3.1. Semi­Supervised Representations

Solving S2LRR. Given the label matrix Y (or equivalently

the semi-supervision matrix Θ), we solve for C and E from

structured low-rank representation problem (11) by solving

an equivalent problem as follows:

min
C,E
∥Z∥∗ + γ∥Θ⊙ C∥1 + λ∥E∥ℓ

s.t. X = XZ + E, Z = C − diag(C).
(14)

We solve this problem using the Linearized Alternating

Direction Method of Multipliers (LADMM) [21]. The aug-

mented Lagrangian is given by:

L(C,Z,E,Λ(1),Λ(2))

=∥Z∥∗ + γ∥Θ⊙ C∥1 + λ∥E∥ℓ + ⟨Λ
(1), X −XZ − E⟩

+⟨Λ(2), Z − C + diag(C)⟩

+
µ

2
(∥X −XZ − E∥2F + ∥Z − C + diag(C)∥2F ),

where Λ(1) and Λ(2) are matrices of Lagrange multipliers,

and µ > 0 is a penalty parameter. To find a saddle point for

L, we update each of C, Z, E, Λ(1), and Λ(2) alternately

while keeping the other variables fixed.

1. Update Z by solving the following problem

Zt+1 = argmin
Z

1

µtη
∥Z∥∗ +

1

2
∥Z −Wt∥

2
F , (15)

whose solution is given by the Singular Value Thresh-

olding operator [9], i.e.,

Zt+1 = US 1

µtη
(S)V ⊤, (16)

where η > σmax(X
⊤X + 1), Wt = Zt −

1
η
[ 1
µt
(Λ2

t −

X⊤Λ
(1)
t )+X⊤(XZt+Et−X)+(Zt−Ct+diag(Ct))],

and Wt = USV ⊤ is a skinny Singular Value Decom-

position (SVD).

2. Update C by solving the following problem

Ct+1=argmin
C

γ

µt

∥Θ⊙ C∥1 +
1

2
∥C − diag(C)−At∥

2
F ,

where At = Zt+
1
µt
Λ
(2)
t . The closed-form solution of

C is given as

Ct+1 = C̃t+1 − diag(C̃t+1), (17)

where the (i, j) entry of C̃ is given by C̃
ij
t+1 =

S γΘij
µt

(Aij
t ), in which Sτ (·) is the shrinkage threshold-

ing operator [3].

Algorithm 1 ADMM for solving problem (11) and (12)

Input: Data matrix X , label matrix Y , λ, and γ.

Initialize: C, Z, E, Λ(1), and Λ(2), ϵ = 10−6, ρ1 = 1.1
while not converged do

Update Zt, Ct, and Et;

Update Λ
(1)
t and Λ

(2)
t ;

Update µt+1 = ρµt;

If not converged, then set t← t+ 1.

end while

Output: Ct+1 and Et+1

3. Update E as follows:

Et+1 = argmin
E

λ

µt

∥E∥ℓ +
1

2
∥E − Vt∥

2
F (18)

where Vt = X − XZt+1 +
1
µt
Λ
(1)
t . If we use the ℓ1

norm for E, then Et+1 = S λ
µt

(Vt).

4. Update Λ(1) and Λ(2) by:

Λ
(1)
t+1 = Λ

(1)
t + µt(X −XZt+1 − Et+1),

Λ
(2)
t+1 = Λ

(2)
t + µt(Zt+1 − Ct+1 + diag(Ct+1)).

(19)

Solving S3R. Given the label matrix Y (or equivalently the

semi-supervision matrix Θ), we solve for C and E from

structured sparse representation problem (12) by solving an

equivalent problem as following

min
C,E
∥C∥1 + γ∥Θ⊙ C∥1 + λ∥E∥ℓ

s.t. X = XZ + E, Z = C − diag(C).
(20)

Similarly, we can solve the structured sparse representation

problem via ADMM with the minor changes in the steps of

updating C and Z.

1. Update C by Ct+1 = C̃t+1 − diag(C̃t+1), where

C̃
ij
t+1 = S 1

µt
(γΘij+1)(U

ij
t ).

2. Update Z by Zt+1 = (X⊤X + I)−1[X⊤(X −Et−
1
µt
Λ
(1)
t )+Ct−diag(Ct)−

1
µt
Λ
(2)
t ].

For clarity, we summarize the ADMM algorithm for

solving problems (11) and (12) in Algorithm 1. For the de-

tails of the derivation, we refer the readers to [21].

3.2. Label Propagation

Given C and E, problem (13) reduces to the following

problem:

min
Y
∥Θ⊙ C∥1 s.t. Y (n) = Y

(n)
0 , Y ∈ Y, (21)
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where ∥Θ ⊙ C∥1 is the δ(C, Y ). We will show that this

problem is equivalent to problem (6) by properly inducing

the affinity matrix A from C. Recall that

∥Θ⊙C∥1 =
1

2

∑

i,j

Ai,j∥yi − yj∥
2
2 = trace(Y L̄Y ⊤), (22)

where Ai,j = 1
2 (|Cij | + |Cji|) measures the similarity of

points i and j, L̄ = D̄ −A is a graph Laplacian, and D̄ is a

diagonal matrix whose diagonal entries are D̄jj =
∑

i Aij .

Consequently, problem (21) turns out to be the following

problem:

min
Y

trace(Y L̄Y ⊤) s.t. Y (n) = Y
(n)
0 , Y ∈ Y. (23)

This problem can be solved approximately with label

propagation approaches, e.g., the harmonic function ap-

proach [34].

Remark 3. Notice that from the second iteration, the esti-

mated labels are also available. To boost the accuracy of la-

bel propagation, we select a small proportion of the estimat-

ed labels to augment the set of the given labels and perform

the label propagation for only the remaining data points in

the following iterations. The selected labels, called “seed

labels”, are automatically determined during the iterations.

The weakly supervised structure matrix Θ is formed by us-

ing the given partial labels in the first iteration; whereas in

the second iteration the weakly supervised structure matrix

Θ is formed by using the given partial labels, the selected

seed labels, and the remaining inferred labels. Both the ini-

tial labels and the seed labels are used to not only revise the

affinity matrix but also supervise the label propagation in

the next iteration; whereas the remaining inferred labels are

used to revise the affinity matrix only.

3.3. Algorithm Summary

For clarity, we summarize the alternating scheme to

solve the unified optimization framework for SSL (13) in

Algorithm 2 and term it STSSL. The algorithm alternates

between solving (C,E) given the label matrix Y using Al-

gorithm 1, and solving for Y given (C,E) using the label

propagation approach. While the problem solved by Al-

gorithm 1 is still a convex program, there is no guarantee

that Algorithm 2 will converge to a global or local optimum

because the solution for Y given (C,E) is obtained in an

approximate manner. Nonetheless, our experiments show

that the algorithm does converge in practice for appropriate

settings of the parameters.

Stopping Criterion. Algorithm 2 can be stopped by set-

ting a maximum iteration number Tmax or by checking the

following condition

∥Y
(u)
T+1 − Y

(u)
T ∥∞ < 1, (24)

where T = 1, 2, . . . , is the iteration number.

Algorithm 2 STSSL

Input: Data matrix X and partial label matrix Y (n)

Initialize: Y (u) = 0, γ, and λ

while not converged do

Given Y , solve problem (11) or (12) via Algorithm 1

to obtain (C,E);
Given (C,E), solve problem (23) to estimate Y (u);

end while

Output: Estimated label matrix Y (u)

4. Experiments

In this section, we evaluate the effectiveness of our pro-

posed STSSL approach on a synthetic data set and several

benchmark data sets.

We compare our proposed STSSL with S2LRR and

S3R to the single pass SSL with LRR [23], SR [13], and

other three popular affinity matrices, including the binary

weights (k-NN), the affinity defined by a heat kernel (HK)

[6], and the affinity induced by local linear representation

(LLR) [25]. For LLR, LRR, and SR, the affinity matrix

A is induced from the representation matrix C via using
1
2 (|C|+|C

⊤|). Given the affinity matrix A, the unknown la-

bels are inferred by using the label propagation via the har-

monic function approach (LPHF) [34]. For the local meth-

ods, including k-NN, the heat kernel, and LLR, we report

the best results over k ∈ {5, 10, 15, · · · , 100} separately for

each setting. For heat kernel, we take the distance of each

data point to its k-th nearest neighbor as the local bandwidth

parameter. For the counterpart algorithms, LRR vs. S2LRR

and SR vs. S3R, we keep the ADMM parameters and λ

the same, respectively. In our STSSL approach, we set the

maximum number of iterations as Tmax = 10 and select N
10

seed labels per iteration, where N is the number of samples.

For simplicity, we refer to the two instances of our STSSL

approach – STSSL+S2LRR and STSSL+S3R – directly as

S2LRR and S3R, respectively.

4.1. Experiments on Synthetic Data

Data Preparing. We sample 150 data points from 15 lin-

ear subspaces of dimension 5. For subspace Sj , we sam-

ple 10 data points by Xj = UjYj , where the entries of

Yj ∈ IR5×10 are i.i.d. samples from a standard Gaussian

and Uj is the left singular matrix computed from a random

matrix Rj ∈ IR100×100. We then corrupt a certain percent-

age p = 10− 70% of entries uniformly at random.

We repeat each experiment for 10 trials and record the

averaged accuracy with different number of labels under d-

ifferent corruptions. Experimental results are presented in

Fig. 2. As can be seen from Fig. 2 (a), when the data are

corruption-free, all methods perform almost equally good.

When the corruptions get heavier as in Fig. 2 (b)-(h), how-
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(a) corruptions: 0% (b) corruptions: 10% (c) corruptions: 20% (d) corruptions: 30%

(e) corruptions: 40% (f) corruptions: 50% (g) corruptions: 60% (h) corruptions: 70%

Figure 2. Classification accuracy (%) vs. the number of labels under different percentages of corruptions.

ever, the performance of all methods decrease rapidly, ex-

cept for S3R, S2LRR, and SR. Notice that S3R and S2LRR

outperform significantly their counterpart algorithms, SR

and LRR. These results confirm the robustness and supe-

riority of our proposed STSSL approach. The robustness

comes from the explicit modeling of the noise or corruption

by the term ∥E∥ℓ; whereas the superiority attributes to the

feedback of weakly supervised information.

To gain some insights to the advantages of our proposed

STSSL, we display in Fig. 3 the representation matrices

which are computed with SR, LRR, S2LRR, and S3R, re-

spectively. The corruption level is 30% and the number of

labels is 7. As can be observed, the semi-supervised repre-

sentations show clearer block diagonal structures.

4.2. Experiments on Benchmark Data Sets

To evaluate the performance of each methods quantita-

tively, we conduct experiments on the following benchmark

data sets.

ORL. The ORL face recognition data set consists of 400

samples from 40 individuals. In our experiments, we take

all the 400 samples and resize each image into 28× 23.

Yale. The Yale face recognition data set consists of 165

gray-scale images of 15 individuals and there are 11 images

per subject. We take all the 165 samples and resize each

images into 32× 32.

Extended Yale B. The Extended Yale B data set [14] con-

tains 2,414 frontal face images of 38 subjects, with approx-

imately 64 frontal face images per subject. We take all the

samples of 38 subjects and resize each image into 32× 32.

CMU PIE. The CMU pose, illumination, and expression

(PIE) database contains more than 40,000 facial images of

68 people. The data we used consist of 12 subjects and 170

images per subject from varying illuminations and facial ex-

pressions, in which each image is resized into 32× 32.

(a) SR (b) S3R

(c) LRR (d) S2LRR

Figure 3. Visualization of different representation matrices.

We compare our proposed STSSL with S2LRR and S3R

to the single pass SSL with LRR [23], SR [13], and other

three popular affinity matrices, including the binary weight-

s (k-NN), the affinity defined by a heat kernel [6], and the

affinity induced by LLR [25, 28]. Experimental results are

listed in Table 1. We can observe that our proposed STSSL

approach with S2LRR and S3R outperforms the single pass

two-stage SSL with LRR and SR, respectively. These re-

sults again confirm the effectiveness of our proposed unified

optimization framework.

To gain more insights to the advantages of our proposed

STSSL framework, we take SR vs. S3R as example to show

the classification accuracy curves as a function of the num-
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Datasets # Labels k-NN Heat Kernel LLR SR LRR S2LRR S3R

ORL 1 79.03 69.28 77.92 78.67±1.82 57.25±5.29 85.17±4.25 87.72±2.82

3 81.43 82.68 92.32 91.89±2.05 87.00±2.02 92.82±1.71 96.64±1.61

5 86.35 88.20 96.15 95.75±1.64 92.35±1.31 94.50±1.70 97.55±1.19

7 89.25 91.75 98.50 96.92±0.79 94.58±1.32 96.33±1.12 98.42±1.00

Yale 1 36.73 36.47 40.53 39.87±4.19 33.13±4.92 48.33±9.28 46.93±6.59

3 53.50 52.42 59.58 59.25±4.57 60.00±3.02 72.50±5.05 68.50±5.07

5 60.89 59.78 67.00 68.78±4.27 69.33±3.60 80.33±3.23 73.11±2.91

7 63.83 62.67 74.67 76.33±3.83 77.33±5.57 82.83±6.09 76.33±4.43

Extended Yale B 5 46.11 46.10 55.45 88.08±0.94 38.91±2.50 74.12±4.86 96.06±0.82

10 54.02 53.89 64.18 92.59±0.84 60.79±1.06 82.10±2.83 97.64±0.16

15 57.96 58.29 72.28 94.62±0.84 72.85±1.18 85.56±1.58 97.34±0.32

20 61.90 62.19 81.23 96.07±0.73 82.06±1.14 87.45±1.12 97.46±0.28

CMU PIE 5 54.04 54.41 56.54 69.20 ±5.63 19.46±2.46 55.25±4.09 93.72±2.71

10 65.80 66.55 68.66 85.72 ±3.58 33.37±3.33 68.82±3.42 96.50±1.72

15 73.94 74.28 76.38 92.68 ±1.25 42.58±3.29 80.51±4.47 97.05±0.35

20 78.59 79.00 80.82 94.44 ±1.24 52.49±1.52 88.12±2.14 97.27±0.69

Table 1. Classification Accuracy (%) on Benchmark Data Sets. The best results are in bold font.

(a) ORL (n = 1) (b) ORL (n = 2)

(c) PIE (n = 5) (d) PIE (n = 10)

Figure 4. Average accuracy (%) with standard variance vs. the

iteration number under different number of given labels.

ber of iterations on data sets ORL and PIE with different

number of given labels. Each experiment is repeated for

10 trials and the average accuracy and standard variance

are recorded. Experimental results are displayed in Fig. 4.

As can be seen, the classification accuracy is significant-

ly boosted during the iterations. The performance gains in

STSSL derive from three aspects: a) the given labels are

used for learning the affinity, b) the inferred labels with

the given labels are combined to refine the affinity from

the second iteration, and c) the inferred labels are used to

seed a better initialization for label propagation. As men-

tioned in Section 2.1, if the constructed affinity matrix is

exactly block-diagonal, with each block being connected

and corresponding to a single class, then even a single la-

bel per class is able to yield correct classification. In prac-

tice, however, the affinity matrix is imperfect and thus using

the given labels and the inferred labels to refine the affini-

ty towards the correct block-diagonal would help the label

propagation. Moreover, the given labels and a proportion

of the inferred labels are combined together to seed a better

initialization for label propagation. Putting all together the

performance could be improved significantly and the sensi-

tivity of label propagation could be alleviated. As can be

observed in Fig.4 (except for (a), in which only a single la-

bel is given) that, the iterations tend to lower the variances

on each curve, which confirms the latter point.

5. Conclusion

We formulated the existing two-stage SSL problem into

a unified optimization framework – termed as Self-Taught

Semi-Supervised Learning (STSSL), in which both the giv-

en labels and the estimated labels are incorporated to refine

the affinity matrix and to facilitate the unknown label es-

timation. We solved the unified optimization problem effi-

ciently via a combination of an alternating direction method

of multipliers with label propagation. Experiments on a

synthetic data set and several benchmark data sets demon-

strated that the classification accuracy could be significantly

boosted by proper feedback of the weakly supervised infor-

mation during the iterations.

As the future work, various strategies used in active

learning and self-learning [24, 2] are worth to be investigat-

ed in our STSSL framework and the theoretical guarantee is

also worth to explore.
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