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Abstract

Existing human action recognition systems for 3D se-

quences obtained from the depth camera are designed to

cope with only one action category, either single-person ac-

tion or two-person interaction, and are difficult to be ex-

tended to scenarios where both action categories co-exist.

In this paper, we propose the category-blind human recog-

nition method (CHARM) which can recognize a human ac-

tion without making assumptions of the action category. In

our CHARM approach, we represent a human action (ei-

ther a single-person action or a two-person interaction)

class using a co-occurrence of motion primitives. Subse-

quently, we classify an action instance based on matching

its motion primitive co-occurrence patterns to each class

representation. The matching task is formulated as max-

imum clique problems. We conduct extensive evaluations

of CHARM using three datasets for single-person actions,

two-person interactions, and their mixtures. Experimental

results show that CHARM performs favorably when com-

pared with several state-of-the-art single-person action and

two-person interaction based methods without making ex-

plicit assumptions of action category.

1. Introduction

Human action recognition is a major component of many

computer vision applications, e.g., video surveillance, pa-

tient monitoring, and smart homes, to name a few [3]. There

have been many approaches developed for recognizing hu-

man actions from monocular videos. However, monocular

videos are insufficient for the practical applicability of ac-

tion recognition algorithms in the real-world environment,

mainly due to two problems. First, 3D information is lost

in monocular videos. Second, a single camera view usually

cannot fully capture human action due to the occlusion.

The recent advent of cost-effective depth sensors enables

real-time estimation of 3D joint positions of a human skele-

* indicates equal contributions.

† indicates the corresponding author.

Figure 1. Examples of human actions depicting the complexities

in action recognition: (a) a multi-person action with each individ-

ual performing a single-person action; (b) a multi-person action

involving a single-person action and multi-person interaction; (c)

a multi-person action that cannot be reduced to the combination of

two single-person actions. See texts for more details.

ton [17]. The availability of 3D joint positions in real time

spawns approaches with higher practical applicability for

action recognition.

The majority of existing human action recognition meth-

ods using sequences of 3D joint positions are designed for

two general categories: single-person action [19, 22, 25]

and multi-person interaction [12, 13, 23]. However, human

actions in real-world scenarios are much more complex be-

cause multiple action instances belonging to both categories

usually co-exist in a sequence. For example1, Figure 1(a)

describes three actions all belonging to the single-person ac-

tion category: three children are skating without interacting

with each other; Figure 1(b) depicts two actions belonging

to two categories respectively: ”two children are fighting for

a toy” (a two-person interaction) while ”a woman lifts two

hands to hold her forehead” (a single-person action). Thus,

it is more desirable to have a method that can recognize hu-

man actions without involving any prior categorization.

However, existing algorithms designed to recognize

single-person actions from sequences of 3D joint positions

[10, 19, 25] cannot be used to recognize multi-person in-

teractions, and vice versa [4, 23]. This is because the two

categories of actions are exclusive by definition. A simple

approach fusing methods for different categories to recog-

nize an action in a competitive manner is unlikely to work as

shown by the example in Figure 1(c). From the perspective

1We show frames from videos to illustrate the idea, but the same sce-

nario holds for sequences of 3D joint positions.
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of single-person action recognition, the image depicts one

person pushing his hand, but considering the other person,

the same action can be recognized as a two-person interac-

tion of ”patting on the shoulder”.

In this paper, we present a unified recognition model for

single-person actions and multi-person interactions. Our

method uses a sequence of estimated 3D joint positions as

input, and outputs actions that occur in such a sequence. As

such, we term our method as Category-blind Human Ac-

tion Recognition Method (CHARM). Given a sequence of

3D joint positions of each person in a video, we first gen-

erate possible combinations of mutually inclusive potential

actions2. We then model potential actions with a category-

blind visual representation, which models an action as a set

of weighted graphs (one for each action class) with the same

topology. In each weighted graph, nodes represent motion

primitives, and edges represent the co-occurrence of two

motion primitives in a particular action class. The weight on

an edge represents the co-occurring probability of two mo-

tion primitives. The likelihood of a potential action being

classified into a particular class is computed by identifying a

maximum clique of motion primitives from the correspond-

ing weighted graph. Then CHARM can classify a potential

action by identifying the class with the maximum likelihood

score. After all potential actions are classified into poten-

tial action classes with their associated likelihood scores,

CHARM computes the reliability score for each possible

combination by averaging the likelihood scores of all in-

volved potential actions. Finally, CHARM outputs the most

reliable action combination and identifies the person(s) per-

forming each action. The overall procedure that is more

systematic is presented in § 3.

This paper includes the following major contributions:

First, we design a category-blind visual representation

which allows an action instance to be modeled as a set of

weighted graphs which encode the co-occurring probabili-

ties of motion primitives (§ 4.1). Second, such a category-

blind visual representation allows the recognition of co-

existing actions of different categories (§ 3 and § 4). Third,

we design a novel action classification algorithm based

on finding maximum cliques of motion primitives on the

weighted graphs of the motion primitive co-occurrence pat-

terns (§ 4.2). Finally, we collect a new dataset to evaluate

the performance of CHARM in scenarios where actions of

different categories co-exist (§ 5).

2. Related Work

Our work is mainly related to two types of human action

recognition approaches, each of which is designed to cope

with only one action category, i.e., either single-person ac-

tion or multi-person interaction.

2We define that two potential actions without any common person in-

volved as mutually inclusive.

Single-person action recognition. Existing techniques

for single-person action recognition are extensively sur-

veyed in [2, 3, 8] with the majority of such methods using

monocular RGB videos [9, 20, 21, 26]. Since the advent

of cost-effective depth sensors which enable the real-time

estimation of 3D skeleton joint positions, many approaches

have been developed to extract reliable and discriminative

features from skeletal data for action recognition. Vemula-

palli et al. [18] propose to represent 3D joint positions as el-

ements in a Lie group, i.e., a curved manifold, and perform

action recognition after mapping the action curves from the

Lie group to its Lie algebra. For online action recognition,

Zhao et al. [25] extract structured streaming skeletons fea-

tures to represent single-person actions, and use sparse cod-

ing technique to do the classification. Wu et al. [19] model

transition dynamics of an action, and use a hierarchial dy-

namic framework that first extracts high-level skeletal joints

features and then use the learned representation for estimat-

ing emission probability to recognize actions.

Multi-person interaction recognition. Kong et al. [12,

13] focus on recognizing two-person interaction from 2D

videos and propose interactive phrases, high-level descrip-

tions, to express motion relationships between two inter-

acting persons. They propose a hierarchical model to en-

code interactive phrases based on the latent SVM frame-

work where interactive phrases are treated as latent vari-

ables. Yun et al. [23] create an interaction dataset contain-

ing sequences of 3D joint positions, and extract relevant

features, including joint distance and motion, velocity fea-

tures, etc. They use both SVM and MILBoost classifiers for

recognition. Also using the sequences of 3D joint positions

as input, Alazrai et al. [4] design a motion-pose geometric

descriptor (MPGD) as a two-person interaction representa-

tion. Such a MPGD representation includes a motion pro-

file and a pose profile for each person. These two profiles

can be concatenated to form an interaction descriptor for the

two interacting persons. The interaction descriptor is then

fed into the SVM classifiers for action recognition.

3. Overview

In this section, we describe the overall procedure of

CHARM. As shown in Figure 2, the input to CHARM is a

sequence of 3D joint positions of human skeletons3. Given

the input, the goal of CHARM is two-fold, that is, recog-

nizing all actions occurring in this video and identifying the

person performing each action. CHARM entails the follow-

ing steps: (a) CHARM enumerates potential actions for the

current sequence, e.g., determining the number of persons

and the number of pairs of persons. (b) CHARM generates

possible combinations of mutually inclusive potential ac-

3The human skeletons are tracked by the Microsoft Kinect SDK, so the

3D joint positions for different persons can be distinguished.
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Figure 2. Main steps of CHARM. This example involves 3 persons

(i.e., Person A, B, and C) and 6 potential actions. The recognition

result indicates that A is performing a single-person action of Class

1, and B&C are performing a two-person interaction of Class 10.

tions, e.g., with three persons, there are four possible com-

binations as shown in Figure 2. (c) It extracts relevant body

motion data from these potential actions. (d) CHARM ex-

tracts category-blind patterns for the current potential action

based on the information available in the reference reposito-

ries. Such reference repositories are constructed in the train-

ing stage. (e) The extracted category-blind patterns are fed

to the classification module. (f) The classification module

classifies the current potential action and outputs an action

label with an associated likelihood score. (g) After all po-

tential actions are classified, CHARM computes a reliability

score for each possible combination by averaging the like-

lihood scores of all involved potential actions, and chooses

the most reliable combination as the recognition result.

Steps (c), (d), (e), and (f) are four core steps of the overall

procedure of CHARM, and we will describe these four steps

in § 4. In particular, in § 4.1.3, we will describe the con-

struction of the reference repositories in the training stage.

4. Methodology

In this section, we describe the four core steps in

CHARM, i.e., steps (c), (d), (e), and (f). These four steps

are divided into two phases: steps (c) and (d) model a po-

tential action using the category-blind visual representation,

and steps (e) and (f) classify a modeled potential action into

an action class by solving several maximum clique prob-

lems (MCP). These two phases are presented in § 4.1 and

§ 4.2 respectively.

4.1. Modeling a Potential Action Instance using the
Categoryblind Visual Representation

In CHARM, we model a potential action instance using a

category-blind visual representation so that we can directly

compare the likelihood scores of any two potential actions

which belong to different categories.

We assume that a human action can be represented as a

combination of motion units (MUs). For a single-person ac-

Figure 3. The representation of body part configurations.

tion, an MU corresponds to the motion of a single body part

(e.g., the right upper arm), while for a two-person interac-

tion, an MU corresponds to the motions of a pair of body

parts from two interacting persons (e.g., a pair of right up-

per arms). Thus, an action instance of any action category

can be modeled using the category-blind visual representa-

tion in two steps: (a) First, we model all MUs of an action

instance (§ 4.1.1) and then (b) model the combinations of

MUs that can match potential action instances (§ 4.1.2).

4.1.1 MU Model

Let us first consider how to model MUs of a single-person

action. Given an input sequence of 3D joint positions, there

are many ways to represent body part configurations [3]. In

CHARM, we adopt the approach used in [15], which uses

eight bilateral symmetrical human body parts, i.e., upper

arms, lower arms, thighs, and legs. The reason for choos-

ing this body part configuration representation is that it is

invariant to the body position, orientation and size, because

the person-centric coordinate system is used, and the limbs

are normalized to the same length. As shown in Figure 3, all

the 3D joint coordinates are transformed from the world co-

ordinate system to a person-centric coordinate system. Up-

per arms and thighs are attached to the torso at the ball-

and-socket joints and move freely in 3D. These four body

parts are modeled as four 3D unit vectors v1, v2, v3, and

v4 as shown in Figure 3, and are computed from the coordi-

nates of their endpoints. Lower arms and legs can only bend

0◦−180◦ at the elbow and knee joints. Thus, we model their

relative positions with respect to the upper body parts, e.g.,

the upper arms and thighs using four angles α1, α2, α3, and

α4 as shown in Figure 3. These four angles are planar an-

gles because a upper body part and its corresponding lower

body part are represented as two intersecting line segments

in CHARM. Besides these angles, we also keep track of the

planes containing the upper and lower arms which are rep-

resented by the unit normals n1 and n2 to the planes. We

assume the normal direction of the plane formed by legs and

thighs remains unchanged with regards to the human cen-

tric coordinate system, since the lower leg does not move

flexibly with regards to its upper thigh. The four 3D unit

vectors {vi}, four planar angles {αi}, and two 3D normals

{ni} form a 22-element body pose vector. Thus, the MUs

of a single-person action can be collectively represented as
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Figure 4. The upper row shows how an MP collection can be

formed based on the extracted body motion matrix using the mo-

tion template codebook. The lower half is about the extraction of

the MP co-occurrence patterns. Red arrows indicate the quantiza-

tion procedure. The light grey blocks are reference repositories.

In the block that shows the MP co-occurrence pattern, each action

class should have 22 disjoint groups (each group is illustrated as

an ellipse) with each corresponding to a dimension. However, we

merely show five disjoint groups to make the diagram clearer. The

notation used herein and the rest of the paper are defined in Table 1

a body motion matrix, with each row corresponding to a

dimension of the body pose vector, and each column cor-

responding to a particular video frame. In the rest of this

paper, each row of the body motion matrix is referred to as

a dimension.

A natural choice of modeling MUs of a two-person in-

teraction is to directly use two body motion matrices, one

for each person. However, doing so does not capture inter-

person temporal correlations, which are very important cues

in recognizing two-person interactions. Hence, we aug-

ment the MU model with additional inter-person tempo-

ral correlations for two-person interactions. We use four

types of inter-person temporal correlations, which we will

illustrate using the following example. For Persons A and

B, we can represent the world coordinates of the origin

and coordinate axes of their person-centric coordinates as

{oAw, x
A
w, y

A
w , z

A
w} and {oBw , x

B
w , y

B
w , zBw }. The Euclidean

distance between A and B can be represented as dAB =
∥oAw − oBw∥

2, and the angles between corresponding coordi-

nate axes can be represented as αx, αy and αz . dAB , αx,

αy, and αz can form a 4-element inter-person correlation

vector. Thus, the inter-person temporal correlation of two

persons can be represented as an inter-person temporal cor-

relation matrix, with each row corresponding to a dimen-

sion of the inter-person correlation vector, and each column

corresponding to a video frame.

4.1.2 MU Combination Model

A natural choice for modeling the combination of MUs is

to concatenate the representations of all individual MUs.

However, due to the complexity of MUs, similar MUs need

not be numerically similar. The variations between similar

Bi The ith dimension of the body motion matrix.

T j

i
The ith motion template on the jth dimension of the codebook.

C The number of motion templates on each dimension of the codebook.

K The number of nearest motion templates that are matched to each Bi.

N The number of dimensions for an action instance.

Pj

i
The ith MP on the jth dimension.

Φi MP co-occurrence matrix for the ith action class.

Gi MP co-occurrence pattern of an action instance for class i.

Table 1. Notation.

MUs will complicate the training of classifiers with poten-

tial overfitting problems. Inspired by [14], we assume an

MU can be quantized into several motion primitives (MPs)

which are common patterns for each dimension shared by a

variety of human actions.

As such, the task of modeling the combination of MUs

for a potential action can be formulated as modeling the

combination of MPs of this potential action. We first discuss

how to quantize the MUs of a potential action to form a col-

lection of MPs. Using the MU model described in § 4.1.1,

the MUs of a single-person action is represented as a body

motion matrix, and the MUs of a two-person interaction is

represented as two body motion matrices. The formation of

MP collection relies on a reference repository, namely mo-

tion template codebook (see § 4.1.3) which stores a num-

ber of motion templates identified from the training action

instances. An MP for a single-person action is obtained

by finding its best match motion template in the codebook

while an MP for a two-person interaction is obtained by se-

lecting the best pair of motion templates in the codebook.

The formation of MP collection for both action categories

is described as follows:

(a) As shown in the upper half of Figure 4, given the body

motion matrix of a potential single-person action, each di-

mension of the body motion matrix is matched to K nearest

motion templates from the same dimension in the codebook.

Each matched motion template becomes an MP for the cor-

responding dimension. The intuition of generating multiple

MPs for each dimension is that the skeletal data collected

by the depth camera might be noisy due to some degrading

factors, e.g., illumination changes, and the noisy data will

impact the quantization from the MUs to MPs; thus, we

generate multiple MPs per dimension to increase the toler-

ance to the quantization error.

(b) The formation of an MP collection for a two-person in-

teraction is similar to the single-person action case. Given

two body motion matrices of two interacting persons, we

first respectively match each dimension of their body mo-

tion matrices to K nearest motion templates on the same

dimension. Then, a pair of matched motion templates (one

for each person) from the same dimension compose an MP

of a two-person interaction.

MP Co-occurrence Pattern Extraction. Based on the

MP collection, we model a potential action by extracting

its MP co-occurrence pattern (with each pattern represent-

ing a combination of MPs) for each class. To extract such
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co-occurrence patterns, we rely on a reference repository,

namely the MP co-occurrence matrices (see § 4.1.3), with

each matrix representing the conditional probabilities for

any two MPs co-occurring in an action instance of a class.

We define the MP co-occurrence pattern of a potential

action for class c as a weighted graph Gc = {Vc,Ec,ωc},

where Vc, Ec, ωc represent the set of nodes, edges and

edge weights respectively. Each node represents an MP.

The nodes in Vc are divided into 22 disjoint groups (see

Figure 4) with each group R corresponding to a dimension.

Thus, Rj = {Pj
1
,Pj

2
, . . . ,Pj

KH}, where Pj
i denotes the ith

MP of the j-th group. K is defined in Table 1, and H is the

number of persons involved in this action. Ec includes the

edges of Gc that connect nodes from different groups, but

not within the same group. The edge weights correspond

to the pairwise co-occurring probabilities of MPs, and such

co-occurring probability is determined by two factors: (a)

the conditional co-occurring probabilities of the two MPs

and (b) the confidence level of using a particular MP to rep-

resent a dimension of the potential action. Gc is an undi-

rected graph with the symmetrized edge weights calculated

by averaging the two weights for different directions:

ωc(P
j
i ,P

m
l ) =

1

2
·
(

Φ′
c(P

j
i ,P

m
l ) · φ(Pm

l )

+Φ′
c(P

m
l ,Pj

i ) · φ(P
j
i )
)

,

(1)

where Φ′
c(P

j
i ,P

m
l ) = Φc(P

j
i ,P

m
l ) · (Oc)

1

2 , and

Φc(P
j
i ,P

m
l ) is an entry of the MP co-occurrence matrix of

class c, indicating the conditional probability of Pj
i occur-

ring in an action instance of class c given that Pm
l occurs.

(Oc)
1

2 is a parameter used to normalize the effects of differ-

ent co-occurrence matrix sizes on the value of Φc(P
j
i ,P

m
l ),

and Oc is the order 4 of the MP co-occurrence matrix of

class c. φ(Pm
l ) reflects the confidence level of using Pm

l to

represent a dimension of the potential action:

φ(Pm
l ) = exp(−β ·

1

H
·

H
∑

h=1

∆(T m
l,h,Bm,h)), (2)

where β is a sensitivity controlling parameter, and H is the

number of persons involved in this potential action. We

have Pm
l = {T m

l,h}
H
h=1

where T m
l,h is a matched motion

template of the hth person used to generate Pm
l . Bm,h is

the mth dimension of the body motion matrix of the hth

person. ∆(·, ·) is the dynamic time warping distance [7].

Inter-person Temporal Correlation Pattern Extrac-

tion. To augment the MP combination modeling of a poten-

tial two-person interaction, we extract its inter-person tem-

poral correlation pattern for each interaction class. Such a

temporal correlation pattern is represented as a confidence

score, which describes how well the inter-person temporal

correlations of this potential interaction instance is aligned

4It can be easily seen that if class c is a single-person action class,

Oc = N · C; if class c is a two-person interaction class, Oc = N · C2

with the correlation distribution of a specific interaction

class. The confidence score of class c, ℓc, is computed as:

ℓc =

4
∏

i=1

δ(fi,c(Ii) > τi). (3)

Ii is the ith row of the inter-person temporal correlation

matrix (see § 4.1.1). fi,c is a Gaussian distribution which

models the distribution of a temporal correlation type for

class c. δ is a delta function that takes 1 when the condition

is true, and 0 otherwise. τi is a threshold. Relevant Gaussian

models associated with all interaction classes are stored in

a reference repository (see § 4.1.3). Since a single-person

action does not have inter-person temporal correlations, we

set the values of these confidence scores to 1 for a potential

single-person action to create a uniform representation.

4.1.3 Construction of Reference Repositories

Motion template codebook. We start with a training

dataset with sequences covering action classes of interest.

Each training sequence contains only one action instance,

and is associated with an action class label. Each person

in the training sequence is represented by twenty 3D joint

positions. To construct the motion template codebook, two

steps are performed: First, we use the MU model described

in § 4.1.1 to represent the MUs of each person in the train-

ing sequences as a body motion matrix. Second, we pull

all the body motion data from the same dimension together

and apply k-means clustering to obtain C clusters per di-

mension. Then, we store the centroid of each cluster as a

motion template in the codebook. We adopt dynamic time

warping distance [7] in the clustering process so that we can

cope with training sequences of different lengths.

MP co-occurrence matrices. Given the MUs of each

person in the training sequences modeled as a body motion

matrix with N dimensions, we can match each dimension

of the body motion matrix to the nearest motion template

on the same dimension of the codebook and hence repre-

sent an action instance as a collection of N MPs with each

MP corresponding to a dimension. Next, we construct an

MP co-occurrence matrix for each action class. We con-

struct the MP co-occurrence matrix for an action class c,

by computing the conditional probabilities of any two MPs

using the following equation:

Φc(P
j
i ,P

m
l ) = p(Pj

i |P
m
l , c) =

Θc(P
j
i ,P

m
l )

Θc(Pm
l )

, (4)

where Θc(P
j
i ) is the number of training action instances of

class c containing MP Pj
i and Θc(P

j
i ,P

m
l ) is the number

of action instances of class c where Pj
i and Pm

l co-occur. If

the denominator Θc(P
m
l ) equals zero, then Φc(P

j
i ,P

m
l ) is

directly set as zero. However, if Pj
i and Pm

l are MPs corre-

sponding to the same dimension, i.e., j = m, Φc(P
j
i ,P

m
l )

is set to zero, i.e., we do not allow them to co-occur since
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we only allow one MP for each dimension for any action in-

stance. As shown in (4), the element Φc(P
j
i ,P

m
l ) is equiva-

lent to the conditional probability p(Pj
i |P

m
l , c) which is the

probability of Pj
i occurring in an action instance of class

c given that Pm
l occurs. The advantages of defining a co-

occurrence matrix using the conditional probability are: (a)

It enhances the robustness of CHARM such that it can tol-

erate action variations caused by personal-styles more be-

cause the conditional probability does not penalize those

co-occurrences of MPs that happen less frequently. (b) The

resulting co-occurrence matrix is asymmetric; such asym-

metry property is helpful for coping with intra-class varia-

tions because it ensures that the probability of Pj
i occurring

in an action instance given that Pm
l occurs is not necessarily

equivalent to that of the reverse situation.

Gaussian models with respect to each interaction

class. There are four Gaussian models for each interaction

class, with each modeling the distribution of an inter-person

temporal correlation type for this interaction class. The

mean and standard deviation of each Gaussian model are

computed using the relevant data for that correlation type

from all training instances for that interaction class.

4.2. Action Classification using MCP

The category-blind representation of a potential action

includes a set of class-specific patterns. We compute a

likelihood score for each class-specific pattern and then

choose the class label associated with the highest score as

the label for that potential action. Recall that each class-

specific pattern can be represented as a weighted graph,

e.g., Gc = {Vc,Ec,ωc} for class c. Since in the MP co-

occurrence pattern extraction process, we include multiple

MPs per dimension, for each class c, we thus first need to

identify a subgraph, Gs = {Vs, Es, ωs}, from Gc, which

includes only one MP per dimension. A feasible Gs has

to satisfy the following three constraints: (a) Given N dis-

joint groups (dimensions), one and only one node from each

group should be selected. (b) If one node is selected to be in

Gs, then exactly (N − 1) of its edges should be included in

Gs (this is because each selected node should be connected

to one node at each of the rest (N − 1) groups). (c) If an

edge is included in Gs, the nodes incident to it should be

also included and vice versa.

The metric that we use to identify a Gs from Gc is the

co-occurring likelihood of the clique of MPs in Gs. Such a

co-occurring likelihood is defined as follows:

λ(Gs) =

N
∑

p=1

N
∑

q=1,q ̸=p

ωc(Vs(p), Vs(q)). (5)

where Vs(p) denotes the node within the pth group of Gs.

Thus, we formulate the identification process of a subgraph

G∗
s which contains the MP clique that is most likely to oc-

cur, as the following optimization problem:

G∗
s = argmax

Vs

λ(Gs). (6)

Once we have such G∗
s for each action class, we compute a

likelihood score, Υc, which measures how likely we should

classify this potential action to a particular action class c:

Υc = ℓc · λ(G
∗
s,c), (7)

where ℓc is defined in (3). Eventually, we classify this po-

tential action to the class which yields the highest likelihood

score. Such a classification task is formulated as follows:

c∗ = argmax
c

(Υc). (8)

The optimization problem in (6) is a maximum clique

problem (MCP) that is NP-hard. Several approximation al-

gorithms exist for solving MCP, e.g., [5, 6, 24]. In this work,

we adopt a mixed binary integer programming (MBIP)

based solver [6]. We set the objective function of the MBIP

as the optimization problem of (6), and set the constraints of

the MBIP as the formulation of three aforementioned feasi-

bility constraints. The MBIP is solved by the Cplex [1].

5. Experimental Evaluations

For evaluation, we use three test scenarios: (i) videos

with three persons and a mixture of single-person actions

and two-person interactions, (ii) videos with two interact-

ing persons, and (iii) videos with a single person. The test

scenario (i) is closer to real-world scenarios where the cat-

egory of a video sequence is not given, and multiple ac-

tion instances belonging to different categories co-exist in a

video sequence. This scenario is used to highlight the ad-

vantage of our CHARM approach where no prior category

information is given. In contrast, each video sequence in

test scenario (ii) and (iii) contains only one action instance

at one time and its action category (either single-person ac-

tion or two-person interaction) is predefined.

Since no prior existing datasets include test scenario (i),

we collect our own ”Hybrid Actions3D” dataset5. In addi-

tion, we adopt SBU Interaction dataset [23] for test scenario

(ii), and MSRC12-Gesture dataset [11] for (iii).

Baselines. Since no prior work is designed to handle

test scenario (i), we create a baseline scheme called ”Sim-

pleComb” which combines two dedicated approaches: one

is used to recognize single-person actions and the other one

is used to recognize two-person interactions. For the single-

person action recognition, we use the approach described in

[19]. Since there is no publicly available code for previ-

ous two-person interaction recognition approaches, we use

our CHARM by limiting it to only deal with two-person in-

teractions. Each dedicated approach will label a potential

action with a particular action class associated with a like-

lihood score. Before we decide which mutually inclusive

action combination (see § 3) to be the recognition result, we

5The dataset is available at: http://www.lehigh.edu/ wel514/main.html,

and www.cbsr.ia.ac.cn/users/lywen.
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Figure 5. Sample frames from two test sequences of the Hybrid

Actions3D dataset: The first row presents a hybrid-category test

sequence involving two action instances, i.e., Person A perform-

ing the single-person action ”throw”, while Person B and C are

performing the two-person ”kick” interaction. The second row

presents a mono-category test sequence consisting of three single-

person action instances, i.e., Person A performing the ”throw”, B

performing ”goggles”, and C performing ”duck” action.

first scale the likelihood scores of both approaches so that

their values are comparable. Then, we choose the combina-

tion which yields the highest reliability score computed as

described in step (g) of CHARM (see § 3). For test scenario

(ii), we compare CHARM with two previous approaches

(based on Linear-SVM, and MILBoost respectively) de-

scribed in [23]. For test scenario (iii), we compare CHARM

with four state-of-the-art approaches [11, 25, 16, 19].

Parameter Settings. We use the same motion tem-

plate codebook for both single-person action recognition

and two-person interaction recognition. We set the default

values for the parameters of CHARM as follows: The num-

ber of motion dimension of this codebook is N = 22, and

the number of motion templates per dimension is C = 22.

In the recognition phase, when we quantize the body mo-

tion data into MPs, we match each body motion data with

K = 2 nearest motion templates. The sensitivity controlling

parameter in (2) is β = 0.1. The thresholds for four types of

temporal correlation in (3) are: τd = 2×10−5, τx = 10−12,

τy = 0.1, and τz = 10−12.

5.1. Action Recognition using Hybrid Actions3D

Datasets. Hybrid Actions3D is captured using the

Kinect camera [17], which tracks human skeletons and

estimates the 3D joint positions for each person at each

frame. This dataset includes 10 action classes, 5 of which

are single-person action classes (i.e., duck, goggles, shoot,

beat both, and throw), and the remaining ones are two-

person interaction classes (i.e., kick, push, punch, hug,

and exchange). The single-person action classes are from

the MSRC12-Gesture [11], and the two-person interaction

classes are from the SBU Interaction [23]. 10 volunteers

were recruited to create this dataset. We first ask each vol-

unteer to perform single-person actions. Next, we formed

14 pairs out of these 10 volunteers and ask them to per-

form two-person interactions. In total, this dataset contains

910 pre-segmented video sequences including 580 for train-

ing and 330 for testing. Specifically, there are 280 two-

Method
Action-level Accur.

Seq-level Accur.
Single-person Act. Two-person Interact.

SimpleComb 0.909 0.746 0.739

CHARM 0.921 0.811 0.800

Table 2. Comparison on Hybrid Actions3D (test scenario (i)).
Method Accuracy

Joint Features + Linear SVM [23] 0.687

Joint Features + MILBoost [23] 0.873

CHARM 0.839

Table 3. Comparison on SBU Interaction (test scenario (ii)).

person interaction training sequences (56 sequences per ac-

tion class) and 300 single-person action training sequences

(60 sequences per action class). The 330 test sequences

consist of (a) 280 hybrid-category sequences (constructed

by fusing relevant sequences), each contains a two-person

interaction instance and a single-person action instance, and

(b) 50 mono-category sequences containing three single-

person action instances. The action instances in a test se-

quence are not required to have the same starting and end-

ing time points. Some sample frames of the test sequences

in the Hybrid Actions3D dataset are shown in Figure 5.

Evaluation metrics. Two metrics are used to evalu-

ate the recognition capability of CHARM, namely (a) the

sequence-level accuracy, and (b) the action-level accuracy.

Since each test sequence in our Hybrid Action3D dataset

contain more than one action instance, for sequence-level

accuracy, we consider a recognition result as accurate only

if all action instances are classified correctly. On the other

hand, every action instance that is correctly classified is

counted towards the action-level accuracy.

Table 2 shows the results for the test scenario (i). It

shows that CHARM yields better performance than Simple-

Comb in terms of both sequence-level accuracy and action-

level accuracy. We also observe that although SimpleComb

uses the CHARM as a dedicated approach to recognize two-

person interactions, its two-person interaction accuracy is

lower than that of our CHARM. We believe that such a per-

formance gap is caused by the difficulties in merging seam-

lessly the results from the two dedicated approaches such

that the benefits of each dedicated approach cannot be fully

utilized. We notice that the overall performance of CHARM

for single-person actions is better than the performance for

two-person interactions. In general, CHARM works well

for most actions but tends to have problem classifying sim-

ilar two-person interactions, e.g., ”push” and ”hug”. In

CHARM, we did some tradeoffs between the expressive-

ness capability of our visual representation model towards

any specific action category and its capability for a uniform

visual representation, e.g., compared to existing approaches

(e.g., [23]), we only use a very simple model in CHARM to

capture the inter-person temporal correlations.

5.2. Action Recognition using SBU Interaction

Datasets. SBU Interaction dataset consists of ap-

proximately 300 pre-segmented two-person interaction se-
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quences in the form of 3D joint positions. This dataset in-

cludes eight classes: approach, depart, push, kick, punch,

exchange objects, hug, and shake hands. As in [23], we use

the sequence-level accuracy as our evaluation metric.

We compare our CHARM with the two interaction

recognition approaches in [23] using five-fold cross val-

idation. As shown in Table 3, the only approach that

slightly outperforms CHARM is the MILBoost based ap-

proach [23], which uses spatio-temporal distances between

all pairs of joints of two persons as feature. However, the

MILBoost based approach [23] focuses on recognizing two-

person interactions (test scenario (ii)), and cannot be used to

cope with the test scenario (i) and (iii).

5.3. Action Recognition using MSRC12Gesture

Datasets. The MSRC12-Gesture dataset was collected

by having volunteers perform certain actions either based

on ”Video + Text” based instructions or based on ”Image

+ Text” instructions. We refer to these different procedures

as different modality. This dataset is chosen to validate the

effectiveness of CHARM to handle the streaming data se-

quences. It contains 594 sequences collected from 30 peo-

ple performing 12 different single-person actions, including

lift outstretched arms, duck, push right, goggles, wind it up,

shoot, bow, throw, had enough, change weapon, beat both,

and kick. Each sequence may contain multiple action in-

stances, thus there is a total of 6244 action instances in this

dataset. All sequences in this dataset are non-segmented,

i.e., there do not exist information about where the start-

ing and ending times of an action instance are within a se-

quence. We only know the ending points of all action in-

stances since they are manually labeled by the authors who

release this dataset. The authors indicate that any recogni-

tion system which can correctly identify the ending time of

an action instance within ±ξ = 10 video frames should be

considered as accurately identify this action instance.

To use CHARM on a non-segmented streaming data se-

quence, as in [11], we use a 35-frame sliding window to

continuously segment potential action instances from the

streaming data. In addition, inspired by [22], we intro-

duce a background class and use a threshold for each class

such that we can balance the precision and recall rates of

our CHARM-based recognition system. Specifically, we

redefine (8) as ϵ∗ = argmaxϵ(Υϵ), s.t. Υϵ > θϵ. As in

[11, 22, 25], the optimal θϵ is chosen such that it minimizes

the recognition error, e.g., we set the threshold θb for the

background class to be zero. We conduct our experiments

using the same test procedure described in [19] where train-

ing and test sequences can potentially come from different

modality. We did two groups of experiments, namely ”intra-

modality” and ”inter-modality”. ”Intra-modality” indicates

that training and test sequences are from the same modality,

e.g., both collected using ”Video+Text” instructions. ”Inter-

Method intra-modality inter-modality

Randomized Forest [11] 0.621 0.576

Structured Streaming Skeletons [25] 0.718 N\A

Multi-scale Action Detection [16] 0.685 N\A

DBN-ES-HMM [19] 0.724 0.710

CHARM 0.725 0.700

Table 4. Comparison on MSRC12-Gesture (test scenario (iii)).

”N\A” indicates that experimental results of the corresponding

approaches are not available mainly because the authors neither

provide the results in their paper nor publish their code.

modality” indicates that training and test sequences are col-

lected using different modality. It is clear from our results

that sequences using the ”Image+Text” instructions tend to

have more variations and hence lower recognition accuracy.

As in [19], we use the criteria, F-score which com-

bines the precision and recall to evaluate the performance

of different action recognition methods. Table 4 shows

that CHARM performs better than all baseline methods

for single-person action recognition for the intra-modality

scenario. For the inter-modality scenario, CHARM per-

forms better than [11] and yields comparable performance

to [19]. Methods in [25] and [16] are not compared because

the authors neither publish their performance for the inter-

modality scenario nor their code.

6. Conclusion

We presented a category-blind human action recogni-

tion method (CHARM) which is more suitable for real-

world scenarios. Compared to existing action recognition

approaches that are designed to cope with only one action

category, and are difficult to be extended to scenarios where

different action categories co-exist, CHARM achieves com-

parable or better performance without any prior action cate-

gorization. In CHARM, action instances of different action

categories are all modeled as a set of weighted graphs which

encode the co-occurring probabilities of motion primitives.

Such a category-blind representation makes it possible for

CHARM to simultaneously recognize actions of different

categories which co-exist in any video sequence. The action

classification is performed via finding maximum cliques of

motion primitives on the weighted graphs.

The future work will focus on (a) enhancing our tem-

poral inter-person correlation model, and (b) applying the

CHARM to more complex action recognition in real life.
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