
Live Repetition Counting

Ofir Levy Lior Wolf

The Blavatnik School of Computer Science

Tel Aviv University

Abstract

The task of counting the number of repetitions of ap-

proximately the same action in an input video sequence

is addressed. The proposed method runs online and not

on the complete pre-captured video. It analyzes sequen-

tially blocks of 20 non-consecutive frames. The cycle length

within each block is evaluated using a convolutional neural

network and the information is then integrated over time.

The entropy of the network’s predictions is used in order to

automatically start and stop the repetition counter and to

select the appropriate time scale. Coupled with a region of

interest detection mechanism, the method is robust enough

to handle real world videos, even when the camera is mov-

ing. A unique property of our method is that it is shown

to successfully train on entirely unrealistic data created by

synthesizing moving random patches.

1. Introduction

Given an input video capturing a scene in which the same

action is repeated multiple times in consecutive cycles, we

seek to count the number of repetitions. The video can de-

pict a bird flapping its wings, a hand playing a guitar, a

person performing multiple repetitions of the same exercise

etc. We place no restrictions on the nature of the performed

action, and are able to deal with camera motion.

Our method does not assume that the video is segmented

in time. It automatically detects the start and end points of

the sequence of repetitive actions, and counts the repetitions

on a live video stream: the repetitive nature is identified

early on and counts commence and update automatically.

Despite working online, counts are not lost during the time

that the method detects the repetitive nature of the video.

Our method successfully handles live real world video

inputs as well as video collected from youtube and other

sources. There are significant challenges. In many videos,

there are only a handful of repetitions; the cycle length

changes significantly throughout the video and each repe-

tition is often visually different from the other repetitions.

We propose a novel online scheme that employs a shift-

ing window in time. Every window is examined and the

number of repetitions is estimated. We pose this as a multi-

class classification problem. The information is then inte-

grated smoothly across multiple shifting windows to pro-

duce the ongoing counts.

The underlying classification mechanism employs a

Convolutional Neural Network (CNN). Since the problem

is well defined regardless of the content of the video, we are

able to train the network on a completely unrealistic syn-

thetic video. This is the first work that we are aware of,

which is able to build a real world system based entirely on

such data (previous successful usage of synthetic data re-

lied on realistic computer graphics data). This is notewor-

thy: the generalization capability of CNNs is high enough

to enable a new venue of defining computer vision tasks by

creating synthetic data that does not resemble any real world

signal. Moreover, the probability estimation is valid enough

to allow for the entropy of the network’s output to be used

as a score for detecting the start and end of the action and

the appropriate time scale.

The CNN is the only learned part in our system. No real

images or videos were used for training. There are a few

time scale parameters and thresholds that are set once glob-

ally based on observing a few videos. The method is ro-

bust to the choice of these parameters. Not training on real

world data, makes the resulting system extremely general

and it can be used without any modifications on a variety of

datasets. The entire implementation runs at a frame rate of

50 frames per second on live video on a conventional PC.

1.1. Previous work

The task that we solve is well defined at the semantic

level. Moreover, it seems that humans are able to perform

this task relatively easily (depending on the input) and that

the task has applications in high throughput biological ex-

periments, activity monitoring, sports, and gaming. It is,

therefore, not surprising that the problem has already gained

some attention. However, our method is very different from

all previous work. While most previous approaches were

based on frequency domain analysis or on matching, our

method is based on a novel approach of cycle length esti-

13020

mation, turning the counting problem on its head. More-

over, (i) the only other work we are aware of that is able to

work on live input, and not as post-processing applied to the

entire video, are in the domain of motion capture (Mocap)

sequence analysis; (ii) the problem of finding where the rep-

etitions start and end is mostly neglected. Lastly, carefully

examining the literature, no previous work was evaluated on

truly unconstrained video inputs, and the vast majority were

evaluated on a handful of samples that were very restricted.

Our ability to perform well on a variety of real world 2D

videos including a live video feed of casual users also sets

us apart from all previous work that we are aware of.

Spectral or frequency domain methods such as Fourier

transform based methods or wavelet analysis methods dom-

inate the current literature [3, 5, 35, 29]. A limitation of

these methods is that it is assumed that the action frequency

would emerge as a discernible peak at a time frequency

graph of one type or another. Except maybe for video se-

quences of simple motions or very uniform repetitions (cf.

[34], Fig. 2, or Tab. 2 of [29]), the amount of variation

in appearance between repetitions and the variation in ac-

tion length means that no clear peak is visible. Similar to

our method, a time scale or other resolution parameter is

either implicitly or explicitly used, which limits the range

of action lengths that can be detected. In our method, we

overcome this limitation by automatically performing live

selection between multiple detectors. In the previous liter-

ature, time scale selection is mostly ignored. In addition,

the frequency domain methods in the literature work on the

entire video as post processing and are not supplied with a

proper mechanism to identify the start and end points of the

sequence of repeated actions. In our experiments, we make

a comparison to [3] and show that even using the best value

for its parameter, selected in hindsight, separately for each

video, there is a sizable performance gap in our favor.

Matching can also be used for counting. In [21] the ge-

ometric constraints arising from multiple repetitions of the

same motion as the viewpoint changes are used to detect and

segment repeated motions. While this may lay foundations

for a counting system, counting is not performed or evalu-

ated. 3D reconstruction using repetitions is also the focus

of [31, 32], with applications such as gait recognition.

Autocorrelation is employed in [1, 40] and applied to

a handful of samples in very restricted domains. Re-

cently, two autocorrelation systems were developed based

on matching visual descriptors [30, 23]. While both sys-

tems display a screen shot of a counting application, they

are both post processing methods and are only applied in

specific domains on constrained videos. String matching is

used in [12] and preliminary results are shown.

One contribution that might be suitable for counting is

the hierarchical motion clustering method of [42]. Given

the entire video, frames are grouped to form segments of the

same class of motion. This could be employed to identify

repeated segments of the same type. However, this is still

hypothetical, requires seeing the entire video before-hand,

and the system of [42] is yet to be applied to unconstrained

video. Most of the methods that have been suggested ex-

clusively for the segmentation of motion capture (Mocap)

sequences, such as [24, 2], share the same limitations.

An online method for performing hierarchical segmenta-

tion of Mocap and 2D sequences is presented in [9]. Similar

to ours, it employs a sliding window in time, works online,

and is able to identify the borders of the repeated actions.

The experiments that focused on 2D data were based on sil-

houettes extracted using background subtraction, thus the

method is not robust to camera motion. Moreover, the 2D

experiments apply a flat segmentation hierarchy and focus

on detecting the change point between different actions such

as walking, jumping, and boxing, and not on counting.

In the case that the repeated motion is from a known class

and is the type of motion that has clear boundaries in time,

action detection [26, 15] can be employed. A direct count-

ing of the detected events would then provide the desired

output. While this is limited to specific cases, it has the

advantage of possibly performing better in the presence of

distracting motions that are also present in the scene.

Deep learning We use a deep neural net [14, 20] in or-

der to solve a very specific classification problem – given

a short video sequence, predict the cycle length of the re-

peated motion that it captures. We employ, as the very first

layer, a 3D convolution. Such convolutions are natural in

video processing and have been used for video action recog-

nition [18]. Previous work on employing deep architectures

in action recognition include [22, 19, 37].

Use of synthetic data in visual perception Our work em-

ploys synthetic data for training. It is unique in that the syn-

thetic data is unrealistic (see Sec. 2.1). However, training

computer vision systems by using realistic or semi-realistic

synthetic data is a common practice. Matikainen et al. [25]

generated synthetic action sequences from motion capture

data, using a computer graphics human model. Chen and

Grauman [4] were able to create synthetic clips of human

action by integrating labeled still images with unlabeled hu-

man action video. In [28], computer graphic human figures

where placed on background images to create a training set

for pedestrian detection. In pose estimation, realistic com-

puter graphics datasets are very successfully used in order

to train pose recognition systems [36, 11]. In another do-

main, state of the art results in text detection were achieved

using a CNN trained on synthetic text examples [16].

2. The proposed approach

Our design combines a learned classifier encompassed

by a larger system. Indeed, counting does not call for an

end to end trainable system: cycle lengths can be estimated

3021

Figure 1. Example sequences. (first row) A frame from the video.

(second row) The heat map of the matrix E2 (before thresholding)

used in order to detect the ROI and the estimated ROI. (third row)

The 20 non sequential frames as passed to the CNN classifier.

based on observations, while integration in time is well de-

fined mathematically, and there no need to learn it. For

clarity of exposition, we break down our method into two

components: the core system that is used to perform count-

ing and the outer system that decides when to start and stop

counting and selects between multiple time scales.

The core system analyses blocks of 20 frames at a time.

The ROI is detected automatically for each block indepen-

dently of the other video blocks as described in Sec. 2.3.

The ROI is then resized to a size of 50× 50 pixels resulting

in video blocks of size 50 × 50 × 20 as depicted in Fig. 1.

This block is then passed to a CNN, which estimates the cy-

cle length in this video block, see Sec. 2.2. As mentioned,

this classifier is trained on a set containing tens of thousands

of synthetic examples. These are generated at random using

one of four motion patterns, each with its associated set of

random parameters, see Sec. 2.1. The classification output

is integrated over time as described in Sec. 2.4.

The outer system is presented in Sec. 3. The core system

above is applied to the video at multiple time scales, sim-

ply by sampling the input frames in time. This enables a

wide coverage of repetition lengths. The selection among

the time scales is done by examining the entropy of the

probabilities assigned by the underlying CNNs. The lower

the entropy, the higher the confidence we have in the result

of the CNN classification. The same entropy is also used

to determine where to start and stop the counting. A simple

state machine based on this entropy detects that a repeti-

tive action has possibly started, and if the entropy remains

low for a set number of seconds, it performs counting. The

count-end event is detected similarly, and following a cor-

rection, if necessary, to the last count, the system is reset

and is able to start a new count.

Note that we treat the problem of predicting, per video

block, the cycle length as a classification problem and not

as a regression problem. There are three very good reasons

for this choice. First, time filters that capture repetitions ev-

ery l frames are very different from those meant to capture

repetitions every l + 1 or l − 1 frames. This plays in our

favor – the various discrete states are well distinguishable.

In our experiments, we provide an empirical comparison to

a very similar CNN, where the output layer is optimized

to perform regression, showing that classification consider-

ably outperforms regression. Second, the extensive use we

make of entropy in our live method, both to select the appro-

priate time scale and to detect the boundaries of the action,

is only possible within a multiclass classification problem.

Finally, in Deep Learning, it is recommended to strongly

prefer classification over regression, whenever discretiza-

tion is possible [7].

The classification approach is not without limitations.

The cycle lengths in the data itself are not integers, but in

practice the method seems to be robust to such rounding ef-

fects, since each cycle is captured by multiple sliding win-

dows of the same detector that are all integrated in time.

Moreover, since we use multiple detectors, the same range

of cycle lengths (in seconds) is often captured by multiple

detectors that quantize the cycle length at multiple resolu-

tions. Another challenge, shared by both the classification

and the regression approaches, is that a cycle length of l
also defines cycle lengths of nl, where n is an integer. In

our experience, the most rapid cycle length is the one that

often gets counted. The reason is that shorter cycles are sup-

ported by more evidence and are, therefore, typically asso-

ciated with higher probabilities.

2.1. Synthesizing data

The synthetic data used for training follows four pat-

terns, all displaying squares of a low frequency pattern mov-

ing in front of a white noise background. Three to five such

squares are present in every frame, all with random sizes,

and all move following the same motion pattern but with

different random motion parameters. The labels denote the

cycle length, which is fixed for each created synthetic sam-

ple. The first pattern is of linear motion along a path of

random length with a jump back to the starting location af-

ter the cycle length number of frames. The second pattern

is of a circular motion along a path ending at the starting

position every cycle length frames; the radius is set at ran-

dom. The third pattern is of expanding and shrinking in a

cyclic manner independently in both axes. The fourth and

last pattern displays in place rotation up to a certain degree

and back to the starting rotation at the end of the cycle. To

add variability, we also create sequences in which the pat-

terns are randomly mixed within the same sequence.

The location of the center of each square is shifted in-

3022

Figure 2. Samples of synthetic sequences for cycle lengths ranging

from 3 (top row) to 10 (bottom row). Each row is a sequence from

one of the 4 types used to synthesize data. As can be seen, there is

a large variability in the size of the moving squares used.

Figure 3. Outline of the architecture we have used in this work,

which consists of interleaving convolution/maximization layers

followed by a fully-connected hidden layer.

dependently at each frame from the predetermined cyclic

path, by uniformly and independently sampling the amount

of shift in a fixed range. In addition, a global rotation of

the frame, taken uniformly from - 20◦ up to 20◦ , indepen-

dently to each frame, is applied to half of the sequences.

This simulates global camera motion.

All synthetic sequences contain 20 frames of size 50 ×
50. Cycle lengths in the range of 3..10 are used. A cycle

length of 2 is too short, and a cycle length of more than 10

does not fully repeat in 20 frames. Examples of sequences

are shown in Fig. 2.

In the training process, 30,000 random training se-

quences are used, as well as 5,000 validation sequences.

These numbers are within the range that appears in the com-

puter vision literature for CNNs. While object recognition

systems are often trained on ImageNet’s [6] million images,

other systems, e.g., [38, 39] use a comparable number.

2.2. CNN architecture and training

We train our CNN to classify the cycle length within a

fixed number of frames. The overall architecture is shown

in Fig. 3. The input is a 3D tensor of size 50 by 50 by

20 capturing a fixed ROI taken across 20 (non-consecutive)

frames and resized to 50 by 50 pixels. This is denoted by

1@50x50x20, since we have a single channel gray image.

The input is given to a convolutional layer (C1) with

40 filters of size 5x5x20, which encodes temporal patterns

across the entire 20 frames. Max pooling is then per-

formed, followed by interleaving convolution/maximization

layers (C3-M6), resulting in an output with spatial reso-

lution of 4x4. This low resolution makes sense since the

phenomenon we aim to capture is global across the entire

frame. The size of the hidden layer H7 is taken to be 500,

which seems to be sufficient to represent the space of mo-

tion repetitions for limited sized blocks. The output size

contains one neuron per 8 possible classifications corre-

sponding to the 8 cycle lengths from 3 to 10.

After each convolution-maximization pair, and after the

hidden layer H7 and the output layer O8, a learned activa-

tion bias (one per channel) is added and the Rectified Linear

Unit (ReLU) [8] is then applied. The output of the last layer

is fed to a softmax function, and the cross-entropy loss is

used. For the alternative regression system presented in our

experiments, the output layer O8 has a single neuron repre-

senting the cycle length and the Euclidean loss is used.

2.3. Detecting the ROI

In many videos, the relevant motion occurs in a relatively

small part of the image. Therefore, given a block of 20 non-

consecutive frames, we compute a rectangular ROI that is

aimed at capturing the majority of the observed motion.

Let the tensor T hold the pixels of a single 20 frame

video block of size WxHx20. The first step is to compute a

2D map containing the standard deviation along the third di-

mension of T . This map, thresholded at its mean, produces

a binary map E. The map E is convolved with a square all-

ones kernel of size 10. A second threshold is applied at the

value of 80 to produce a second binary map E2. It contains

all pixels for which 80% of the 10×10 neighborhoods in E
have a value of +1. The ROI is computed separately to the

two axes. Let {ik, jk}k be the set of coordinates of all +1

values in E2. The ROI boundaries along the x-axis (y-axis)

at the 3rd and 97th percentiles of {ik} ({jk}).

This simple method, shown in Fig. 1, was found to be

effective enough for a wide range of video sequences. The

second example of this figure depicts a case in which a hu-

man would mark the bounding box differently. The auto-

matically selected ROI contains the moving shadow. While

specialized modules can be added to deal with such arti-

facts, we opt for a simple real-time solution, pointing to

the robustness of our overall design. In addition, when the

camera is moving, the assumption behind the ROI computa-

tion is violated and the ROI becomes the entire image sans

a thin margin. As demonstrated experimentally, the other

components of the counting method work well even in such

cases. Lastly, note that action ROIs have gained recent at-

tention [17, 27]. However, these contributions are off-line

(require the entire video), while our method is live.

2.4. Integration of counts

While the method employs multiple detectors at multi-

ple time scales, for clarity, we begin our exposition of the

counting integration method with a single detector, which is

associated with a temporal subsampling parameter N . The

detector collects blocks of 20 frames, sampled uniformly

3023

from a video segment of length 20N frames. After the com-

putation of the ROI, the CNN classifier is applied to the

video block. This process of collecting 20 frames and pro-

ducing a label is repeated every N video frames, to match

the gap between the sampled frames, i.e., the second sam-

pled frame from the first block becomes the first frame in

the second block. The labels from the consecutive blocks

are integrated to produce an online counter.

Every video block (20 frames) produces a label ŷ and the

associated probability pŷ computed by the softmax function

(Sec. 2.2). The integration module is best illustrated by an

example, see Fig. 4. This module works online and holds

two counters that are updated after each video block is an-

alyzed: R, which is the current repetition count and holds

the estimated number of repetitions from the motion’s start,

and C which is a counter that holds the number of frame

strides since the last update of R.

After the first video block in which motion is identified,

a few repetitions, each of length ŷ have occurred already.

The counter R is therefore set to ⌊20/ŷ⌋, and C is set to

20 mod ŷ = 20 − ŷ ∗ R. After the analysis of the next

block, which produces a new label ŷ, the frame counter is

advanced C = C + 1, and R would remain unchanged un-

less C ≥ ŷ. In this case the video has advanced enough to

complete an additional repetition of length ŷ, and therefore

the repetition counter is incremented R = R + 1 and the

counter of frame strides is reset to C = 0. This process is

repeated for every subsequent video block.

3. Working in multiple time scales and han-

dling intro and outro video segments

At every time point, the method inspects 20 frames that

are sampled uniformly every N frames. The parameter N
should be set in accordance with the expected frequency of

motion. The CNN classifier outputs cycle lengths between

3 and 10 frames, which translate to a repeated action of a

duration ranging from 3N/30 seconds to 10N/30 seconds,

assuming 30 frames per second.

We suggest employing multiple detectors working at dif-

ferent time scales. In our experiments, we set the multiple

values of N to be 2, 5, and 8. This range of possibilities

was set to capture the rapid, moderate, and relatively slow

actions we observe in our data. Naturally, more detectors

could be added in order to provide a wider coverage.

Note that since the low range of one detector can overlap

the high range of another, the same cycle length in seconds

is observed by multiple detectors. For example, for the three

detectors we employ, the rapid and the moderate detectors

share the range 0.5–0.66 seconds, while the moderate and

slow detectors share the range of 0.8-1.66 seconds. Overall,

almost half of a unified range of 0.2–2.33 seconds per cycle

is covered by more than one detector.

Each detector provides for each video frame a vector of

ŷ 9 9 9 9 8 9

R 2 2 2 2 2 2

C 2 3 4 5 6 7

ŷ 9 9 7 8 9 9

R 2 3 3 3 3 3

C 8 0 1 2 3 4

ŷ 9 8 9 10 9 9

R 3 3 3 3 4 4

C 5 6 7 8 0 1

Figure 4. An example of the count integration process for a single

detector. Shown are the frames from the beginning of each video

block, the current estimation of the cycle length ŷ, the number of

repetitions seen so far R, and the variable C that holds the numbers

of frame strides since the last update of R. More details can be

found in Sec. 2.4. This example shows a relatively clean case in

which there was little variation in the cycle length. In the first

video block, ŷ is estimated to be 9, therefore R is set to 2 and the

register C is set to 20−2∗9 = 2. The method then continues from

one video block to the next. A count is added to R when C ≥ ŷ.

probabilities derived from the softmax layer pi, i = 3..10.

During training, these probabilities were optimized to mini-

mize the cross-entropy loss and, therefore, would maximize

the log probability of the correct class. We discovered that

the entropy of the predictions H(p) = −
∑

i pi log pi is

a useful uncertainty score. When it is low, the detector is

much more likely to provide the valid cycle length. We,

therefore, use the entropy extensively in our method in order

to decide if a repeated action is taking place and at which

time scale. Note that this is the first usage, that we know

of, of the entropy of classifier predictions as a direct sig-

nal in a live working system (entropy maximization is often

used in active learning, e.g., [13], however this is a different

mechanism). This is only made possible through the high

accuracy of our underlying classifier.

Off-line selection of the time scale In the experiments for

which one detector is selected per video, the analysis is done

offline for the entire video. The detector that gives the low-

est average entropy is selected. Counting for each detector

is performed independently as described in Sec. 2.4.

Live selection and integration of multiple time scales To

perform live counting with three concurrent detectors, we

hold a global counter, in addition to the registers R and C
we hold per detector. The three detectors we employ pro-

vide estimations every 2, 5, or 8 frames. Every 40 frames all

three provide estimations at once and we perform synchro-

3024

nization. The average entropy of the detectors is compared:

for the rapid counter 20 measurements are averaged, while

for the other two only 8 or 5 exist.

The detector with the lowest entropy is selected and the

count difference in this counter from the reading 40 frames

ago is added to the global counter. The individual counters

R of the three detectors are zeroed, and the frame counters

C of the two detectors that were not selected are updated

such that the time length since the last repetition is similar.

For example, if the moderately rapid detector was elected

and the value of its C register is 6, this translates to a new

value of C of 6 ∗ 5/2 = 15 for the rapid detector, and only

6∗5/8 ≈ 4 for the slow detector. Since these updated values

possibly contain more than one repetition at the currently

estimated cycle length, the C is taken modulo the currently

estimated cycle length. If, for example, the currently esti-

mated cycle length (ŷ) of the rapid detector is 6, then the

new value of C is updated to be 15 mod 6 = 3.

In order to keep the counting live in between synchro-

nization points, the last selected detector updates a sepa-

rate live counter shown to the users. At the synchronization

point, when the selection of the lowest entropy detector in

the last 40 frames is performed, the live counter is updated

to match the global counter. This very rarely changes the

value of the live counter.

Repeated action start and end A moving average over the

last 7 entropy readings is kept for each detector, and the

minimal value of the three smoothed entropies is consid-

ered. An entry threshold of 1.04 on this value (half the

random entropy) is used to alert of the possibility of rep-

etitions. As can be seen in Fig. 5, this threshold sepa-

rates well the 20-frame blocks of repetitive actions vs. non

repetitive blocks. Once the entry threshold is crossed, the

user is alerted that a new possible repetitive action is tak-

ing place (“new hypothesis”), and the current count is dis-

played. Since sometimes there is a transient drop in entropy,

if within the first 4 repetitions or 4 seconds (whichever is

first) the smoothed entropy rises above that threshold, the

count is terminated. If the entropy stays below the thresh-

old, the user is presented with a permanent counter.

The minimal smoothed entropy among the three detec-

tors is also used to stop the counter after the first 4 sec-

onds with the same threshold of 1.04. Since the entropy is

smoothed in time, the counting will sometimes stop with

a slight delay. To fix this, we examine the history of the

relevant unsmoothed entropy (last 7 readings), and detect

the point of maximal change in entropy. The count at this

specific point in time is then taken as the final count. This

means that sometimes, at the end of the count, the counter

rewinds by one count, which is not entirely desirable. An

alternative would be to display counting with a slight delay.

Once the counting stops, the method waits for a new

counting event. The entire process is completely automatic

Figure 5. Histograms of the smoothed entropy of 20-frame blocks

at time points that are within repetitive actions (solid blue), and

outside repetitive actions (outlined magenta) obtained from the

long continuous video of Sec. 4. As can be seen the threshold at

1/2 the random entropy (1.04) separates well between the groups.

Repetitive blocks above this threshold are predominantly taken

from the time points at the start of the action; non repetitive blocks

below the threshold may create a transient hypothesis but usually

do not amount to a false detection.

and the implementation runs live for hours at a time.

4. Experiments

We provide experimental results covering the various as-

pects of the method. The evaluation is performed on very

diverse sets of challenging real world videos, containing

camera and background motion and depicting complex ac-

tions that differ in length and in appearance between rep-

etitions. Note again that the real videos are used only for

testing and do not take part in the training process. The

exact same implementation is used throughout the experi-

ments using the same parameters, unless otherwise noted.

Training on the synthetic data Training stopped, via an

automatic early stopping mechanism when the validation

error stopped decreasing at a value of 8.5% at epoch 102.

Each epoch took 3 minutes on a NVIDIA GTX580 GPU.

This error is per video block and not directly comparable

the counting error reported below.

Previous benchmakrs We approached authors of all rele-

vant papers and collected 6 previous benchmarks [33, 30, 3,

23, 10, 41]. As can be seen in Tab. 1, our method succeeds

on all existing benchmarks, surpassing existing results. This

is despite the fact that our method solves a harder problem

(online processing vs. offline batch processing). It is also

robust enough to handle the videos provided by [23], which

are binary foreground masks, without modifications.

The YouTube benchmark For the purpose of benchmark-

ing, we collected a dataset of 100 videos containing repe-

titions, the vast majority of which are from youtube. This

test dataset displays a good mix of domains, including ex-

ercising, cooking, building, living creatures, etc. In order to

create a clean benchmark from a very diverse set of videos,

3025

Entire youtube benchmark (100 videos) Moving Youtube benchmark in reverse Mov. rev

method Full no ROI regression [3] Full Full no ROI regression Full

manual selection 3.17±0.8 3.28±0.9 10.81±1.7 29.80±4.6 3.13±0.8 3.52±1.1 3.89±1.2 11.47±1.7 3.94±0.7

offline selection 6.18±1.4 8.58±2.1 N/A N/A 6.58±1.4 6.97±1.3 8.16±1.9 N/A 5.83±1.0

online selection 6.84±1.6 9.72±2.2 N/A N/A 7.35±1.1 7.36±1.8 8.77±2.3 N/A 7.04±1.0

detector median 21.2±3.4 22.6±3.5 28.84±2.9 N/A 19.1±3.5 22.4±3.9 23.2±4.1 31.36±3.4 23.9±4.0

Table 2. The error rates on the youtube benchmarks for our method (and 9 simplified variants) and a baseline method. Mean±Standard

Error of the absolute error in percents are shown, i.e., the statistics of
|G−R|

G
∗ 100, where G is the ground truth count for a specific video,

and R is the estimated count. The first columns correspond to the full system. Two additional types of variants are evaluated, one with the

entire frame as ROI, and one where multiclass classification is replaced by regression. Results are shown for the original benchmark and

the one played in reverse. Results are also shown for the moving camera subset. The method of [3] is used with the best possible parameter

chosen per video based on the comparison to the ground truth. It cannot handle a moving camera and as a frequency based offline method,

it is not affected by the playback direction. The rows correspond to manual selection of the best time scale, an offline selection of the time

scale based on the average detector entropy, a dynamic online selection of the time scale, and just taking the median of the three detectors.

The regression based system does not allow for entropy based selection among the detectors.

Source #videos baseline Our

[33] 2 0 0

[30] 3 0 0

[3] 6 0.45% 0

[23] 50 4.95% 2.67%

[23] ([10]’s videos) 9 2.47% 0

[41] 6 N/A 4.46%

Table 1. A comparison of our method’s performance on literature

benchmarks. Reported are the absolute errors in percent. Our

method matches or outperforms existing approaches even though

it is the only method that processes the input online. The con-

struction dataset of [41] was not used to evaluate counting before.

Such results did not appear in [10] either. The two datasets of [23]

contain only binary foreground masks. Our method handles those

without any modification.

the videos are presegmented to include only the repeated

action. We manually marked the individual repetitions and

discovered that the average value of the ratio of the differ-

ence between the longest repetition and the shortest repeti-

tion over the mean repetition length is 31%, thus the videos

display a very large variability in repetition length.

We perform extensive evaluations using the benchmark.

As the main metric, we use the fraction in percent of the

absolute difference in counts between the ground truth G

and the estimated count R over the ground truth: 100 |G−R|
G

(absolute differences are easier to interpret than MSE). An

upper bound on the performance of the method of [3] is also

reported, where the original code is used and the best pseu-

dospectrum parameter is selected for each movie separately

such that the test error is minimized (authors of other pub-

lications were unable to share their software or to run it on

our benchmark). To evaluate the effect of camera motion,

we report separately results on a subset of the 100 videos

that contains 30 videos of considerable camera motion.

In order to analyze the method’s individual components,

we evaluate our system without the ROI detection mecha-

nism, and evaluate a system in which classification is re-

placed by regression. The scale selection is studied by eval-

uating multiple variants of the method (where appropriate)

for the manually selected detector, the offline selection of

detector based on mean entropy in the video (the system is

online, only the selection is done offline), and for the online

selection of detector, see Sec. 3; Also shown is a “no selec-

tion” option of taking the median out of the three counters.

The results are reported in Tab. 2. Overall, the counting

process is accurate with an average error of around 7% for

the online automatic selection of the time scale. Naturally,

when the selection is done offline or given by an oracle,

accuracy further improves. To put these results in context,

when using a fixed values of N = 5 for all videos, i.e.,

without selection at all, the error is much higher: 21.31%
for the full system on the entire benchmark, 22.73% on the

reversed benchmark. The error rate is considerably higher

for the two other values of N employed in our implementa-

tion N = 2 and N = 8.

It is also evident from Tab. 2 that the automatic ROI

selection is beneficial. Classification greatly outperforms

regression, as expected, see Sec. 2. Note that automatic

time scale using entropy cannot be evaluated for the regres-

sion scheme. The baseline literature method, despite using

hindsight-based selection of its parameter does not perform

well on our benchmark. The subset of videos for which

there is a significant camera motion does not seem to be

more challenging than the entire benchmark.

Our method is online and therefore perceives the movie

completely differently when played in reverse. In order to

demonstrate its robustness, we also present results on the

youtube videos played backward. As can be seen, the re-

sults are similar. Paired t-tests done for each of the settings

separately, relieved that one cannot reject the null hypoth-

esis that the mean performance of the two directions is the

same at a confidence level of 0.05.

Most of the Youtube repetitive actions collected are

tightly segmented (e.g., by shot cuts) at the source. How-

ever, a subset of 25 videos have non-repetitive segments

before and after the repetitive action. This subset called

youtube in-out (YTIO) was used to evaluate the perfor-

3026

YTIO YTIO(rev) live

true positive (found actions) 25/25 25/25 43/44

false positive 2/0 3/0 3/0

false negative (miss) 0/25 0/25 1/44

start time within 0.5 sec 20/25 20/25 38/43

start time within 1 sec 21/25 21/25 41/43

end time withing 0.5 sec 19/25 19/25 33/43

end time withing 1 sec 22/25 21/25 38/43

rewound with positive outcome 8/25 5/25 6/43

rewound with negative outcome 2/25 2/25 1/43

perfect counting 15/25 16/25 24/44

counting within 1 count error 18/25 19/25 35/44

counting within 10% error 22/25 22/25 36/44

Table 3. Statistics on videos that contain non-repetitive segments

as well as repetitive ones. Shown are the detection statistics, the

accuracy of the start and end signal, and the effect of the rewinding

mechanism. Results are shown for the youtube in-out (YTIO) sub-

set, for YTIO played backward, and for the annotated live video.

mance of the live detection method. The results are reported

in Tab. 3. As can be seen, our method detects the true action

in all videos, and has only 2 false positives (3 when played

in reverse). The start and end time are approximately cor-

rect most of the time, and the rewinding mechanism reacts

up to 40% of the time, and in the vast majority of these cases

improves the outcome.

Benchmarking live performance The software was pre-

sented in the hall outside a large public event, where hun-

dreds of users were free to interact with the system with

minimal or no guidance. The overall feedback was ex-

tremely positive and the system seemed to count well al-

most the entire repertoire of actions performed by the users.

Two limitations of the current implementation were identi-

fied: first, the implementation was not designed to deal with

multiple persons entering the frame; second, some users

tried very minute actions, which were missed.

In order to evaluate the live performance of the method

on a continuous video, we collected an hour long uninter-

rupted video and annotated it. The results are presented in

Tab. 3. Overall, out of 44 actions performed, only one was

missed. The counting of these 43 actions was performed

with an average absolute error of 6.2%. There has been 7 re-

tractions of the last count, out of which 6 improved the out-

come. The action started very closely to the actual start in

the vast majority of cases. Note that the live video does not

display the starting point since until repetitions take place,

the repeated action cannot be detected. What is presented

to the user is the new hypothesis message, followed by a

counter message 4 repetitions or 4 seconds later. The shift

in the start time is, therefore, estimated in retrospect. The

absolute shift in the end point was around 0.3 seconds on

average. Within the video, there were many non-repetitive

motions and the system made 3 false positive counts, all in

a range of less than 5 repetitions.

Sensitivity to parameters Similar to all other computer vi-

sion systems, the system has some parameters. As seen

above, the same set of parameters works on literature bench-

marks, youtube videos, and on uninterrupted live video

without any modification. Many of the parameters’ values

are natural, e.g., time scale. Additional experiments were

conducted in order to demonstrate that the system is robust

with respect to its parameters. Specifically, the performance

is highly stable to the parameters of the ROI, and the param-

eters could be tuned to get a slight improvement in perfor-

mance over what is reported in Tab. 2. We made a deliberate

choice not to train on our benchmarks and therefore such

tuning was not performed. The system also presents a mild

tradeoff between false positives and misses when altering

the parameters that control the shift from a hypothesis into

a permanent counter.

5. Summary

Identifying repetitions in video is harder than it seems at

first glance: The motion of interest can vary in appearance

and be limited to a portion of the frame and the cycle length

can vary dynamically. In this work, we propose a CNN

based online method that counts repetitions robustly. We

present multiple technical novelties: the online design that

uses a sliding classifier for counting video repetitions, the

use of a CNN in such a framework, the reliance on purely

unrealistic (i.e., not using realistic CG) synthetic data for

training a computer vision system, changing the state of the

system based on entropy, automatically working at multiple

time scales, and more.

Our method is (i) robust to repetition variability in length

and appearance (ii) online (iii) realtime (iv) starts and (v)

stops counting automatically, supports (vi) multiple time

scales and (vii) moving cameras. We are not aware of any

other method that covers convincingly even one of these cri-

teria, except (ii) in one previous Mocap publication.

The method is evaluated extensively on a very diverse

set of benchmarks that were not used for training the sys-

tem. In addition to many literature benchmarks, we provide

a new one, which while being smaller than action recog-

nition benchmarks, is much larger than all previous-work

benchmarks used for this task combined. Evaluating sys-

tematically variants of our method allows us to quantify the

relative contribution of each component. Lastly, our im-

plementation is mature enough to interact freely with mini-

mally instructed users in continuous live sessions.

As future work, we would like to handle multiple con-

current actions by generalizing the ROI mechanism, incor-

porating recent segmentation and proposal technologies. In

addition, we would like to create long-ranged and hierarchi-

cal inferences across bouts of repeated actions based on the

activations of the hidden layers.

3027

References

[1] O. Azy and N. Ahuja. Segmentation of periodically moving

objects. In ICPR, 2008. 2

[2] J. Barbič, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hod-

gins, and N. S. Pollard. Segmenting motion capture data into

distinct behaviors. In Graphics Interface Conf., 2004. 2

[3] A. Briassouli and N. Ahuja. Extraction and analysis of mul-

tiple periodic motions in video sequences. PAMI, 2007. 2, 6,

7

[4] C.-Y. Chen and K. Grauman. Watching unlabeled video

helps learn new human actions from very few labeled snap-

shots. In CVPR, 2013. 2

[5] R. Cutler and L. Davis. Robust real-time periodic motion

detection, analysis, and applications. PAMI, 2000. 2

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 4

[7] L. Fei-Fei and A. Karpathy. Stanford’s cs231n class notes.

http://cs231n.github.io/neural-networks-2/, Jan 26, 2015. 3

[8] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier

neural networks. In AISTATS, 2011. 4

[9] D. Gong, G. Medioni, S. Zhu, and X. Zhao. Kernelized tem-

poral cut for online temporal segmentation and recognition.

In ECCV. 2012. 2

[10] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri.

Actions as space-time shapes. PAMI, 2007. 6, 7

[11] K. Grauman, G. Shakhnarovich, and T. Darrell. Inferring

3d structure with a statistical image-based shape model. In

CVPR, 2003. 2

[12] S. Guimaraes, R. Coelho, and A. Torres. Counting of video

clip repetitions using a modified bmh algorithm: Preliminary

results. In ICME, 2006. 2

[13] O. Gunay, B. Toreyin, K. Kose, and A. Cetin. Entropy-

functional-based online adaptive decision fusion framework

with application to wildfire detection in video. IEEE Trans.

on Image Processing, 2012. 5

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning

algorithm for deep belief nets. Neural Comput., 2006. 2

[15] M. Hoai, Z. Lan, and F. De la Torre. Joint segmentation and

classification of human actions in video. In CVPR, 2011. 2

[16] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.

Synthetic data and artificial neural networks for natural scene

text recognition. CoRR, abs/1406.2227, 2014. 2

[17] M. Jain, J. van Gemert, H. Jegou, P. Bouthemy, and

C. Snoek. Action localization with tubelets from motion.

In CVPR, 2014. 4

[18] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. PAMI, 2013. 2

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 2

[20] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 2

[21] I. Laptev, S. Belongie, P. Perez, and J. Wills. Periodic mo-

tion detection and segmentation via approximate sequence

alignment. In ICCV, 2005. 2

[22] Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical

invariant spatio-temporal features for action recognition with

independent subspace analysis. In CVPR, 2011. 2

[23] G. Li, X. Han, W. Lin, and H. Wei. Periodic motion de-

tection with roi-based similarity measure and extrema-based

reference selection. Consumer Electronics, 2012. 2, 6, 7

[24] A. Lpez-mndez, J. Gall, J. Casas, and L. V. Gool. Metric

learning from poses for temporal clustering of human mo-

tion. In BMVC, 2012. 2

[25] P. Matikainen, R. Sukthankar, and M. Hebert. Feature seed-

ing for action recognition. In ICCV, 2011. 2

[26] S. Oh, J. Rehg, T. Balch, and F. Dellaert. Learning and infer-

ring motion patterns using parametric segmental switching

linear dynamic systems. IJCV, 2008. 2

[27] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-

temporal object detection proposals. In ECCV. 2014. 4

[28] L. Pishchulin, A. Jain, C. Wojek, M. Andriluka,

T. Thormahlen, and B. Schiele. Learning people detection

models from few training samples. In CVPR, 2011. 2

[29] E. Pogalin, A. Smeulders, and A. Thean. Visual quasi-

periodicity. In CVPR, 2008. 2

[30] Y. Ren, B. Fan, W. Lin, X. Yang, H. Li, W. Li, and D. Liu.

An efficient framework for analyzing periodical activities in

sports videos. In Image and Signal Processing, 2011. 2, 6, 7

[31] E. Ribnick and N. Papanikolopoulos. 3D reconstruction of

periodic motion from a single view. IJCV, 2010. 2

[32] E. Ribnick, R. Sivalingam, N. Papanikolopoulos, and

K. Daniilidis. Reconstructing and analyzing periodic human

motion from stationary monocular views. CVIU, 2012. 2

[33] B. Sarel and M. Irani. Separating transparent layers of repet-

itive dynamic behaviors. In ICCV, pages 26–32, 2005. 6,

7

[34] S. Satkin and M. Hebert. Modeling the temporal extent of

actions. In ECCV, volume 6311. 2010. 2

[35] S. M. Seitz and C. R. Dyer. View-invariant analysis of cyclic

motion. IJCV, 1997. 2

[36] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose

recognition in parts from single depth images. In CVPR,

2011. 2

[37] K. Simonyan and A. Zisserman. Two-stream convolu-

tional networks for action recognition in videos. CoRR,

abs/1406.2199, 2014. 2

[38] Y. Sun, X. Wang, and X. Tang. Deep convolutional network

cascade for facial point detection. In CVPR, 2013. 4

[39] Y. Sun, X. Wang, and X. Tang. Hybrid deep learning for face

verification. In ICCV, 2013. 4

[40] X. Tong, L. Duan, C. Xu, Q. Tian, H. Lu, J. Wang, and J. Jin.

Periodicity detection of local motion. In ICME, 2005. 2

[41] J. Yang, Z. Shi, and Z. Wu. Automatic recognition of con-

struction worker activities using dense trajectories. In In-

ternational Symposium on Automation and Robotics in Con-

struction and Mining, 2015. 6, 7

[42] F. Zhou, F. D. la Torre, and J. K. Hodgins. Hierarchical

aligned cluster analysis for temporal clustering of human

motion. PAMI. 2

3028

