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Abstract

We seek to sense the three dimensional (3D) volumetric

distribution of scatterers in a heterogenous medium. An im-

portant case study for such a medium is the atmosphere. At-

mospheric contents and their role in Earth’s radiation bal-

ance have significant uncertainties with regards to scatter-

ing components: aerosols and clouds. Clouds, made of wa-

ter droplets, also lead to local effects as precipitation and

shadows. Our sensing approach is computational tomogra-

phy using passive multi-angular imagery. For light-matter

interaction that accounts for multiple-scattering, we use the

3D radiative transfer equation as a forward model. Volu-

metric recovery by inverting this model suffers from a com-

putational bottleneck on large scales, which include many

unknowns. Steps taken make this tomography tractable,

without approximating the scattering order or angle range.

1. Introduction

Scattering and refractive media are increasingly consid-

ered in computer vision [19, 20, 38, 39, 46, 48], typically

for observing background objects [47, 35, 56]. However,

in important cases, the medium itself is of interest. For ex-

ample, remote sensing of the atmosphere seeks to assess

the distribution of various airborne scatterers. Image data

is used to fit a physical model of light propagation through

the medium and recover scatterer properties. Similar efforts

use refractive propagation models to recover properties of

refractive media [6, 24, 25, 49, 55].

This paper seeks volumetric recovery of a three dimen-

sional (3D) heterogeneous highly scattering medium. Fur-

thermore, this work performs recovery in a very large scale:

the atmosphere embedded with clouds. The data comprises

images acquired from multiples directions [50], as illus-

trated in Fig. 1. Such a setup samples the scene’s light-

field [1, 3, 23, 26, 28]. 3D volumetric recovery is achieved

in various domains using tomography, finding wide use in
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Figure 1. A multi-angular imager passing over an atmospheric do-

main enables multi-pixel multi-view acquisition [16, 46]. Incom-

ing solar radiation is a boundary condition. A bidirectional re-

flectance distribution function characterizes the bottom surface.

Light scatters in the medium, generally multiple times, creating

a scatter field J . Integrating J and the boundary radiation using

corresponding attenuation, yields the radiance I (x,ω).

biomedical imaging [15, 52] and computational photogra-

phy [6, 29, 49, 53]. However, this work faces several im-

portant challenges. First, due to the large volumes involved,

our setup is passive, using the steady, uniform and col-

limated Sun as the radiation source. This is contrary to

most tomography setups, in which the source is control-

lable. Second, in most tomographic models, as in X-ray,

direct-transmission [34] forms the signal, while small-angle

scattering has been treated as a perturbation. In contrast, in

a medium as a cloud, the source and detector are generally

not aligned: scattering including high orders is the domi-

nant signal component.
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Previous works on scattering tomography focus on lim-

its of the scattering order: either diffusion [9, 21] or single-

scattering [2]. However, scattering objects, as clouds, are

complex: they can exhibit diffusion in their core, low-order

scattering in their boundaries and interaction with their sur-

rounding. To avoid reliance on such scattering order ap-

proximations, we use the 3D radiative transfer equation

(RTE) as the image formation model. However, avoid-

ing such scattering approximations significantly compli-

cates the model, jeopardizing the prospects of its inversion.

To make any type of tomography a practical tool, the in-

verse problem must be tractable. It is thus necessary to find

means to efficiently invert the model, as this paper derives.

The derived mathematical multi-scatter heterogeneous

model and algorithm principles can be applied to various

media. This paper makes further focus on clouds, which are

scattering media made of suspended water droplets. Clouds

reflect much of the Sun’s radiation out to space, while trap-

ping emitted terrestrial radiation. Clouds thus play a major

role in the Earth’s radiation budget and the understanding

of climate evolution [44], yet their influence over climate

change still has a large uncertainty [11]. There is thus mo-

tivation to sense clouds in detail.

Lidars and in-situ sampling provide local small-scale

data. Current optical remote sensing of Earth’s atmosphere

generally does not yield 3D volumetric mapping. Rather,

remote sensing methodology has largely assumed a plane-

parallel atmospheric geometry, with horizontally uniform

properties. This crude geometry limits recovery to simple

parameters [36, 37, 42]. Moreover, this approximation of

atmospheric structure causes biases of the retrieved param-

eters in most cases [14]. Our 3D volumetric recovery avoids

the plane-parallel assumption. The method is demonstrated

on images captured from a high altitude aircraft. It is also

validated using established atmospheric models coupling

fluid dynamics and cloud micro-physics.

2. Theoretical background

2.1. Image Formation Model: Radiative Transfer

Our image formation (forward) model is steady-state 3D

radiative transfer. A domain Ω ⊂ R
3 has boundary ∂Ω,

whose outward facing normal is ϑ (Fig. 1). At position x ∈
Ω and direction of propagation ω ∈ S

2 (unit sphere), the

radiation field is I (x,ω). Dependency on wavelength λ is

omitted, to simplify the explanation. Let ω · ϑ < 0 define

incoming radiation. The boundary condition is

I (x,ω) , IBC (x,ω) when ω · ϑ < 0, x ∈ ∂Ω. (1)

Radiative transfer satisfies [10]:

ω · ▽I (x,ω) = β (x) [J (x,ω)− I (x,ω)] x ∈ Ω, (2)

Figure 2. The RTE is a recursive interplay between J (x,ω) and

I (x,ω), given by Eqs. (3,4), thus spanning multiple scattering.

Numerically, this forward-model is iterated to convergence.

where β is the x-dependent extinction coefficient, while

J (x,ω) =
̟

4π

∫

S2

p (x,ω · ω′) I (x,ω′) dω′, (3)

is the source function (in-scattering term) [10], neglecting

visible light emission by the medium. Here ̟ is the sin-

gle scattering albedo and p (x,ω · ω′) is the phase function

at x. The phase function describes the fraction of energy

scattered from ω′ to ω by an infinitesimal volume. Equa-

tions (1–3) define a complete radiative transfer forward

model for an externally illuminated, non-emitting medium.

Integrating Eq. (2) along a specific direction ω results in

an integral form of the 3D RTE [10, 31]

I(x,ω) = IBC(x0,ω) exp

[

−
x0
∫

x

β (r) dr

]

+
x0
∫

x

J(x′,ω)β (x′) exp

[

−
x′

∫

x

β (r) dr

]

dx′. (4)

Here x0 is a point on the boundary (see Fig. 1). Equa-

tion (4) accumulates scattered radiance along a line of sight,

weighted by the corresponding extinction. By
∫ x′

x
f(r)dr,

we mean a line integral over a field f(x) along the segment

extending from x to x′. Numerically, this is preformed by

back-projecting a ray through the medium.

Equations (3,4) express a recursive interplay of the fields

J and I , as illustrated in Fig. 2. A recursion effectively

amounts to a successive order of scattering, or a Picard it-

eration [18]. Had J (x,ω) been computed only through in-

coming solar radiation, without recursion, the result would

have been a single scattering approximation.

2.2. Spherical Harmonics Discrete Ordinates

Numerically solving the radiative transfer is a balance

between speed and accuracy. Monte Carlo (MC) methods

can handle very complex media, including sharp changes in

optical parameters. This makes MC particularly accurate in

rendering of surfaces. In MC, radiometric quantities are at-

tained by random sampling the infinite domain of possible

light paths. This computational process is very slow, par-

ticularly for multi-view images. Faster rendering using less

random samples increases noise.
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Deterministic RTE solvers discretize the spatial and

angular domain. Discretization biases I (x,ω) towards

smooth solutions. Nevertheless, volumetric clouds are

smoother than surfaces, thus a computed smooth I (x,ω)
is consistent with the nature of cloud fields. Determinis-

tic solvers are thus prime tools in atmospheric rendering.

Moreover, when seeking many radiometric outputs of the

same scene, e.g. in multiple viewpoints, a model that solves

the RTE directly has favorable computational cost.

A very efficient, deterministic solver is the spherical

harmonic discrete ordinates method (SHDOM) [18, 31],

which relies on two principles. (i) A spherical harmonics

representation for the scatter field allows for efficient

computation of angular integrals. (ii) Discrete ordinates

models radiation flow along specific directions within the

domain. Ref. [41] compares atmospheric MC and SHDOM.

2.3. Air and Cloud Water Droplets

For air molecules and cloud water droplets, ̟ ≃ 1 in

visible light. Molecules follow the Rayleigh scattering law,

which uniquely determines the spatially invariant molecular

phase function [2] pR (ω · ω′). The Rayleigh scattering co-

efficient βR is analytically known per air density. Air den-

sity varies mainly with altitude z. With localized tornadoes

as exception, air density varies slowly in space and time,

and mapped over Earth using long established systems.

The change of refractive index between air and cloud wa-

ter droplets creates scattering, represented by a cloud scat-

tering coefficient βc(x) and phase function pc (ω · ω′). The

total extinction and phase function are respectively

β(x) = βc(x) + βR(z) (5)

p (x,ω · ω′) =
pc (ω · ω′)βc(x) + pR (ω · ω′)βR(z)

β(x)
.

(6)

The function pc is determined through Mie theory by the

droplet size distribution. The size varies mainly vertically,

within typical air masses. Vertical variations follow curves,

whose parameters are measured from satellites [45]. 3D

variations are thus mainly attributed here to βc(x).

3. Tomographic Recovery - Inverse Model

We seek to recover β(x) within the volume of a cloud.

This is equivalent to seeking βc(x), since βR(z) is known.

The recovery is based on images, with a complex image-

formation model. An efficient approach must be derived

for such a complex recovery to be contemplated. Note that

Eq. (4) depends on β(x) in two ways. One dependency

on β is explicit, through line integrals over straight back-

projected rays, that are easy to compute. The other depen-

dency is implicit, through J . The implicit dependency is

complicated and non-local: a change in β(x1) can cause a

change in J(x2). However, for a given, fixed J , it is easy

to compute, through (4), the radiance I and ∂
∂β

I . This ob-

servation provides a key for computationally realistic tomo-

graphic recovery, which is now explained.

3.1. Operator Notation

Following [5, 7], we use operator notations. For a

given boundary condition, the radiance forward mapping

I (x,ω) = I (β) is an operator that transforms an extinc-

tion field β into a radiation field I . Let us decompose this

mapping into two operators, I (β) = T (β)J (β). Here

J (x,ω) = J (β) is the in-scatter forward mapping from a

field β to a field J . The operation T (β) transforms an in-

scatter field J to a measurable radiance field by the simple

line integrals of Eq. (4).

An aperture function w ∈ Ω× S
2, defines collection of

radiance by a detector, over a spatial and angular support.

Measurements are thus an operator

MwI (β) = 〈w, I〉Ω, where 〈· , ·〉Ω ≡

∫

Ω

∫

S2

· · dωdx.

(7)

For an idealized single-pixel detector positioned at x∗, col-

lecting radiation flowing in direction ω∗,

MwI = 〈δ (x− x∗) δ (ω − ω∗) , I〉Ω = I (x∗,ω∗) . (8)

Consequently, the forward model is

Fw (β) = MwI (β) = MwT (β)J (β) . (9)

For numerical recovery, the sought field is discretized

β (x) =

Ngrid
∑

k=1

βkbk (x) , (10)

where {βk}
Ngrid

k=1 are discrete parameters, bk (x) is a unit-

less interpolation kernel and Ngrid is the number of grid

points. Let y be a measurement vector and ( · )T denote

transposition. Tomographic reconstruction is an estimation

of β =
(

β1, ..., βNgrid

)T
, that minimizes a data fit cost

β̂ = argmin
β

E [y,F (β)] . (11)

Solving the minimization problem utilizes the gradient of

E with respect to β. In Eq. (5), βR(z) is known, thus

[dE/dβ] = [dE/dβc]. The gradient is traditionally esti-

mated iteratively, which would require O (Ngrid) simula-

tions of the forward model, per iteration. The complexity is

exacerbated by the complicated and non-linear form of the

forward operator F . Differentiation using an adjoint RTE

was theorized in [32]. A theory and initial results of inverse

rendering using Pn approximation are shown in [54]. In
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Figure 3. Illustrating a surrogate function. (a) Computing the cost

function gradient has very high computational complexity, making

gradient based methods expensive. (b) The gradient of a surro-

gate function E [y,F (β|Jn)] is easily computed, driving the min-

imization forward by iterations. In each iteration a minimum of

the surrogate function is attained (Eq. 13), followed by its evolu-

tion (Eq. 12), using SHDOM and the newly found βn.

works that do not attempt 3D volumetric recovery, stochas-

tic gradients [22] are used in a homogeneous medium, while

numerical differentiation estimates unidirectional path inte-

grals [13, 30]. Despite seeking non-volumetric recoveries,

these works report prohibitive computational complexity.

3.2. Scalable Approach

To turn the hypothetical (11) to a feasible, tractable

method, we simplify [27] the computations. Instead of op-

timizing a function whose gradient is complex to compute,

we efficiently optimize β using surrogate functions that

evolve through iterations (Fig. 3). Let βn be an estimate

of β in iteration n. The first step computes the in-scatter

field, which corresponds to the current estimate βn

Jn = J (βn) . (12)

This is the computationally complex part, hence we do not

estimate its gradient. In fact, we hold Jn constant for a

while, despite evolution of β. Let F(β|Jn) = MT (β)Jn
serve as a surrogate function in which Jn is fixed. In the

second step, keeping Jn fixed, the following optimization

finds the next estimate of β

βn+1 = argmin
β

E [y,F (β|Jn)] . (13)

Data-fit using weighted least squares has the form

E [y,F (β|Jn)]

= 1
2
[y −MT (β) Jn]

T
Σ

−1
meas [y −MT (β) Jn] .(14)

Here Σmeas is the covariance matrix of the (uncorrelated)

measurements. The variance of measurement w is σ2
w.

Given measurement vector y of length Nmeas and Jn,

solving (13,14) is simple using gradient-based methods.

∂
∂βk

E [y,F (β|Jn)]

=
Nmeas
∑

w=1

1
σ2
w

[Fw (β|Jn)− yw]Mw

[

∂
∂βk

T (β)
]

Jn.(15)

For a detector defined in (8),

Mw

[

∂

∂βk

T (β)

]

Jn = Aw,k +Bw,k, (16)

where

Aw,k = ck(x0)IBC(x0,ω
∗) exp

[

−
x0
∫

x∗

β (r) dr

]

,

Bw,k =
x0
∫

x∗

Jn (x,ω
∗) [bk(x) + ck(x)β(x)]

× exp

[

−
x
∫

x∗

β (r) dr

]

dx. (17)

The factor ck(x) = −
∫ x

x∗
bk(r)dr can be pre-computed,

as it does not depend on the sought field. Given the gradi-

ent (15), Eq. (13) can be solved using gradient descent

βt+1
n = βt

n −∆ ·
∂

∂β
E [y,F (β|Jn)] , (18)

where t indexes a gradient-descent step, and ∆ is the step

size. After every Nβ gradient descent steps, the field J
is updated using SHDOM. Then, gradient-descent is re-

sumed, using the updated J , for another set of Nβ gra-

dient descents, and so on. Starting with an initial guess

β0, Eqs. (12,13,18) define an iterative optimization process.

Eqs. (12,13) are alternated repeatedly until convergence.

In optimization problems, particularly nonlinear ones,

the step size ∆ needs to be well set. As a preliminary rule

of thumb, we found that for stability, ∆ needs to be lower,

when the effective optical depth (not a 3D function) of a

cloud is lower. Optical depth is currently retrievable using

1D radiative transfer methods [36].

3.3. Computational Efficiency

The surrogate function enables a major reduction in com-

putational complexity, enabling for the first time, feasible

3D recovery. The most expensive part of the process is

3D rendering including multiple scattering, expressed by J .

Hence, J must be performed sparingly. Let there be NDOF

degrees of freedom (unknowns) to recover. In the pioneer-

ing work of Ref. [22], focusing on retrieval of a homoge-

neous anisotropic medium, each gradient descent operation

requires O(NDOF) operations of J (rendering operator).

In our optimization of β, a gradient descent of the sur-

rogate function uses a fixed Jn, hence no operation of J is

made, irrespective of NDOF = Ngrid. The operator J is

applied sporadically over time, with frequency that is un-

related to Ngrid. Hence, our approach accelerates the most

expensive part of gradient descent by O(Ngrid), facilitat-

ing optimization of O(105) unknowns in a short time. Our

method is thus scalable.
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Figure 4. [Top] A cumulus cloud field created by LES [33] is ren-

dered using SHDOM [18]. The clouds in the marked boxes are

analyzed by tomography; [Bottom] SHDOM-generated radiance

measurements, at five out of the nine viewing angles.

4. Limitations
We have so far not encountered basic limitations that are

attributed to the surrogate-function method. Limitations we

found in simulations at various scales appear to be due to

the basic definition of the problem of passive 3D recovery:

• It is a non-convex problem, having local minima to which

gradient descent converges. This can be mitigated by an in-

formed initial guess e.g., using a layered model retrieval or

an estimate of where the cloud’s outer boundary lies [8].

• At very high optical depth, the signal coming from deep

within the cloud is outweighed by sensor noise. This desen-

sitizes airborne/space-borne signals to cloud densities there.

We hypothesize that this problem may be countered using

good priors or regularization on cloud structure via fluid dy-

namics, and ground or in-situ measurements.

5. Simulations

5.1. Scene and Image Rendering

To test the approach in a realistically complex yet

controlled scene, we use a large eddy simulation

(LES) [12, 33] to generate a cloud field (Fig. 4). The

LES is a comprehensive tool used by atmospheric scientists

to computationally-create physically correct clouds [50].

The key output of the LES is liquid water content over a

3D grid. The clouds here hover above open ocean, whose

reflectance [51] is affected by a 10 m/s wind and a typical

chlorophyll concentration of 0.01 mg/m3 [40]. Here are

additional scene parameters.

Atmospheric Constituents: The droplet size is Gamma-

distributed, with effective droplet radius reff = 10µm

effective variance veff = 0.1, which are typical values [43].

Mie scattering theory converts these quantities into βc(x)
and pc (ω · ω′), the cloud phase function. We model

molecular scattering using a summer mid-latitude vertical

distribution [4], at altitudes ranging within z ∈ [0,20] km.

We use λ = 672 nm, where Rayleigh total optical thick-

ness [16, 17] of non-cloudy air is only ∼ 0.05.

Image Rendering: The top of the atmosphere is irradi-

ated by collimated sunlight, directed as described in Fig. 4.

An SHDOM code [18] which is popular in atmospheric

3D radiative transfer, emulates1 measurements similar to

those taken by the Multi-angle Spectro-Polarimeter Imager

(AirMSPI) [17] at 20 m resolution. The 9 viewing zenith

angles are ±70.5◦, ±60◦, ±45.6◦, ±26.1◦, and 0◦, where

± indicates forward/backward along the flight path. Images

as viewed from the instrument are rendered in Fig. 4. Pois-

son and quantization noise are included, according to the

specifications of AirMSPI [17].

5.2. Recovery Results

We analyzed two atmospheric volumes, marked by green

and red boxes in Fig. 4. Their respective dimensions are

0.72× 0.72× 1.44km3, 1.32× 2.22× 2.2km3. The anal-

ysis used ∆ = 200 and Nβ = 7 and open horizontal bound-

aries, expressing observation of an isolated cloud. Updates

of the surrogate function stopped when the cost function

declines to 1% of its initial value. MATLAB was used on

a 2.50 GHz Intel Xeon CPU. The rendering step, imple-

mented in FORTRAN, was parallelized on 8 cores.

The converged reconstructions are displayed in Figs. 5,6

along with the ground-truth and a 3D relative error map.

We quantify the recovery error using two measures defined

in [2]. For the cloud marked in green (Fig. 4), the relative

error in overall recovered mass is δ = (5± 0.1)%. The rel-

ative local error is ǫ = (33± 2)%. Fig. 7 displays ǫ in three

slices. The error is larger at more opaque regions within the

cloud. A scatter plot of true vs. estimated values is shown

in Fig. 7c: its correlation is ρ = 0.94. For the cloud marked

in red (Fig. 4), δ = 30%, ǫ = 70%, due to the loss of signal.

Here ρ = 0.76. These results evolve from an initialization

of no-cloud, with neither priors nor regularization on cloud

structure. Runtime analysis is displayed in Fig. 8.

1In [33], Fig. 4 is originally rendered using MC.
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Figure 5. The unknown extinction field is discretized to a 36× 36× 36 grid (46,656 unknowns). A volumetric comparison between the

true LES-generated cloud and the recovered cloud, based on initialization that assumed no cloud at all. It is evident from the relative error

map that the error is larger in the more opaque regions of the cloud.

Ground-truth extinction Recovered extinction

0

20

40

60

80

100

120

[km  ]
-1

[km]

[km]

[km]

[km]

[km]

[km]

Figure 6. The unknown extinction field is discretized to a 66× 111× 43 grid (315,018 unknowns). A volumetric comparison between the

true LES-generated cloud and the recovered cloud, based on initialization that assumed no cloud at all. The cloud is extremely optically

thick here, completely dissipating the signal (down to sensor noise level) in some areas.

6. Large-Scale Field Experiment

6.1. Real Data and Its PreProcessing

It is desirable to apply this approach to real data, cap-

tured in the huge outdoor field, from multiple remote

views [50]. In 2010 NASA initiated field campaigns with

AirMSPI [17] at 20 km altitude, aboard NASA’s ER-2 air-

craft. AirMSPI has an eight-band push-broom camera,

mounted on a gimbal for multi-angular observations over a

±67◦ along-track range. AirMSPI had undergone extensive

geometric and radiometric calibration, to enable highly ac-

curate quantitative measurements and subsequent products.

In a step-and-stare mode, the spatial resolution is 10m.

We use the 660nm channel of data from a Pacific flight2

done Feb/6/2013 at 20:27 GMT, around global coordinates

32N 123W. The flight path and three out of the nine view

angles are displayed in Fig. 9a. We examine an atmospheric

portion of 2.6 km× 3.4 km× 2.4 km in East-North-Up co-

ordinates.

Clouds move due to wind at their altitude, while

AirSMPI flies. Motion along-track is difficult to resolve

by images, since it aliases as parallax, globally affecting

altitude estimation. Motion across track was estimated by

aligning consecutive frames. This method yielded an as-

sessed cross-track motion of ≈ 37 km/h.

2https://eosweb.larc.nasa.gov/project/airmspi
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