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Abstract

In this paper, we consider the problem of estimating the

gaze direction of a person from a low-resolution image. Un-

der this condition, reliably extracting facial features is very

difficult. We propose a novel head pose estimation algo-

rithm based on compressive sensing. Head image patches

are mapped to a large feature space using the proposed ex-

tensive, yet efficient filter bank. The filter bank is designed

to generate sparse responses of color and gradient infor-

mation, which can be compressed using random projection,

and classified by a random forest. Extensive experiments

on challenging datasets show that the proposed algorithm

performs favorably against the state-of-the-art methods on

head pose estimation in low-resolution images degraded by

noise, occlusion, and blurring.

1. Introduction

The gaze of a person is important for a number of appli-

cations such as surveillance, human-computer interaction,

and psychophysical studies, to name a few. In a surveillance

system, the gaze of a person can be used to study interaction

between people and characterize objects of interest [29].

Gaze information has been used in human-computer inter-

action for controlling smart devices and helping collabora-

tion between humans and robots [26].

In this paper, we consider the problem of estimating the

gaze of a moving person in a crowded scene, where head

images are assumed to be obtained from a tracking or de-

tection algorithm. As the image resolution is usually low,

e.g., 50×50 pixels, it is especially challenging to estimate a

person’s gaze using their head image. A wide range of vari-

ations in skin color, hair styles, and head shapes exacerbate

the problem [27]. The problem is further complicated since

useful facial features cannot be reliably extracted from low-

resolution images. An efficient gaze estimation algorithm

is of great interest for practical applications, e.g., surveil-

lance and human-computer interaction. However, it is diffi-

cult, if not impossible, to infer gaze estimation from a low-

resolution image. Therefore, this problem, in practice, is

Figure 1. The proposed random projection forest algorithm. The

responses of the designed filter bank are sparse and contains the

color and gradient information of an image. Each node of a ran-

dom forest compresses the responses by random projection. An

SVM is trained using the compressed responses to split the data.

The head pose is estimated by merging the distribution of leaf

nodes.

posed as a head pose estimation task due to the high corre-

lation of these visual cues. In this paper, we estimate the

head pose in the discrete and continuous domains with clas-

sification and regression schemes.

In this work, we address the aforementioned challenging

problems by exploiting expressive representation of com-

pressive features and effective classification and regression

of the proposed random projection forest as shown in Fig-

ure 1. To obtain compressive features, we first design an

efficient filter bank that generates sparse high dimensional

responses. The filter bank contains multi-channel, multi-

scale, and multi-orientation box filters that capture color

and gradient properties from an image. Then, the high-

dimensional responses are compressed using random pro-

jection, preserving essential information of an image.

The random projection forest algorithm is based on the

compressive features and a random forest [4]. The compres-

sive features alone are not discriminative descriptors due to

the generative framework of compressive sensing. When

a random forest is constructed with compressive features

where each node chooses the best random projection ma-

trix based on the impurity measure (e.g., information gain),

the whole classifier is likely to be more discriminative. In

addition, when the random projection matrix satisfies the

restricted isometry property (RIP) condition [8], the infor-
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mation used to split the data is preserved at each node.

Furthermore, the sparse form of a random projection ma-

trix induces small correlations between trees by decreasing

the probability of the same measurement being made twice.

Therefore, the random projection forest is likely to have low

generalization errors by strengthening the discriminability

of each tree while weakening the correlation between trees.

On the other hand, a random forest has been successfully

used in numerous problems, e.g., classification, regression

and clustering.

Extensive experiments on five challenging benchmark

datasets are carried out to evaluate the proposed algorithm

against the state-of-the-art methods for head pose estima-

tion. The proposed algorithm performs well with a classifi-

cation accuracy of 98% on the HIIT dataset and regression

accuracy of 1.1◦ on the CMU Multi-PIE dataset where each

frame is processed within a few milliseconds. The proposed

approach performs well against other algorithms on low res-

olution images, (where each head image size is smaller than

50× 50 pixels) and degraded images with noise, occlusion,

and blurring. We also demonstrate that the proposed algo-

rithm with a hierarchical structure using a random forest is

more accurate and robust than alternative approaches.

2. Related Work

We present an overview of head pose estimation ap-

proaches in seven categories: appearance template, detector

array, nonlinear regression, manifold embedding, flexible

model, geometric, and tracking methods [22].

Appearance template methods divide training head im-

ages into a finite number of poses and generate prototypes

for estimation with an SVM classifier [23]. Since two im-

ages of the same person in different poses are known to be

more similar than images of different people in the same

pose, such methods do not perform well [22].

Detector array methods [32] train multiple detectors for

different pose estimation. However, it is difficult to resolve

the situation in which two or more detectors identify the

same head image as different poses. In addition, such clas-

sifiers can be easily biased due to unbalanced positive and

negative training samples.

Head pose estimation can be posed as learning a regres-

sion function from the space of image features to 2D or 3D

parameters. In [9], a mapping from the space of depth fea-

tures to the corresponding head pose is learned using ran-

dom regression forests. However, regression methods are

less effective for low-resolution images as two images of

the same person with different poses may be mapped closer

than images of different people with the same pose [27].

Manifold embedding algorithms assume that head im-

ages form a low-dimensional manifold, on which similar-

ity is measured for pose estimation. Recently, Tosato et

al. [30] demonstrated state-of-the-art head pose estimation

results using manifold embeddings and a weighted array of

descriptors computed from overlapping patches, where each

is described by a covariance matrix of image features. How-

ever, this method is computationally expensive.

Other approaches, such as flexible models, geometric

methods, and tracking based algorithms are not closely re-

lated to this work (see references in [22]). Flexible models

and geometric methods are suitable for analyzing larger im-

ages, in which facial structures or features can be extracted

reliably. Tracking based algorithms determine head poses

from consecutive observations, and the proposed method

can be easily combined with such approaches.

Recently, Ho and Chellappa [15] presented a head pose

estimation algorithm based on randomly projected dense

SIFT descriptors and support vector regression. However,

this method operates on larger sized images (as SIFT fea-

tures need to be reliably extracted) with a random projection

method proposed in [1] which is denser than the random

projection approach presented in this work. Furthermore, it

is computationally expensive to extract dense SIFT features.

3. Proposed Algorithm

In compressive sensing, the original signal x is com-

pressed as follows:

y = Ax, (1)

where A is an m × n matrix with m ≪ n and y is a com-

pressed signal. In order to preserve the essential informa-

tion of x using compressive sensing, x must be a sparse

signal and the matrix A has to satisfy the RIP condition [8].

It is well known that an image can be represented by sparse

coefficients in the wavelet domain [5] and the low dimen-

sional vector y contains essential information of an image.

We note that we do not use discriminative features (e.g.,

HOG or SIFT) as low resolution images are considered in

this work. In addition, it is computationally expensive to

extract such features. Instead, we use a high dimensional

feature space that encompasses all possible combinations

from the proposed filter bank, which is designed to gen-

erate sparse responses efficiently. The filter responses are

compressed via random projections and utilized for pose es-

timation using a random forest.

3.1. Efficient Filter Bank

We propose a multi-channel, multi-scale, and multi-

orientation box filter bank that captures the color and gradi-

ent information from an image. The channels consist of the

color C = {Ii|i ∈ C}, gradient magnitude Imag , and gra-

dient orientation Iori, where C consists of gray, RGB, HSV,

and YCbCr color spaces. The filter bank contains two types

of box filters, FC and FG, which are designed to collect

color and gradient responses, respectively, as illustrated in

Figure 2.

For the color filter response, FC is parameterized by its
width w, height h, and γ, which indicates the color channel.
For a w×h input image, the value at (x, y) of a w×h filter
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Figure 2. Four responses of the proposed filter bank. The filter

bank is applied to each channel of the input image. The first two

blue boxes are the filters from the color channel and the others

extract gradient information. The filter bank contains all possible

sizes inside the input image. Different θ and φ are represented by

arrows and shaded regions in boxes, respectively.

is defined as

F
C
w,h,γ(x, y) =

1

wh
×

{

1, if 1 ≤ x ≤ w, 1 ≤ y ≤ h, Iγ ∈ C

0, otherwise,

(2)

where w and h represent all possible widths and heights of

a box, i.e., 1 ≤ w ≤ w and 1 ≤ h ≤ h. The convolved

image is sparse in the wavelet domain. By concatenating all

vectorized filter responses, we obtain a high dimensional

descriptor of an image. However, computing all possible

filter responses is computationally expensive since the num-

ber of possible boxes for a channel of 50×50 pixels already

exceeds 107. A compressed representation of the filter re-

sponses is described in the next section.

For the gradient filter response, FG considers the ori-

entation of a gradient θ and an angle φ that quantizes the

orientation. The value at (x, y) of a w × h filter is defined

as

F
G
w,h,θ,φ(x, y)=

1

Z
×











1, if 1 ≤ x ≤ w, 1 ≤ y ≤ h,

θ − φ ≤ Iori(x
′, y′) < θ + φ,

0, otherwise,

(3)

where (x′, y′) is the location of (x, y) in the image and Z
is a normalization constant which is equal to the number

of nonzero elements in the filter response. The parameters

vary in all possible ranges, i.e., 0 < θ ≤ 2π and 0 < φ ≤ π,

and w and h are the same as in the case of FC . This fil-

ter is aimed to collect the averaged magnitudes of gradi-

ents within a certain orientation range. It resembles the Ga-

bor filter bank but is more effective. The Gabor filter bank

suffers from the curse of dimensionality due to dense filter

responses. Typically, this issue is resolved by downsam-

pling the magnitude responses of the Gabor filter bank us-

ing a grid or a feature selection scheme [28]. Nevertheless,

the concatenated vector of the downsampled magnitude re-

sponses is still high dimensional. Usually, their dimension

is further reduced by a subspace projection technique, such

as principal component analysis (PCA) or linear discrim-

inant analysis (LDA), with some loss of information. In

the next section, we describe an efficient way to reduce the

dimensionality of the filter responses while preserving the

essential information.

3.2. Compact Representation of Filter Responses

The filters FC and FG generate sparse responses as

shown in Figure 2. By concatenating all these responses

into a vector, we represent an image in a high dimensional,

sparse feature space. We apply compressive sensing to re-

duce the dimensionality of these filter responses using (1).

Specifically, we adopt an m × n sparse random projection

matrix [19] as follows:

aij =
√
s×







1, with probability 1

2s
,

0, with probability 1− 1

s
,

−1, with probability 1

2s
,

(4)

where s ∈ o(n) and A = [aij ]. By setting s = n/ log(n) ∈
o(n), the expected number of nonzero elements per row of

the matrix A is log(n). Therefore, the actual number of

calculated filter responses is exponentially decreased. This

enables us to bypass computing all filter responses while

preserving the essential information. The random matrix A
needs to be computed only once off-line and is fixed while

testing a new image. As a result, an element of the com-

pressed vector is a weighted linear combination of random

box filter responses. Note that when only FC is used, the

process is similar to the generalized Haar-like features [31].

By representing images with compressed vectors, we are

able to carry out classification or regression tasks. However,

features projected by a single random projection may not be

discriminative or robust, as shown in Section 4. This is be-

cause a random projection matrix is designed with a random

basis that does not take the training data into account. We

address this issue with the proposed random projection for-

est algorithm that hierarchically selects random projection

matrices which maximize the impurity measure.

3.3. Random Projection Forest

A random forest is an ensemble of decision trees where

each node of a tree has its own split function. The split

function divides the input data into two or more partitions

which are delivered to each child node. During the training

stage, a training set is fed to each tree and the leaves store

the distribution of the samples. Each non-leaf node stores

a split function which optimizes the impurity measure. In

the test stage, an example traverses each random tree and

reaches a leaf node. The probability distribution over the

classes of poses is computed by taking the average of the

distribution for all reached leaf nodes in the random forest.
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Figure 3. An example of a split function in a node. This node is

trained to split images ranging from −90◦ to 90◦ of the yaw angle

into two subsets: [−90◦, 0◦) and [0◦, 90◦]. The middle column

shows responses selected by row vectors of A and the right column

shows the overall responses selected by A. The responses of color

and gradient filters are represented with painted rectangles and ar-

rows, respectively. Each red and blue response corresponds to +1

and -1 of the random projection matrix. Darker boxes and longer

arrows represent stronger responses. The gradient responses that

are larger than a threshold are shown for better visualization.

A random projection forest integrates a random forest

with random projection. We perform random projection

at each node and split the training data based on the com-

pressed vector. Each node selects a random projection ma-

trix given the input data that maximizes the impurity mea-

sure to make the tree more discriminative. It does not only

generate a better basis to describe the training data but also

makes the tree more robust to the bias in a single random

projection matrix. Note that a random projection is a gen-

eralized representation of the split functions that have been

widely used: each node splits the data using a small portion

of input variables, or using a linear combination of them,

which are special cases of the linear mapping in (1).

Figure 3 shows examples of selected filters by a node of

the trained random projection forest. In this case, the node

is trained to split head poses into left and right. Example

combinations of selected filters are shown in the left col-

umn. The red and blue boxes or arrows represent +
√
s and

−√
s terms in the random projection matrix, respectively.

For each head pose, selected filters generate different re-

sponses around the face, hair, neck, and background region

as shown in the middle column. As a result, the combination

of color filters for the first image yields positive value (re-

sponses of red boxes are strong) while the last image yields

negative value (response of blue box is relatively strong).

Gradient filters also generate distinguishable responses for

each head pose. The responses from the first image are neg-

ative (blue arrows) while the last image yields positive re-

sponses (red arrows) from different box filters. The right

column shows all selected filters in the node. The color fil-

ters show symmetrical responses for the left and right head

pose images. The gradient filters generate responses along

the head shape and they are informative since the response

is different at the certain location of each head pose image.

Another important aspect of this work is that random

projections also help lower the generalization error of the

random forest. It has been shown that the generalization er-

ror bound of a random forest is ρ(1 − s2)/s2, where ρ is

the average correlation between trees and s is the strength

of the trees [4]. To minimize the maximum generalization

error, the correlation between trees needs to be minimized

and the strength of trees has to be maximized. However,

when we strengthen a tree, we also increase the correlation

between different trees. In order to strengthen a tree, we

need a large number or combination of input variables to

learn better split functions. Simultaneously, the correlation

between trees increases, as trees now have overlapped re-

dundant information. Therefore, the number of considered

variables or the number of linear combinations have been

empirically chosen. In contrast, we use the random projec-

tion matrix which satisfies the RIP condition as the linear

mapping, and analyze the proposed algorithm below.

Correlation Between Trees. As each node compresses the

input data and splits them, it is important to obtain diverse

representations of the compressed data to decrease the cor-

relation between trees without losing important details from

the input data. The random projection approach yields di-

verse representations of compressed data, which we can

credit to the use of a random basis. Since the linear projec-

tion matrix described in (4) has 3mn different representa-

tions and n is the number of filter responses, which is larger

than 107, the probability that a different node has the same

basis is negligible.

Strength of Trees. Trees with random projections that sat-

isfy the RIP condition are always stronger, as the relative

distance between samples, i.e., the information for the split,

is preserved in each node. In other words, once the RIP

condition is met, it is not necessary to measure an arbitrarily

large number of input variables to strengthen the tree. Thus,

for high dimensional sparse signals, the trade-off between

the strength and the correlation of trees can be resolved by

random projections. As demonstrated in experiments, this

property can increase the discriminative capability of a ran-

dom forest.

3.4. Random Projection Forest for Pose Estimation

Based on randomly projected compressive features at a

tree node, a split function is trained using an SVM. By

using an SVM, we can split the data with the maximum

margin while efficiently evaluating test samples using the

trained hyperplane. Three different types of SVMs (Fig-

ure 4) are considered for classification and regression. For
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(a) (b) (c)

Figure 4. Three split function candidates considered in this pa-

per. In this example, twelve training samples with three different

classes reach the node. To incorporate multi-class SVMs into a

forest, three options are considered. (a) Training multi-class SVM

and dividing data by all hyperplanes. (b) Training multi-class

SVM and dividing data by one of the hyperplanes. (c) Training

binary SVM and dividing data by the hyperplane.

the discrete head pose estimation, where a small number of

discrete head poses are considered, we use the multi-class

SVM in Figure 4(a). On the other hand, for the continuous

head pose estimation, a binary SVM is chosen, as multi-

class SVMs are often unable to stably divide many classes

at once. The benefit of the split is measured by the informa-

tion gain.

During the training phase, a tree is grown until one of the

following conditions is met: the tree reaches a pre-defined

maximum depth, the number of samples in the node that

comes from the same class exceeds 99%, or the number of

samples in the node gets too small. In this paper, we limit

tree depth to 10 levels, and each node is required to have a

minimum of 10 samples.

The same forest is used in the test phase. A test sam-

ple reaches to a single leaf node for each tree. A posterior

of the forest is calculated by averaging the stored posterior

at reached leaf nodes. For classification, the head pose is

classified as the class with the maximum probability. For

regression, the head pose is estimated by averaging the pos-

terior of the forest.

4. Experiments

We use the HIIT [30], QMUL [23], and QMUL with

background datasets [30] for head pose classification ex-

periments. In addition, we use the CMU-MultiPIE [12] and

FacePix [20] datasets for head pose regression evaluations.

HIIT Dataset. The HIIT dataset contains 24,000 images

with 6 head poses in a static background with no occlu-

sions. The dataset is challenging because it consists of im-

ages from different datasets (e.g., QMUL [23] and CMU

Multi-PIE [12]) with large variations in appearance.

QMUL Dataset. The QMUL dataset contains 15,660 im-

ages with 4 head poses at different illuminations with oc-

clusions. The QMUL dataset with 3,099 additional back-

ground images is referred as QMULB in this paper. Both

datasets are challenging as the images are acquired in air-

port terminals with heavy occlusions and large crowds.

CMU-MultiPIE Dataset. The images of the the CMU-

MultiPIE database are acquired from 337 subjects with dif-

Table 1. Classification accuracy using the corrected dataset:

Frobenius and CBH denote two algorithms from [30].

Original dataset Corrected dataset

Frobenius CBH Frobenius CBH

HIIT 95.3% 96.5% 95.3% 95.7%

QMUL 93.2% 94.3% 94.3% 94.9%

QMULB 90.6% 91.2% 92% 92.2%

ferent poses from −90◦ to 90◦ with 15◦ intervals and 13

yaw directions. For the experiments, we use all images of

6 expressions under the frontal light sources. We note these

high-resolution images have been used in the past for other

head pose estimation methods. The head region of each im-

age must be cropped and aligned using manually annotating

facial features. In this work, we consider more realistic sce-

narios. We crop 360× 360 center pixels of the head images

and downsample it to 50 × 50 pixels. Due to the varying

height and facial shape of each person, the cropped images

are not aligned, which is more suitable for real world appli-

cations. We use images from a randomly selected 50% of

the subjects for training and the others for tests. This dataset

is challenging as the images are acquired from a large num-

ber of different subjects with different expressions.

FacePix Dataset. This dataset contains 30 subjects and 181

images for each person (one image per yaw degree from

−90◦ to 90◦). There are total of 5,430 aligned head im-

ages with static backgrounds. We perform the leaving one

subject out evaluation on this dataset. The dataset is chal-

lenging due to fine intervals in the yaw orientation.

We identify misclassified images in the HIIT and QMUL

datasets and manually correct these labels (the corrected

ground truth data will be released). Table 1 shows classi-

fication accuracy using the original and corrected datasets.

4.1. Analysis of the Proposed Algorithm

We examine the properties of the proposed method using

different channels, random projection matrices, and random

projection forest settings.

Effect of Different Channels. The color channels we con-

sider are based on gray, RGB, HSV, and YCbCr. We have

tested all combinations and report the results of four com-

binations in Table 2. Among all color channels, the gray

color space plays the most important role. However, better

results can be attained when filters from all color channels

are utilized (which can be computed efficiently). Note that

the best accuracy is obtained by combining the color chan-

nel and the gradient channel. To demonstrate the discrim-

inability of the proposed filter bank, we use HOG features

to represent head images. The classification accuracy with

the HOG representation is 92% on the HIIT dataset at sig-

nificantly higher computational cost.

Effects of Random Projection Matrices. The random pro-

jection matrix in (4) projects each sample from R
n to R

m
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Table 2. Effects of different channels. Color: Gray + RGB + HSV

+ YCbCr. All: Color + Gradient.

Channel Gray Color Gradient All

HIIT 94.1% 96.8% 94.6% 97.6%

QMUL 91.4% 92.1% 91.6% 94.3%

QMULB 84.7% 89.8% 82.9% 92.2%

Compressed dimension
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5 trees

Single tree

Figure 5. Estimation accuracy with respect to the dimension of

the compressed vector for each node (HIIT dataset).

with a small number of nonzero elements governed by the

parameter s. When the dimensionality of the projected do-

main is too small or the matrix is too sparse, the RIP con-

dition does not hold. We show how the proposed algorithm

performs with different values of m and s for the random

projection matrix.

The head pose estimation accuracy at different values of

m is shown in Figure 5. It shows that the proposed algo-

rithm performs well in the 250-dimensional feature space.

For comparisons, we apply PCA to reduce the dimensional-

ity of features. The estimation accuracy is only about 50%

on the HIIT dataset when PCA reduces the dimensionality

of 50× 50 pixels of head images to a 250 dimension.

We carry out experiments with denser random projection

matrices by varying s. As s increases, the random projec-

tion matrix gets denser, which measures a larger number

of rectangular filter responses. Figure 3(a) in the supple-

mentary materials shows classification accuracy at different

values of s when m is 250. We note that the proposed al-

gorithm performs well using feature vectors with only four

nonzero elements.

Effects of Random Projection Forest Parameters. We

consider four parameters of a forest: the number of trees,

the number of guesses to find the one that maximizes the

information gain at each node, the compression rate at each

node, and different ways to split the data at each node.

Figure 3(b) in the supplementary materials shows the ef-

fect of the number of trees and guesses where the average

accuracy and error bars are computed from ten independent

runs. High accuracy (and low variance in accuracy) is ob-

tained with 15 trees and 10 guesses. This is a result of each

node discovering a better split function when the number

of trees and guesses are sufficiently large. This is another

indication that the proposed forest outperforms a tree.

Table 3. Classification accuracy on the HIIT, QMUL, and

QMULB datasets at different image sizes. [30]-a and [30]-b are

methods proposed by [30] based on the Frobenius distance and

the CBH distance, respectively. The results of [23] and [29] are

from their paper.

Dataset Size [23] [29] [30]-a [30]-b Proposed

HIIT

15× 15 - - 82.4% 84.6% 97.6%

25× 25 - - 89.6% 90.4% 97.6%

50× 50 - - 95.3% 95.7% 97.6%

QMUL

15× 15 - - 59.5% 59.8% 94.1%

25× 25 - - 82.6% 83.2% 94.3%

50× 50 82.3% 93.5% 94.3% 94.9% 94.3%

QMULB

15× 15 - - 54.5% 57% 91.9%

25× 25 - - 76.5% 76.9% 92.1%

50× 50 64.2% 89% 92% 92.2% 92.2 %

Figure 5 shows the effect of the number of trees and com-

pression rate. The average accuracy and the variance are

obtained from ten independent runs. When the dimension

of the compressed vector is increased, the accuracy is im-

proved but saturated after 250 dimensions. The results show

that the forest achieves higher accuracy and lower variance

in accuracy compared to the case of a single tree.

For a classifier at each node, we use both a linear SVM

and a radial basis function (RBF) SVM. When using 50×50
pixel images, the RBF SVM outperforms the linear SVM by

about 5% for all datasets. The parameters of an SVM are

estimated by 5-fold cross validation to avoid overfittting.

The above experimental results show that the proposed

random projection forest algorithm is insensitive to param-

eter changes and sensible values can easily be determined

for accurate head pose estimation.

4.2. Evaluation of Head Pose Estimation Methods

Head Pose Classification. We evaluate the proposed algo-

rithm against state-of-the-art head pose classification meth-

ods [23,29,30] in regard to image scale variation, noise, oc-

clusion, blurring, and computational time. Table 3 summa-

rizes the performance of head pose estimation methods on

three datasets with different image sizes. Figure 6 shows the

overall accuracy with respect to image sizes. Some confu-

sion matrices for the HIIT and QMULB datasets are shown

in Figure 7 and Figure 8, respectively. Overall, the pro-

posed algorithm performs robustly with respect to size vari-

ation against the other methods. The proposed algorithm

achieves almost the same estimation accuracy, for example,

97.6% on the HIIT dataset until the image size is reduced to

10× 10 pixels. We note that it has been shown that estimat-

ing gaze direction from low-resolution images of 10 × 10
pixels can be achieved when provided feature vectors of

head motion in videos [25]. However, this requires video

inputs, and the method has not been quantitatively evalu-

ated in terms of precision and recall on benchmark datasets.

We note that accuracy from the method in [30] decreases

rapidly when the image size is reduced below 50 × 50 pix-
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Figure 6. Classification accuracy at different image size. Frobe-

nius: the Frobenius norm based method from [30]. CBH: the CBH

norm based method from [30].

Figure 7. Confusion matrices of head pose estimation results on

the images of 50 × 50 pixels from the HIIT dataset (frnt: front,

rght: right, frrg: front right, frlf: front left).

Figure 8. Confusion matrices of head pose estimation results on

QMULB dataset at different image sizes. (bg: background)

els, and does not operate when the image size is smaller

than 15× 15 pixels (using the provided code).

The confusion matrices of the QMULB dataset show that

the proposed algorithm is capable of estimating head poses

while filtering out 90% of background images. Based on

this observation, we estimate head poses (including back-

ground) on other datasets such as the Towncentre dataset

[3] and the PETS2009 dataset [10] while the proposed al-

gorithm is trained using the QMULB dataset. These dat-

sets are challenging to estimate head poses because cam-

era angles and lightning conditions are different from the

QMULB dataset. We train the sliding-window based state-

of-the-art detector [7] for the head detection. Finally, head

poses are estimated as shown in Figure 9. The results show

that false positives are effectively removed and head poses

are fairly well estimated by the proposed algorithm.

We report the computational time required for head es-

timation on an image of 50 × 50 pixels. For the methods

proposed in [30], the Frobenius norm based method and the

CBH norm based method take 550 ms and 1,689 ms per

image, respectively. In contrast, the proposed method takes

Figure 9. An example of head pose estimation result on the Town-

centre dataset. Red arrows indicate the estimated direction. Its

confidence score is written near the box. Dashed-line rectangles

are the detections that are estimated as the background (i.e., false

positive) by the proposed algorithm (see supplementary materials

for more results).
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Figure 10. Head pose estimation accuracy at different noise lev-

els. Since there are six classes, a random classifier can achieve an

accuracy of 16.7% on average. Hence, we do not plot the results

using methods from [30] when σ is larger than 50 (HIIT dataset).
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Figure 11. Head pose estimation accuracy at different occlusion

settings (HIIT dataset).

only 10 ms per image, using 15 trees with parallel process-

ing. All processing is done on a computer with a 3.3 GHz

CPU. Overall, the proposed algorithm is about 170 times

faster than the CBH norm based method [30].

We analyze the performance of each method when facing

noisy test images. We add Gaussian noise with kernel width

σ to each test image of 50 × 50 pixels and ensure that the

intensity of the corrupted pixel value is between 0 and 255.

Figure 10 shows that the proposed method performs better

than other methods against large image noise.

We evaluate head pose estimation methods and analyze

how they perform when the input images are occluded. The

occluded images are generated in five settings as depicted
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Figure 12. Head pose estimation accuracy with blurry images

(with 5× 5 Gaussian filter of different width on the HIIT dataset).

in Figure 2 of the supplementary materials: randomly gen-

erated (1) one 10 × 10 rectangle, (2) two 10 × 10 rectan-

gles, (3) three 10 × 10 rectangles, (4) one 15 × 15 rectan-

gle, and (5) two 15 × 15 rectangles. The intensity value of

each pixel in the occluded region ranges between 0 and 255.

Figure 11 shows that our method performs well against [30]

when faced with occluded images. This can be attributed to

the fact that, unlike the methods based on holistic represen-

tations, the proposed algorithm obtains information from

multiple local patches, thus allowing good performance on

images that are partially occluded.

We evaluate whether the proposed algorithm performs

well on blurry low-resolution images as shown in Figure

12, where the images are degraded with a 5 × 5 Gaussian

kernel with different width, σ. Overall, the proposed al-

gorithm performs well with different settings. In contrast,

the accuracy of the manifold method [30] decreases signif-

icantly. With a small Gaussian kernel width of one pixel,

the accuracy decreases by 65%. When the kernel width is

larger than one pixel, the manifold method works as a ran-

dom classifier, i.e., the accuracy is 16.7% for six classes.

Head Pose Regression. We compare the proposed algo-

rithm with the state-of-the-art head pose regression meth-

ods. Table 4 and 5 summarize the performance of head pose

regressors on the CMU Multi-PIE dataset and the FacePix

dataset, respectively. We use the same parameters as those

in the classification task. The mean absolute error (MAE)

between the estimated head pose and ground truth head pose

in degree is computed for each method. Overall, the pro-

posed algorithm performs favorably against the other meth-

ods for head pose regression.

We note that the CMU Multi-PIE and FacePix datasets

are not developed specifically for pose estimation, and ex-

isting methods in the literature use different numbers of sub-

jects and images for experiments. For comparison, we re-

port the number of subjects and images used for the eval-

uation on head pose regression in Table 4. The proposed

algorithm is evaluated on more subjects and images than

any other approaches. Overall, the proposed algorithm per-

forms favorably against other methods.

For the FacePix dataset, the methods [11, 21] use the

Table 4. Regression accuracy on the Multi-PIE dataset. # S: num-

ber of subjects used in the experiment. # I: number of images used

in the experiment. MAE: Mean absolute error in degrees.

[13] [16] [24] [18] [14] Proposed

# S 144 336 30 337 337 337

# I 2,700 5,648 540 8,762 32,682 32,682

MAE 5.31◦ 4.33◦ 4.12◦ 2.99◦ 1.25◦ 1.12
◦

Table 5. Regression accuracy on the FacePix dataset. MAE: Mean

absolute error in degrees.

[17] [2] [11] [21] [6] Proposed

MAE 6.1◦ 3.96◦ 2.75◦ 2.74◦ 2.71◦ 2.38
◦

same evaluation scheme; the leave-one-out cross validation

on the original dataset, that we report in this work. In [17],

the yaw interval of the dataset is set to 2 degrees (instead

of 1 degree) and 5 subjects are used for training, leaving

25 subjects for tests. The method [2] is trained with a

3D dataset and evaluated on the yaw degrees ranging from

−45◦ to 45◦. The approach [6] uses the yaw ranging from

−45◦ to 45◦ with 15◦ interval for experiments where 5 sub-

jects are used for training and 25 subjects for testing. In con-

trast, the proposed algorithm performs favorably against the

other methods, based on an evaluation of the entire dataset

(i.e., 5,430 images with yaw degree from −90◦ to 90◦ and

leave-one-out cross validation). As the source code of the

previously mentioned methods are not available to the pub-

lic, we are unable to carry out experiments using noisy or

occluded images.

5. Conclusions

In this paper, we propose a fast and accurate head pose

estimation algorithm by exploiting compressive features

and a random projection forest. Compressive features are

obtained by compressing the responses of a large filter

bank that captures the color and gradient information of

an image. The proposed random projection forest algo-

rithm effectively splits the compressive features for effec-

tive head pose estimation. In addition, the proposed algo-

rithm achieves high accuracy with a fraction of the running

time. Extensive experiments on challenging benchmark

datasets show that the proposed algorithm performs favor-

ably against the state-of-the-art methods on low-resolution

images degraded by noise, occlusion, and blurring.
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