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Abstract

Hyperspectral imaging usually lack of spatial resolution

due to limitations of hardware design of imaging sensors.

On the contrary, latest imaging sensors capture a RGB im-

age with resolution of multiple times larger than a hyper-

spectral image. In this paper, we present an algorithm to

enhance and upsample the resolution of hyperspectral im-

ages. Our algorithm consists of two stages: spatial upsam-

pling stage and spectrum substitution stage. The spatial up-

sampling stage is guided by a high resolution RGB image of

the same scene, and the spectrum substitution stage utilizes

sparse coding to locally refine the upsampled hyperspectral

image through dictionary substitution. Experiments show

that our algorithm is highly effective and has outperformed

state-of-the-art matrix factorization based approaches.

1. Introduction

Hyperspectral imaging acquires spectral characteristics

of a scene through capturing a number of contiguous nar-

row band images. It has been a promising tool for applica-

tions in geosensing, cultural heritage, and various computer

vision tasks [30, 21, 13]. Due to the hardware design lim-

itations [9], hyperspectral sensors often have a low spatial

resolution, but very fine spectral resolution. In addition, due

to reduced incoming illumination by narrow band filters, it

usually has low signal-to-noise ratio. Consequently, a hy-

perspectral image is noisy if a long exposure time is not

guaranteed.

Compared with hyperspectral sensors, latest imaging

sensors capture a RGB image with resolution of multiple

times larger than a hyperspectral image and with higher

signal-to-noise ratio given the same exposure time. Be-

cause of these attractive properties, various approaches have

been proposed to fuse a low-resolution hyperspectral im-

age and a high-resolution RGB (or gray scale) image to re-

construct a high-resolution hyperspectral image as demon-

strated in [12, 2, 9]. In this paper, we follow this direction

and introduce a new algorithm which outperforms state-of-

the-art approaches for hyperspectral image upsampling.

Our algorithm consists of two stages: spatial upsampling

stage and spectrum substitution stage. The spatial upsam-

pling stage increases the spatial resolution of a hyperspec-

tral image through the guidance of the high resolution RGB

image. This is achieved by estimating an optimal linear

combination of exemplar patches for super-resolution re-

construction. The exemplar patches couple hyperspectral

and RGB images with identical structures learnt from train-

ing examples. The spatial upsampling stage not only en-

hance spatial resolution, but also reduce image noise in a

hyperspectral image. In the spectrum substitution stage, we

assume a local region of a scene contains limited number of

materials, and adopt the sparse coding [16] to learn a local

spectrum dictionary. We evaluate the upsampled hyperspec-

tral image after the first stage using the learnt local spectrum

dictionary. The optimal linear combination of spectrum ba-

sis functions with sparse coefficients which best describes

the upsampled hyperspectral and RGB images is used to re-

construct our final output. In short, the first stage estimates

a proxy solution which unmix the hyperspectrum observa-

tion within a pixel using the guidance from a high resolution

RGB image, and the second stage refines the spectrum of

the proxy solution based on the limited materials assump-

tion within a local region of a scene.

We have evaluated our proposed algorithm extensively

using real world hyperspectral image datasets. The experi-

ments show that our algorithm is highly effective, and has

outperformed state-of-the-art matrix factorization based ap-

proaches both qualitatively and quantitatively.

2. Related work

Hyperspectral imaging was first introduced as an appli-

cation in astronomy and satellite imaging. It aims to cap-

ture spectrum power distribution of electromagnetic wave-

lengths ranged from infrared spectrum to ultraviolet spec-

trum. Since certain materials have unique spectral signa-

ture, it has been very useful in material, agriculture, chemi-

cal, and environment analysis [9].

Since hyperspectral images have limited spatial resolu-

tion, various techniques have been proposed to increase

resolution of a hyperspectral image. A common tech-
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nique in remote sensing is the pan-sharpening [3] which

merges a high resolution panchromatic (gray scale) im-

age and a low resolution hyper-/multi-spectral image to

reconstruct a high resolution hyper-/multi-spectral image.

Representative techniques in pan-sharpening including the

Intensity-Hue-Saturation (IHS) transform [4], PCA-based

method [22], Gramm-Schmidt algorithm [15], and wavelet-

based method [20]. Although some good results have

been demonstrated, as discussed in [12], the single chan-

nel panchromatic image is too limited in spectral resolution.

Consequently, the reconstructed high resolution hyperspec-

tral images contain spectral distortions.

In image processing, filtering techniques such as joint

bilateral upsampling [14] and guided image filter [10] have

been proposed to enhance image resolution. Their key idea

is to borrow high resolution edges from another image of the

same scene to guide the filtering process. These techniques

process each channel individually and often over smooth

image structures.

Recent approaches by Kawakami et al. [12] and Huang

et al. [11] utilize the matrix factorization to learn a global

basis functions of spectral signals. By utilizing the cor-

responding high resolution RGB image, sparse coefficient

of spectral basis functions which best reconstruct the RGB

signals can be uniquely determined. Finally, the high res-

olution hyperspectral image is reconstructed by using the

estimated coefficient and the spectral basis functions to

reconstruct the hyperspectral signals. Since the matrix

factorization based techniques achieved the state-of-the-

art performance, several follow up works have been pro-

posed [24, 29, 28]. Wycoff et al. [24] proposed alternating

optimization for non-negative sparse matrix factorization.

Yokoya et al. [28] proposed coupled non-negative matrix

factorization. Akhtar et al. [2] additionally consider spatial

structure of high resolution RGB images. A major limi-

tation of the matrix factorization based approaches is that

the estimated sparse coefficient is only determined by the

high resolution RGB observations. When different mate-

rials with the same or very similar RGB observations pre-

sented in the same scene, these techniques often fail to dis-

tinguish the different materials and thus the reconstructed

hyperspectral images are inaccurate.

3. Proposed Algorithm

Let H ∈ R
W×H×S denote a high resolution hyperspec-

tral image, where W , H and S are the image width, the

image height, and the number of sampled wavelengths re-

spectively. Our goal is to estimate H, given L ∈ R
w×h×S ,

a low resolution hyperspectral image where w ≪ W and

h ≪ H , and C ∈ R
W×H×3, a high resolution RGB im-

age as inputs. We assume L and C are well aligned. We

first present our spatial upsampling method, followed by the

spectrum substitution method.

3.1. Spatial Upsampling

To upsample L, we adopt a fast learning-based single im-

age super-resolution algorithm [25] with modifications to

account for the high resolution structures in C, and spec-

trum correlation across different wavelength channels in L.

The approach by [25] represents the state-of-the-art single

image super-resolution algorithm with fast running time.

Learning the HR-LR exemplar In order to learn the HR-

LR (High Resolution-Low Resolution) exemplars for learn-

ing based single image super-resolution, we prepare train-

ing examples by downsampling a high resolution hyper-

spectral image using bicubic interpolation to create a syn-

thetic low resolution hyperspectral image. The correspond-

ing RGB image is given in the training examples. For ex-

ample, the CAVE hyperspectral image dataset [27] provides

high resolution hyperspectral images and the correspond-

ing RGB images in pairs. In here, we assume the sampled

wavelengths in training examples are identical to the sam-

pled wavelengths in the target hyperspectral image.

We sample image patches from training examples, each

patch is size of 5 × 5, and with corresponding primitive

structures in H, L and C denote as PH,PL and PC respec-

tively. The resolution ratio between H and L in the training

examples is 2. If the upsampling factor (resolution ratio be-

tween C and L) is larger than 2, we upsample the target L

multiple times. After each 2× spatial upsampling, we ap-

ply the spectrum substitution, and repeat the processes until

L meets the target resolution. 1 For each sampled patch,

P , we compute its Y (luminance) channel image using its

RGB values, and then apply mean subtraction to create a

feature vector by stacking pixels of the processed Y chan-

nel image. The sampled patches are then clustered into K

groups according to the feature vectors. In our implemen-

tation, we used the kmeans++ offered in the VLFeat open

source library [23] for clustering. The number of clusters is

set to K = 4096, and there are around 400 patches within

each cluster. The clustered patches in each group are then

served as exemplars for the super-resolution purpose. Fig-

ure 1 shows some of clustered exemplars.

HR hyperspectral image reconstruction Let S =
{SH(k, q),SL(k, q),SC(k, q)}, 1 ≤ k ≤ K, 1 ≤ q ≤
Q(k) denote the trained exemplars, where K is the num-

ber of clustered group, and Q(k) is number of exemplars

in each group. Because exemplars in each group share

very similar primitive structures, we assume that each ex-

emplar in each group can be represented as a linear com-

bination of other exemplars within the same group, i.e.,

S(k, q)
.
=

∑Q(k)
p=1,p 6=q ϕpS(k, p), where {ϕp} is the linear

1The target resolution depends on the hardware setting. In our synthetic

experiments, we follow previous works to set the target resolution as 32x.

However, in the real world experiments, we can change it to other scaling

factor.
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Figure 1: Overview of our algorithm. In the first spatial upsampling step, overlapping patches from input images are first matched to

appropriate membership by minimizing the L2-distance between Y -channel to find the closest structure. Next, linear weights are learned

from the RGB-LR hyperspectral(HS) input and the corresponding subspace samples. The learned weights are used to reconstruct target

HR HS patch with HR HS subspace samples. In the second spectral substitution step, for each first-order superpixel neighbourhood, we

learn a local RGB-LR HS joint spectral dictionary. With the learned dictionary, RGB-HR HS joint sparse coding is obtained. Finally, the

target local HR HS spectrum is reconstructed with the locally learned HS dictionary and the joint sparse code.

coefficients. Based on this assumption, when a new testing

patch comes, cluster membership of an input patch is deter-

mined by minimizing the L2-distance between Y channel

of cluster center and input patch. And then, we can esti-

mate the linear coefficients based on the observed PL and

PC which minimizes:

ϕ∗ = argmin
ϕ

∥

∥

∥

∥

∥

∥

[

PL

PC

]

−

Q(k)
∑

p=1

ϕp

[

SL(k, p)
SC(k, p)

]

∥

∥

∥

∥

∥

∥

2

2

. (1)

The optimal solution, ϕ∗, can be obtained by a simple linear

regression. Using ϕ∗, PH is reconstructed as:

PH =

Q(k)
∑

p=1

ϕ∗
pSH(k, p). (2)

After we estimate PH, we add the patch mean of L to get

the correct upsampled H. In our implementation, the recon-

structed patches were accurate enough, such that we simply

averaged the overlapping patch area to enhance local com-

patibility, inspired by Chang et al. [6].

Since the input L can be noisy, we additionally incorpo-

rate a structure guided total variation regularization [18, 8]:

H
◦ = argmin

H

‖H− Ĥ‖22 + µ(1− |∇mC|)|∇H|1, (3)

where Ĥ is the solution after the exemplar super-resolution,

∇mC = max(|∇RC|, |∇GC|, |∇BC|) is the maximum

absolute gradient of C across the RGB channels, |∇H|1
is the total variation regularization, and µ = 0.01 is the reg-

ularization weight. This regularization weight is fixed in all

of our experiments. By including the structure weight from

(1 − |∇mC|), we can effectively avoid over-smoothing in

large gradient regions in C. Each channel in H is processed

individually for Equation (3).

Discussion Here, we compare our spatial upsampling

method with single image super-resolution, especially [25].

Our method utilizes SC as a guidance to search the optimal

linear coefficients which allows us to achieve higher accu-

racy reconstruction than using SL alone. In addition, by

searching the same linear coefficients across different chan-

nels, we can preserve spectrum fidelity while the approach

in [25] process each color channel individually. Conse-

quently, results by [25] contains distortion in spectrum.

Our spatial upsampling method already can achieve high

quality upsampling results. However, we notice that there

are still minor errors in the upsampled result from Equa-

tion (2), the artificial pixels and distorted spectrum. One

possible reason is that the hyperspectrum of materials and

specific structural resolution in the target image may not

exist in the training examples. Although we obtain the ap-

proximate spectrum by finding the optimal linear combi-

nation of material spectrum in training examples that best

match with the low resolution observations, certain amount

of spectrum distortions presented after the upsampling. For

defective pixels, we could repair them through Equation (3)

effectively. For distorted spectrum, we present the spectrum

substitution method which further enhances our results in

the next sub-section.

3.2. Spectrum Substitution

Our spectrum substitution utilizes the sparse coding to

learn a local spectrum dictionary, and sparse linear coeffi-

cients which will be used to substitute the upsampled re-

sults from the previous stage for spectrum refinement. This

process follows the assumption by [12] in using the matrix

factorization to learn spectrum basis functions for hyper-

spectral image reconstruction. The work by [12] assumes

a scene contains limited materials, and therefore the hy-
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perspectrum can be modelled by a linear combination of

spectrum basis functions with sparse coefficients. In here,

instead of making a global assumption about number of ma-

terials in a scene, we assume the number of materials within

a local region is limited.

We segment the upsampled hyperspectral image into su-

perpixels using the approach by [17]. For each superpixel,

we collect its first order neighborhood (directly connected

superpixels), and apply the sparse coding [16, 26] to learn a

local dictionary:

argmin
D,α

∥

∥

∥

∥

[

L(~x)
C

d(~x)

]

−

[

DHS

DC

]

α

∥

∥

∥

∥

2

2

+ λ|α|1 (4)

where ~x ∈ R
1×N is index of pixels within a superpixel

and its first order neighborhood, D = {DHS,DC} ∈
R

(S+3)×N is the learnt local dictionary which corresponds

to the basis functions of local reflectance around a super-

pixel, α ∈ R
N×1 is the sparse coefficient, and N is number

of involved pixels. We perform the training process in low

resolution by downsampling C to C
d to match the resolu-

tion of L. After we estimate D, we drop the columns of D
if the corresponding coefficient in α is zero2. Note that we

utilize L instead of H◦ to learn the local dictionary since

the spectrum in H
◦ may have been distorted.

Once we estimate D, we can reconstruct H∗ using H
◦,

C and sparsity as guides [16]:

argmin
ω

∥

∥

∥

∥

[

H
◦(~x)

C(~x)

]

−

[

DHS

DC

]

ω

∥

∥

∥

∥

2

2

+ λ|ω|1, (5)

H
∗(~x) = DHSω. (6)

The spectrum substitution process is applied to each su-

perpixel individually, with different D for each superpixel.

Since D is learnt from overlapping superpixel after includ-

ing first order neighborhood, there is no discontinuity arti-

fact introduced after the spectral substitution. The param-

eter λ is set to 0.1 empirically and it is fixed in all of our

experiments.

Discussion There are two major differences between our

spectrum substitution method and the matrix factorization

approach by [12]. First, our limited material assumption is

a local assumption while in [12] is a global assumption.

Thus, our assumption is more general. Second, when esti-

mating the sparse coefficient, ω, in Equation (5), [12] uses

only the RGB image, C, as guides, while we also use our

upsampled image, H◦, as guides. This not only allows us to

estimate more accurate sparse coefficients, but also allows

us to distinguish spectrum of materials in a scene whose

RGB observations are identical. Since hyperspectrum to

2This method enhances generality of dictionary and avoids trivial solu-

tion by removing outliers

RGB is a many-to-one process, using the RGB observations

alone cannot distinguish such different materials. However,

without an accurate proxy solution, the estimation of ω can

be biased to a wrong solution. As will be demonstrated in

our experiments, simply replace H◦ by bicubic upsampling

cannot achieve the same quality results as ours. The first

stage and the second stage of our algorithm complement the

strength of each other to achieve high quality results which

outperforms state-of-the-art algorithms.

Compared with coupled dictionary approach for im-

age super-resolution [26], we applied the coupled dictio-

nary training in spectrum domain, instead of spatial do-

main. The method by [26] does not consider spectrum

correlation during super-resolution. Since our method has

guiding structures from high resolution RGB image, our

approach performs better than just applying single image

super-resolution to each channel individually.

4. Experiments

We tested our algorithm on the CAVE dataset [27]3,

the Harvard dataset [5]4, the NUS dataset [19]5 and the

Kawakami dataset [12]6

The CAVE and the NUS datasets contain hyperspec-

tral images ranged from 400nm to 700nm at every 10nm

wavelength, the Harvard dataset contains hyperspectral im-

ages ranged from 420nm to 720nm at every 10nm, and the

Kawakami dataset contains hyperspectral images ranged

415nm to 730nm at every 5nm. Since each dataset has its

own wavelength features, we trained the exemplars for spa-

tial upsampling separately for each dataset. The training

and testing examples in each dataset are separated.

For all testing cases except for Kawakami dataset, the

upsampling factor is M = 32×. Thus, the number of

level in our multi-level implementation is 5 = ⌈log2 M⌉.

In the spatial training, the number of training samples was

106 for all cases. For spectral substitution, number of su-

perpixels in segmentation [17] was {8, 20, 50, 150, 300} at

1st to 5th level. To create the training set, we downsample

captured HSI images using bicubic interpolation. For 32×
up-sampling, the same 2× dictionary is used for all 5 levels.

The measurement metric in our experiments is the stan-

dard RMSE7 in 8 bit resolution. our reported RMSE values

3Cave dataset can be downloaded from http://www.cs.

columbia.edu/CAVE/databases/multispectral/
4Harvard dataset can be downloaded from http://vision.seas.

harvard.edu/hyperspec/
5http://www.comp.nus.edu.sg/˜whitebal/spectral_

reconstruction/
6We contacted the first author for their dataset.
7The standard RMSE used for evaluation in this paper, e.g.

RMSE(θ) =

√

E((θ̂ − θ)2) where θ̂ is the upsampled result and θ is

ground-truth, is different from the metrics used in [2]. Comparisons with

their error metrics are presented in the supplemental material.
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RGB 450nm 550nm 620nm RGB 450nm 550nm 620nm

Input Input

Component

Substitution [1]

Component

Substitution [1]

Kawakami [12] Kawakami [12]

Akhtar [2] Akhtar [2]

Ours Ours

Figure 2: Comparisons on the CAVE dataset for 450nm, 550nm, and 620nm: Balloons(left) and Beads(right). The RGB and Ground-truth

are shown in top row. Results and the corresponding error maps are shown in sequence.

of Akhtar et al. [2]8 was the test results from their source

codes with their proposing parameters. For the other com-

pared methods, Aiazzi et al. [1], Kawakami et al. [12], and

Huang et al. [11], we referred reported values in [12] and

[2], because we could not get their source codes. Due to

space limitation, we presented only representative examples

8Akhtar et al.’s source code can be downloaded from http://www.

csse.uwa.edu.au/˜ajmal/code/HSISuperRes.zip

in the paper. More results are in the supplemental material.

4.1. Cave dataset

We have tested our algorithm on the CAVE dataset. The

tested examples vary from planar to complex objects with

various color and spectral configurations from diverse ma-

terials. Some of our results and comparisons are shown in

Figure 2. In this dataset, the corresponding RGB image is
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RGB Ground-truth input Akhtar [2] Ours

Img b8 710nm RMSE: 5.55 RMSE: 1.15

2500K 2 510nm RMSE: 29.58 RMSE: 3.54

Figure 3: Comparisons on Harvard (Top) and NUS (Bottom) dataset.

RGB 530nm 610nm 720nm

RGB input Akhtar [2] Ours input Akhtar [2] Ours input Akhtar [2] Ours

Figure 4: Comparison examples from Kawakami dataset.

Table 1: Upsampling of Cave dataset(32×).

Balloons Beads Sponges Paintings

Aiazzi et al. [1] 13.9 28.5 19.9 12.2

Kawakami et al. [12] 3.0 9.2 3.7 4.7

Akhtar et al. [2] 3.8 9.12 4.74 4.17

Ours 1.64 6.92 2.89 3.55

Flowers CD Peppers Face

Aiazzi et al. [1] 14.4 13.3 13.7 13.1

Kawakami et al. [12] 5.4 8.2 4.7 3.3

Akhtar et al. [2] 8.94 16.1 3.91 4.59

Ours 2.61 3.48 1.96 2.45

also given, but the spectral sensitivity function to convert

hyperspectrum to RGB is not given. The dataset is rela-

tively clean with high signal-to-noise ratio in comparisons

with other datasets. The ground-truth resolution of hyper-

spectral image was 512 × 512 and our input resolution of

hyperspectral image was 16×16. Since camera spectra sen-

sitivity is not given, we used the camera sensitivity function

from Nikon D700 for producing results of Akhtar et al., as

presented in their experiment [2]. But for our case, we just

used the given RGB image without the need of the spectral

sensitivity function. Our work consistently outperformed

the compared state-of-the-arts methods as shown in Table 1.

4.2. Harvard dataset

One tested example of the Harvard dataset is shown in

Figure 3. The original image resolution of hyperspectral

images given in the dataset is 1392× 1040, but we cropped

the images to resolution of 1024×1024 for our convenience

of processing. This dataset does not provide correspond-

ing RGB images. To provide a fair test setting, We used

same RGB spectral response for both of Akhtar et al. [2]

and ours. For the RGB spectral response, we have nor-

malized the hyperspectral image with respect to the given

camera sensitivity, and RGB channel image was generated

by firstly converting the normalized hyperspectral image to

CIE 1931 2-deg, XYZ9, converting CIE tristimulus value to

sRGB, and applying gamma correcion to sRGB values. Af-

ter these processes10, we obtain the corresponding RGB im-

age as inputs of our algorithm. The input resolution of hy-

perspectral image was 32 × 32. We show the results of us-

ing both Nikon D700 response function and our estimated

response function. Our work consistently showed the best

results as shown in Table 2.

4.3. NUS dataset

Our approach was also tested on the NUS dataset and

compared with Akhtar et al. [2]. One example is shown in

Figure 3. In the tested data, the first example was taken un-

der natural daylight and shade condition and the second to

fifth were taken under illumination by a metal halide lamp.

Temperature of the metal halide lamp for the second and

9Color Matching Function for CIE 1931 2-deg, XYZ can be down-

loaded from http://www.cvrl.org/icons/datawe.gif
10Details can be found at http://personalpages.

manchester.ac.uk/staff/david.foster/Tutorial_

HSI2RGB/Tutorial_HSI2RGB.html
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Table 2: Upsampling of Harvard dataset(32×).

Method Img 1 Img b5 Img b8 Img d4

Huang et al. [11] 4.3 2.6 7.6 4.0

Kawakami et al. [12] 3.9 2.8 6.9 3.6

Nikon D700 response

Akhtar et al. [2] 2.0 1.4 4.1 1.5

Ours 0.72 0.75 1.56 0.53

Our estimated response

Akhtar et al. [2] 5.28 5.27 5.76 5.41

Ours 0.74 0.69 1.39 0.46

Method Img d7 Img h2 Img h3 Img f2

Huang et al. [11] 4.0 4.1 2.3 2.9

Kawakami et al. [12] 3.9 3.7 2.1 3.1

Nikon D700 response

Akhtar et al. [2] 2.4 1.4 0.9 2.0

Ours 0.73 0.56 0.84 1.74

Our estimated response

Akhtar et al. [2] 5.6 4.05 5.07 4.76

Ours 0.69 0.44 0.5 1.65

Table 3: Upsampling of NUS dataset by 32× upsampling.

Method Day 2500K 2500K 3000K 3000K

7 2 3 2 3

Akhtar et al. [2] 22.97 26.41 32.13 41.36 18.83

Ours 5.5 4.97 5.94 7.88 4.35

third examples was 2500K, and the forth and the fifth was

3000K.

Before using the dataset, we applied the preprocessing

according to [19] to remove presenting biases in illumina-

tion. We normalized hyperspectrum with regard to illumi-

nation, and then integrated normalized hyperspectrum with

given camera spectra response for RGB channel. After that,

we applied white balance to get the corresponding RGB im-

age. For further details of preprocessing and NUS dataset,

please refer [19].

Our result outperformed Akhtar et al. [2] for all test

examples as shown in the Table 3. In the NUS dataset,

there is severe amount of noise in their hyperspectral im-

ages especially in low wavelength bands. The noise prob-

lem makes significant degradation in matrix factorization

based approaches. In contrast, because our spatial upsam-

pling stage includes denoising with the structure guided to-

tal variation regularization, our algorithm is robust against

noise degradation.

4.4. Kawakami dataset

Our approach was tested on Kawakami dataset. The

Kawakami dataset offers high resolution RGB images and

low resolution hyperspectral images captured with their real

world system. Thus, only qualitative comparisons are pro-

vided as there is no ground truth high resolution hyperspec-

tral images. Since their dataset has spectrum of 415nm to

730nm sampled at every 5nm, and the given Kodak KAI-

11002 sensor sensitivity has value from 400nm to 820nm

for every 10nm, we applied spline interpolation to obtain

the value of the spectral response function at every 5nm.

The scaling factors of this dataset varies between 6× to 8×.

Please refer Kawakami et al. [12] for acquisition process of

their dataset.

Due to the very narrow bandwidth of the filters, the hy-

perspectral images in the Kawakami dataset have the most

noise degradation and also with some blurs. Figure 4 shows

the upsampled results and comparisons. As shown in the

figure, there were severe block artifacts in the result from

Akhtar et al. [2]. This came from their instability to handle

noisy spectral components. Moreover, when severely under

noise degradation, matrix factorization [2] sometimes failed

to converge. This happened for the sheep and dinosaur cases

(in the supplementary material), even with their proposing

parameter in source codes. We observed that some results in

the Kawakami dataset contains artifacts at boundary, these

artifacts are caused by misalignment between high resolu-

tion RGB images and low resolution hyperspectral images.

4.5. Effect of Different Setting

Finally, we have also tested effects of different settings

of our own algorithm using the CAVE dataset: Pan-guided,

Spectral Substitution Only (hyperspectral and RGB), Spec-

tral Substitution Only (RGB only), and Spatial Upsampling

only. We included the bicubic interpolation for base-line

comparison. Experiment results and some examples are

shown in Table 4.

Pan guided We regarded the Y-channel as PAN image for

this testing. In this testing, RGB images are not used. With

only the PAN image, we could get high resolution struc-

ture, but spectral distortion was very severe. This is because

spectral information in the PAN image is very limited. In

addition, since Y-channel has more weighting in the middle

wavelength band, e.g. G band, this makes spectral compo-

nent in other bands to strongly follow spectral feature in the

middle bands.

Spectral Substitution Only(hyperspectral and RGB) &

Spatial Upsampling Only We skipped spatial upsampling

part to verify the effect of spectral substitution, and vice

versa. When using the spectral substitution only, its results

were very similar to its original bicubic interpolation input.

Since spectral substitution step only considers joint spec-

tral distribution of given input, its estimated sparse coeffi-

cients was highly biased by the quality of intermediate re-

sults. The spectral substitution step was effective when ac-

curate estimation was given. From this experiment, it shows

that the spatial upsampling and the spectral substitution help

each other in a complementary manner.

Spectral Substitution with RGB only We applied spectral

substitution with only RGB input and without multi-scale.

The sparse coefficient is estimated by solving Equation (5)

with only the RGB inputs. This concept is similar to previ-
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Table 4: Comparison of proposing approach with different

settings.(32×). And the qualitative examples from Flowers.

Method Balloons Beads Sponges Oil

paintings

Bicubic 13.07 32.22 19.5 14.22

Pan-guided 13.13 30.59 22.47 15.0

Spectral-Only 13.14 32.33 19.45 14.29

RGB-Only 20.53 35.13 28.07 18.14

Spatial-Only 1.79 7.07 2.99 3.74

Ours 1.64 6.92 2.89 3.55

Method Flowers CD Fake and photo

real peppers and face

Bicubic 14.27 13.14 13.94 14.01

Pan-guided 13.41 11.63 14.58 14.13

Spectral-Only 14.34 13.24 14.01 14.03

RGB-Only 21.22 18.63 20.58 14.62

Spatial-Only 2.72 3.71 2.01 2.53

Ours 2.61 3.48 1.96 2.45

RGB Y-channel 490nm Input

Bicubic Pan-guide Spectral RGB Spatial Ours

9.96 10.34 10.03 17.54 2.31 1.81

RMSE

ous matrix factorization works that we predict hyperspectral

image only with high resolution RGB input and joint dictio-

nary in single step. In the experiment, the worst result was

shown. In our analysis, the high RMSE is caused by high

ambiguity of hyperspectrum, if multiple objects with simi-

lar RGB colors presented in the same scene.

Parameters We performed additional experiments on the

effect of segmentation parameters, i.e., number of clusters

at each level, and the corresponding computation time. We

tested on the Table 5, Flowers example (512x512 resolu-

tion). The implementation environment is Matlab 2013a,

with Intel i7-4770 CPU @ 3.40 GHz, and 16 GB RAM. In-

creasing the number of segmentations reduces RMSE, but

it also increase running time.

4.6. Spectra Accuracy

Figure 5 shows reconstructed spectrum of certain pixels

in two of CAVE examples. The first example represents

the same material with different RGB color, and the sec-

ond example represents different materials with the same

RGB color. As shown in the figure, matrix factorization

method [2] has certain amount of distortion in recovered

spectrum for the first case. Their method distorted the spec-

Table 5: Comparison for different segmentation parameter for

Spectral substitution. Tested on × 32 for Table 1. Flowers. Bold

text is our main setting for comparison with other State-of-the-arts.

Segmentation RMSE time (.sec)

1 Spatial-Only 2.72 993

2 4-10-25-75-150 2.65 1710

3 5-13-33-100-200 2.62 1947

4 8-20-50-150-300 2.61 2090

5 12-30-75-225-450 2.58 2726

6 16-40-100-300-600 2.56 3051

Figure 5: Comparison of spectra: Sponges(left) and Fake and real

peppers(right).

tra more severely for the second case because of the limi-

tation of global assumption. In both cases, our local sparse

coding recovered spectrum very closely to the ground truth.

5. Conclusion and Discussion

In this paper, we have presented an algorithm for hyper-

spectral image upsampling by approaching the problem in

both spatial and spectral aspects. From the trained HR-LR

exemplars, we directly produce high resolution hyperspec-

tral images from its low resolution inputs with RGB guid-

ing. The upsampled results are further refined in spectral

aspect by utilizing spectrum substitution. Extensive exper-

iments show that our algorithm has outperformed state-of-

the-art approaches. In addition, we have also performed a

self-evaluation on our algorithm to better understand the ef-

fect of different setting, as well as effects of each step.

Contrast to the dataset in our experiment, hyperspec-

tral signals in remote-sensing domain have wider wave-

length range beyond visible RGB, the near and shortwave

infrared(IR) [7]. With presence of near and short-wave

IR, our locality inspired work will have more space to

handle such highly nonlinear cases compared to previous

state-of-the-arts, since our work utilizes high-resolution hy-

perspectrum information additional to traditionally used

low-resolution counterpart and RGB. However, it will still

have inevitably spectral distortions coming from insuffi-

cient mixing information between RGB and shortwave IR.

Our next step is to exploit the possibility to apply our work

to remote-sensing data where the HR PAN or the HR RGB

images do not cover the entire range of hyperspectral inputs.
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