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Abstract

Existing object proposal approaches use primarily
bottom-up cues to rank proposals, while we believe that
“objectness” is in fact a high level construct. We argue for a
data-driven, semantic approach for ranking object propos-
als. Our framework, which we call DeepBox, uses convo-
lutional neural networks (CNNs) to rerank proposals from
a bottom-up method. We use a novel four-layer CNN ar-
chitecture that is as good as much larger networks on the
task of evaluating objectness while being much faster. We
show that DeepBox significantly improves over the bottom-
up ranking, achieving the same recall with 500 proposals as
achieved by bottom-up methods with 2000. This improve-
ment generalizes to categories the CNN has never seen be-
fore and leads to a 4.5-point gain in detection mAP. Our
implementation achieves this performance while running at
260 ms per image.

1. Introduction

Object detection methods have moved from scanning
window approaches [9] to ones based on bottom-up object
proposals [11]. Bottom-up proposals [!] have two major
advantages: 1) by reducing the search space, they allow the
usage of more sophisticated recognition machinery, and 2)
by pruning away false positives, they make detection easier.
[14, 10]

Most object proposal methods rely on simple bottom-up
grouping and saliency cues. The rationale for this is that this
step should be reasonably fast and generally applicable to
all object categories. However, we believe that there is more
to objectness than bottom-up grouping or saliency. For in-
stance, many disparate object categories might share high-
level structures (such as the limbs of animals and robots)
and detecting such structures might hint towards the pres-
ence of objects. A proposal method that incorporates these
and other such cues is likely to perform much better.

In this paper, we argue for a semantic, data-driven notion
of objectness. Our approach is to present a large database
of images with annotated objects to a learning algorithm,

and let the algorithm figure out what low-, mid- and high-
level cues are most discriminative of objects. Following re-
cent work on a range of recognition tasks [11, 12, 18], we
use convolutional networks (CNNSs) [19] for this task. Con-
cretely, we train a CNN to rerank a large pool of object pro-
posals produced by a bottom-up proposal method (we use
Edge boxes [30] for most experiments in this paper). For
ease of reference, we call our approach DeepBox. Figure 1
shows our framework.

We propose a lightweight four layer network architecture
that significantly improves over bottom-up proposal meth-
ods in terms of ranking (26% relative improvement on AUC
over Edge boxes on VOC 2007 [8]). Our network archi-
tecture is as effective as state-of-the-art classification net-
works on this task while being much smaller and thus much
faster. In addition, using ideas from SPP [13] and Fast R-
CNN [10], our implementation runs in 260 ms per image,
comparable to some of the fastest bottom-up proposal ap-
proaches like Edge Boxes (250 ms). We also provide ev-
idence that what our network learns is category-agnostic:
our improvements in performance generalize to categories
that the CNN has not seen before (16% improvement over
Edge boxes on COCO [20]). Our results suggest that a)
there is indeed a generic, semantic notion of objectness be-
yond bottom-up saliency, and that b) this semantic notion of
objectness can be learnt effectively by a lightweight CNN.

Object proposals are just the first step in an object detec-
tion system, and the final evaluation of a proposal system is
the impact it has on detection performance. We show that
the Fast R-CNN detection system [10], using 500 DeepBox
proposals per image, is 4.5 points better than the same ob-
ject detector using 500 Edge box proposals. Thus our high
quality proposals directly lead to better object detection.

The rest of the paper is laid out as follows. In Section 2
we discuss related work. We describe our network architec-
ture and training and testing procedures in Section 3. Sec-
tion 4 describes experiments and we end with a discussion.

2. Related work

Russell et al. [26] were one of the first to suggest a
category-independent method to propose putative objects.
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Figure 1. The DeepBox framework. Given any RGB image, we
first generate bottom-up proposals and then rerank them using a
CNN. High ranked boxes are shown in green and low ranked ones
are blue. The number in each box is its ranking in the proposal
pool. DeepBox corrects the ranking of Edge box, ranking objects
higher than background.

Their method involved sampling regions from multiple seg-
mentations of the image. More recently, Alexe et al. [1] and
Endres et al. [6] propose using bottom-up object proposals
as a first step in recognition. Expanding on the multiple
segmentations idea, Selective search [29] uses regions from
hierarchical segmentations in multiple color spaces as ob-
ject proposals. CPMC [4] uses multiple graph-cut based
segmentations with multiple foreground seeds and multi-
ple foreground biases to propose objects. GOP [17] re-
places graph cuts with a much faster geodesic based seg-
mentation. MCG [2] also uses multiple hierarchical seg-
mentations from different scales of the image, but pro-
duces proposals by combinatorially grouping regions. Edge
boxes [30] uses contour information instead of segments:
bounding boxes which have fewer contours straggling the
boundary of the box are considered more likely to be ob-
jects.

Many object proposal methods also include a ranking
of the regions. This ranking is typically based on low
level region features such as saliency [1], and is sometimes
learnt [2, 4]. Relatively simple ranking suffices when the
goal is a few thousand proposals as in MCG [2], but to nar-
row the list down to a few hundred as in CPMC [4] requires
more involved reasoning. DeepBox aims at such a ranking.

Multibox [7, 28] directly produces object proposals from
images using a sophisticated neural network. In contempo-
rary work, Faster R-CNN [25] uses the same large network
to propose objects and classify them. DeepMask [22] also
uses a very deep network to directly produce segment pro-
posals. In comparison, our architecture is quite lightweight
and can be used out of the box to rerank any bottom-up pro-
posals.

Finally, we direct the reader to [15, 14] for a more thor-
ough evaluation of bottom-up proposal methods.

3. Method

The pipeline consists of two steps: 1) Generate an ini-
tial pool of N bottom-up proposals. Our method is agnos-
tic to the precise bottom-up proposal method. The main
point of this step is to prune out the obviously unlikely win-
dows so that DeepBox can focus on the hard negatives. 2)
Rerank the proposals using scores obtained by the Deep-
Box network. We rerank each proposal by cropping out the
proposal box and feeding it into a CNN, as described by
Girshick et al. [11]. Because highly overlapping proposals
are handled independently, this strategy is computationally
wasteful and thus slow. A more sophisticated and much
faster approach, using ideas from [13, 10] is described in
Section 3.2.

For datasets without many small objects (e.g. PASCAL),
we often only need to re-rank the top 2000 proposals to ob-
tain good enough recall. As shown by [30], increasing the
number of Edge box proposals beyond 2000 leads to only
marginal increase in recall. For more challenging datasets
with small objects (e.g. COCO [20]), reranking more pro-
posals continues to provide gains in recall beyond 2000 pro-
posals.

3.1. Network Architecture

When it comes to the network architecture, we would
expect that predicting the precise category of an object is
harder than predicting objectness, and so we would want a
simpler network for objectness. This also makes sense from
a computational standpoint, since we do not want the object
proposal scoring stage to be as expensive as the detector
itself.

We organized our search for a suitable network archi-
tecture by starting from the architecture of [ 8] and gradu-
ally ablating it while trying to preserve performance. The
ablation here can be performed by reducing the number of
channels in the different layers (thus reducing the number of
parameters in the layer), by removing some layers, or by de-
creasing the input resolution so that the features computed
become coarser.

The original architecture gave an AUC on PASCAL
VOC of 0.76(0.62) for IoU=0.5 (0.7). First, we changed
the number of outputs of fc6 to 1024 with other things fixed
and found that performance remained unchanged. Then we
adjusted the input image crop from 227 x 227 of the net-
work to 120 x 120 and observed that the AUC dropped
1.5 points for IoU=0.5 and 2.9 points for IloU=0.7 on PAS-
CAL. With this input size, we tried removing fc6 (drop:
2.3 points), convb (drop: 2.9 points), convd + conv4 (drop:
10.6 points) and convd + convd + conv3 layers (drop:
6.7 points). This last experiment meant that dropping all
of convb, conv4d and conv3 was better than just dropping
convd and conv4. This might be because conv3, conv4
and convb while adding to the capacity of the network are
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also likely overfit to the task of image classification (as de-
scribed below, the convolutional layers are initialized from
a model trained on ImageNet). We stuck to this architecture
(i.e.,without convb, conv4 and conv3) and explored differ-
ent input sizes for the net. For an input size of 140 x 140,
we obtained a competitive AUC of 0.74 (for IoU=0.5) and
0.60 (for IoU=0.7) on PASCAL, or equivalently a 4.4 point
drop against the baseline.

Our final architecture can be written down as follows.

Denote by conv(k,c,s) a convolutional layer with kernel
size k, stride s and number of output channels c. Similarly,
pool(k, s) denotes a pooling layer with kernel size k& and
stride s, and fc¢(c) a fully connected layer with ¢ outputs.
Then, our network architecture is:
conv(11,96,4) —pool(3,2) —conwv (5,256, 1) — fc(1024) —
fe(2).
Each layer except the last is followed by a ReLU non-
linearity. Our problem is a binary classification problem
(object or not), so we only have two outputs which are
passed through a softmax. Our input size is 140 x 140.

While we finalized this architecture on PASCAL for
Edge boxes, we show in Section 4 that the same architecture
works just as well for other datasets such as COCO [20] and
for other proposal methods such as Selective Search [29] or
MCG [2].

3.2. Sharing computation for faster reranking

Running the CNN separately on highly overlapping
boxes wastes a lot of computation. He et al. [ 13] pointed out
that the convolutional part of the network could be shared
among all the proposals. Concretely, instead of cropping
out individual boxes, we pass in the entire image into the
network (at a high resolution). After passing through all the
convolutional and pooling layers, the result is a feature map
which is some fraction of the image size. Given this feature
map and a set of bounding boxes, we want to compute a
fixed length vector for each box that we can then feed into
the fully connected layers. To do this, note that each bound-
ing box B in the image space corresponds to a box b in the
feature space of the final convolutional layer, with the scale
and aspect ratio of b being dependent on B and thus differ-
ent for each box. He et al. propose to use a fixed spatial
pyramid grid to max-pool features for each box. While the
size of the grid cell varies with the box, the number of bins
don’t, thus resulting in a fixed feature vector for each box.
From here on, each box is handled separately. However,
the shared convolutional feature maps means that we have
saved a lot of computation.

One issue with this approach is that all the convolutional
feature maps are computed at just one image scale, which
may not be appropriate for all objects. He et al. [ 13] suggest
a multiscale version where the feature maps are computed at
a few fixed scales, and for each box we pick the best scale,

which they define as the one where the area of the scaled
box is closest to a predefined value. We experiment with
both the single scale version and a multiscale version using
three scales.

We use the implementation proposed by Girshick in Fast
R-CNN [10]. Fast R-CNN implements this pooling as a
layer in the CNN (the Rol Pooling layer) allowing us to
train the network end-to-end.

To differentiate this version of DeepBox from the slower
alternative based on cropping and warping, we call this ver-
sion Fast DeepBox in the rest of the paper.

3.3. Training Procedure
3.3.1 Initialization

The first two convolutional layers were initialized using the
publicly available Imagenet model [18]. This model was
pretrained on 1000 Imagenet categories for the classifica-
tion task. The fc layers are initialized randomly from Gaus-
sian distribution with ¢ = 0.01. Our DeepBox training
procedure consists of two stages. Similar to the classical
notion of bootstrapping in object detection, we first train
an initial model to distinguish between object boxes and
randomly sampled sliding windows from the background.
This teaches it the difference between objects and back-
ground. To enable it to do better at correcting the errors
made by bottom-up proposal methods, we run a second
training round where we train the model on bottom-up pro-
posals from a method such as Edge boxes.

3.3.2 Training on Sliding Windows

First we generate negative windows by simple raster scan-
ning. The sliding window step size is selected based on the
box-searching strategy of Edge boxes[30]. Following Zit-
nick et al [30], we use « to denote the IoU threshold for
neighboring sliding windows, and set it to 0.65. We gener-
ated windows in 5 aspect ratios: (w : h) = (1: 1), (2 : 3),
(1:3),(3:2),and (3 : 1). Negative windows which over-
lap with a ground truth object by more than 5_ = 0.5 are
discarded.

To obtain positives, we randomly perturb the corners
of ground truth bounding boxes. Suppose a ground truth
bounding box has coordinates (Zmin, Ymins Tmaz, Ymaz )
with the width denoted by w and the height denoted by h.
Then the perturbed coordinates are distributed as:

Thin o~ UNIf( T — YW, Tin + YW) ()
Ymin  ~ W (Ymin — YR Ymin + vh) 2)
Thne  ~  UNI(Tppar — YW, Tinax + YW) 3)
Yrmaz  ~ W (Ymaz — VP, Ymas + 7h) )

where v = 0.2 defines the level of noise. Larger v intro-
duces more robustness into positive training samples, but
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might hurt localization. In practice we found that v = 0.2
works well. In case some perturbed points go out of the
image, we set them to stay on the image border. Perturbed
windows that overlap with ground truth boxes by less than
B+ = 0.5 are discarded.

3.3.3 Training on Hard-negatives

Next, we trained the net on bottom-up proposals from a
method such as Edge boxes [30]. Compared to sliding win-
dows, these proposals contain more edges, texture and parts
of objects, and thus form hard negatives. While sliding win-
dows trained the net to distinguish primarily between back-
ground and objects, training on these proposals allows the
net to learn the notion of complete objects and better adapt
itself to the errors made by the bottom-up proposer. This is
critical: without this stage, performance drops by 18% on
PASCAL from 0.60 AUC at IoU=0.7 to 0.48.

The window preparation and training procedure is as de-
scribed in Section 3.3.2, except that sliding windows are
replaced with Edge boxes proposals. We set the overlap
threshold 5 = 0.7 slightly higher, so that the net can learn
to distinguish between tight and loose bounding boxes. We
set 3_ = 0.3 below which the windows are labeled nega-
tive. Windows with IoU € [0.3,0.7] are discarded lest they
confuse the net.

We balanced the ratio of positive and negative windows
at 1 : 3 at training time for both stages. Momentum is set
to 0.9 and weight decay to 0.0005. The initial learning rate
is 0.001, which we decrease by 0.1 every 20,000 iterations.
We train DeepBox for 60,000 iterations with a mini-batch
size of 128.

The Fast DeepBox network was trained for 120k iter-
ations in both sliding window and hard negative training.
Three scales [400, 600, 900] were used for both training and
testing.

4. Experiments

All experiments except those in Section 4.7 and 4.8 were
done using DeepBox. We evaluate Fast DeepBox in Sec-
tion 4.7, and as a final experiment plug it into an object
detection system in Section 4.8.

4.1. Learning objectness on PASCAL and COCO

In our first set of experiments, we evaluated our approach
on PASCAL VOC 2007 [8] and on the newly released
COCO [20] dataset. For these experiments, we used Edge
boxes [30] for the initial pool of proposals. On PASCAL
we reranked the top 2048 Edge box proposals, whereas on
COCO we re-ranked all. We used the network architec-
ture described in Section 3.1. For results on PASCAL VOC
2007, we trained our network on the trainval set and tested

on the test set. For results on COCO, we trained our net-
work on the train set and evaluated on the val set.

4.2. Comparison to Edge boxes

We first compare our ranking to the ranking output by
Edge boxes. Figure 2 plots Recall vs Number of Pro-
posals in PASCAL VOC 2007 for IoU=0.7'. We observe
that DeepBox outperforms Edge boxes in all regimes, es-
pecially with a low number of proposals. The same is true
for IoU=0.5 (not shown). The AUCs (Areas Under Curve)
for DeepBox are 0.74(0.60) vs Edge box’s 0.60(0.47) for
IoU=0.5(0.7), suggesting that DeepBox proposals are 24%
better at ToU=0.5 and 26% better at ToU=0.7 compared
to Edge boxes. Figure 3 plots the same in COCO. The
AUCs (Areas Under Curve) for DeepBox are 0.40(0.28)
vs Edge boxes’s 0.28(0.20) for IoU=0.5(0.7), suggesting
DeepBox proposals are 40%(43%) better than Edge boxes.
If we re-ranked top 2048 proposals instead, the AUCs are
0.38(0.27).

On PASCAL, we also plot the Recall vs IoU threshold
curves at 1000 proposals in Figure 4. At 1000 proposals,
the gain of DeepBox is not as big as at 100-500 proposals,
but we still see that it is superior in all regimes of IoU.

Part of this performance gain is due to small objects,
defined as objects with area less than 2000. On COCO
the AUCs for DeepBox (trained on all categories) are
(0.161,0.080), while the numbers for Edge boxes are
(0.061,0.030) for IoU(0.5,0.7). DeepBox outperforms
Edge boxes by more than 160% on small objects.

Comparison to other proposal methods We can also
compare our ranked set of proposals to all the other propos-
als in the literature. We show this comparison for IoU=0.7
in Table 1. The numbers are obtained from [30] except for
MCG and DeepBox which we computed ourselves. In Ta-
ble 1, the metrics are the number of proposals needed to
achieve 25%, 50% and 75% recall and the maximum recall
using 5000 boxes.

4.3. Visualization of DeepBox proposals

Figures 5 and 6 visualizes DeepBox and Edge box per-
formance on PASCAL and COCO images. Figure 5 shows
the ground truth boxes that are detected (“hits”, shown in
green, with the corresponding best overlapping proposal
shown in blue) and those that are missed (shown in red)
for both proposal rankings. We observe that in compli-
cated scenes with multiple small objects or cluttered back-
ground, DeepBox significantly outperforms Edge box. The
tiny boats, the cars parked by the road, the donuts and peo-
ple in the shade are all correctly captured.

'We computed recall using the code provided by [30]
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Figure 5. Visualization of hits and misses. In each image, the green boxes are ground truth boxes for which a highly overlapping proposal
exists (with the corresponding proposals shown as blue boxes) and red boxes are ground truth boxes that are missed. The IoU threshold is
0.7. We evaluated 1000 proposals per image for COCO and 500 proposals per image for PASCAL. The left image in every pair shows the
result of DeepBox ranking, and the right image shows the ranking from Edge boxes. In cluttered scenes, DeepBox has a higher recall. See
Section 4.3 for a detailed discussion.

Figure 6. In each image we show the distribution of the proposals produced by pasting a red box for each proposal. Only the top 100
proposals are shown. For each pair of images, DeepBox is on the left and Edge boxes is the right. DeepBox proposals are more tightly
concentrated on the objects. See Section 4.3 for a detailed discussion.

This is also validated by looking at the distribution of top complicated scene.
100 proposals (Figure 6), which is shown in red. In gen-
eral, DeepBox’s bounding boxes are very densely focused
on the objects of interest while Edge boxes primarily recog- The high recall our method achieves on the PASCAL
nize contours and often spread evenly across the image in a 2007 test set does not guarantee that our net is truly learning

4.4. Generalization to unseen categories
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Figure 2. PASCAL Evaluation IoU=0.7. DeepBox starts off much
higher than Edge boxes. The wide margin continues all the way
until 500 proposals and gradually decays. The two curves join at
2048 proposals because we chose to re-rank this number of pro-
posals.
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Figure 3. MS COCO Evaluation [oU=0.7. The strong gain demon-
strated by DeepBox on COCO suggests that our learnt objectness
is particularly helpful in a complicated dataset.

general objectness. It is possible that the net is learning just
the union of 20 object categories and using that knowledge
to rank proposals. To evaluate whether the net is indeed
learning a more general notion of objectness that extends
beyond the categories it has seen during training, we did the
following experiment:

e We identified the 36 overlapping categories between
Imagenet and COCO.

e We trained the net just on these overlapping categories
on COCO with initialization from Imagenet. This

AUC 25% 50% 75% Recall Time

(%) (s)
BING[5] 0.20 292 - - 29 0.2
Ranta[24] 0.23 184 584 - 68 10
Objectness| | ] 0.27 27 - - 39 3
Rand. P.[21] 0.35 42 349 3023 80 1
Rahtu [23] 0.37 29 307 - 70 3
SelSearch [29]  0.40 28 199 1434 87 10
CPMC [3] 0.41 15 111 - 65 250
MCG [2] 0.48 10 81 871 83 34
E.B [30] 0.47 12 108 800 87 0.25
DeepBox 0.60 3 20 183 87 2.5

Table 1. Comparison of DeepBox with existing object proposal
techniques. All numbers are for an IoU threshold of 0.7. The
metrics are the number of proposals needed to achieve 25%, 50%
and 75% recall and the maximum recall using 5000 boxes. Deep-
Box outperforms in all metrics. Note that the timing numbers for
DeepBox include computation on the GPU.

PASCAL Evaluation 1000 proposals
1 : : : : :

DeepBox
Edge boxes

0.9F

0.8F : : J
0.7 J
0.6 1
0.5 : : : 1

Recall

0.41 1
031 : 1
021 1
0.11 1

0.5 055 0.6 065 0.7 075 0.8 0.85 09 095 1
IoU threshold

Figure 4. Variation of recall with IoU threshold at 1000 proposals.
DeepBox (average recall: 57.0%) is better than Edge boxes (aver-
age recall: 54.4%) in all regimes. Comparisons to other proposal
methods is shown in the supplementary.

means that during training, only boxes that overlapped
highly with ground truth from the 36 overlapping cate-
gories were labeled positives, and others were labeled
negatives. Also, when sampling positives, only the
ground truth boxes corresponding to these overlapping
categories were used to produce perturbed positives.
This is equivalent to training on a dataset where all the
other categories have not been labeled at all.

e We then evaluated our performance on the rest of the
categories in COCO (44 in number). This means that
at test time, only proposed boxes that overlapped with
ground truth from the other 44 categories were consid-
ered true positives. Again, this corresponds to evaluat-
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Figure 7. Evaluation on unseen categories, when ranking all pro-
posals, at IoU=0.5.

ing on a dataset where the 36 training categories have
not been labeled at all.

All other experimental settings remain the same. As be-
fore, we use Edge boxes for the initial pool of proposals
which we rerank, and compare the ranking we obtain to the
ranking output by edge boxes.

When reranking the top 2048 proposals, DeepBox
achieved 15.7%(15.3%) AUC improvement over Edge
boxes for loU=0.5 (0.7). When reranking all proposals out-
put by Edge boxes, DeepBox achieved 18.5%(16.2%) im-
provement over Edge boxes for loU=0.5 (0.7) (Figure 7). In
this setting, DeepBox outperforms Edge box in all regimes
on unseen categories for both IoUs.

In Figure 8, we plot the ratio of the AUC obtained by
DeepBox to that obtained by Edge box for all the 44 testing
categories. In more than half of the testing categories, we
obtain an improvement greater than 20%, suggesting that
the gains provided by DeepBox are spread over multiple
categories. This suggests that DeepBox is actually learn-
ing a class-agnostic notion of objectness. Note that Deep-
Box performs especially well for the animal super category
because all animal categories have similar geometric struc-
ture and training the net on some animals helps it recog-
nize other animals. This validates our intuition that there
are high-level semantic cues that can help with objectness.
In the sports super category, DeepBox performs worse than
Edge boxes, perhaps because most objects of this category
have salient contours that favor the Edge boxes algorithm.

These results on COCO demonstrate that our network
has learnt a notion of objectness that generalizes beyond
training categories.

Vanilla DeepBox DeepBox Total
(Trained on  (Finetuned) Time

(30D (s)

Sel. Se. 0.27/0.17  0.27/0.19 0.32/0.22 12.5
MCG 0.38/0.25  0.30/0.22 0.37/0.26 36.5
Edge Box 0.28/0.20  0.38/0.27 0.38/0.27 2.5

Table 2. DeepBox on top of other proposers. For each method we
show the AUC at IoU=0.5/0.7 of (left to right) the original ranking,
the reranking produced by DeepBox trained on Edge boxes, and
that produced after finetuning on the corresponding proposals.

4.5. DeepBox using Large Networks

We also experimented with larger networks such as
“Alexnet” [18] and “VGG” [27]. Unsurprisingly, large net-
works capture objectness better than our small network.
However, the difference is quite small: With VGG, the
AUCs on PASCAL are 0.78(0.65) for IoU=0.5(0.7). The
numbers for Alexnet are 0.76(0.62). In comparison our net-
work achieves 0.74(0.60).

For evaluation on COCO, we randomly selected 5000
images and computed AUCs using the VGG and Alexnet
architecture. All networks re-rank just top 2048 Edge box
proposals. At IoU=0.5, VGG gets 0.43 and Alexnet gets
0.42, compared to the 0.38 obtained by our network. At
IoU=0.7, VGG gets 0.31 and Alexnet gets 0.30, compared
to the 0.27 obtained by our network. When re-ranking all
proposals, our small net gets 0.40(0.28) for ToU=0.5(0.7).

These experiments suggest that our network architecture
is sufficient to capture the semantics of objectness, while
also being much more efficient to evaluate compared to the
more massive VGG and Alexnet architectures.

4.6. DeepBox with Other Proposers

It is a natural question to ask whether DeepBox frame-
work applies to other bottom-up proposers as well. We
experimented with MCG and Selective Search by just re-
ranking top 2048 proposals. (For computational reasons, we
did this experiment on a smaller set of 5000 COCO images.)
We experimented with two kinds of DeepBox models: a
single model trained on Edge boxes, and separate models
trained on each proposal method (Table 2).

A model trained on Edge boxes does not provide much
gains, and indeed sometimes hurts, when run on top of Se-
lective Search or MCG proposals. However, if we retrain
DeepBox separately on each proposal method, this effect
goes away. In particular, we get large gains on Selective
Search for both IoU thresholds (as with Edge boxes). On
MCG, DeepBox does not hurt, but does not help much ei-
ther. Nevertheless, the gains we get on Edge boxes and Se-
lective Search suggest that our approach is general and can
work with any proposal method, or even ensembles of pro-
posal methods (a possibility we leave for future work).
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Figure 8. Evaluation on unseen categories: category-wise breakdown. This demonstrates that DeepBox network has learnt a notion of

objectness that generalizes beyond training categories.

4.7. Fast DeepBox

We experimented with Fast DeepBox on COCO. The
AUCs for multiscale Fast DeepBox are 0.40(0.29) vs Edge
box’s 0.28(0.20) for ToU=0.5(0.7), a gain of 41%(44%)
over Edge boxes. When we re-ranked top 2048 proposals
instead, the AUCs are 0.37(0.27). Compared with Deep-
Box’s multi-thread runtime of 2.5s, Fast DeepBox (multi-
scale) is an order of magnitude faster: it takes 0.26s to re-
rank all proposals or 0.12s to re-rank the top-2000. This
compares favorably to other bottom-up proposals. In terms
of average recall with 1000 proposals, our performance
(0.39) is better than GOP (0.36) [17], Selective Search
(0.36) [29] and Edge boxes (0.34) [30], and is about the
same as MCG (0.40) [2] while being almost 70 times faster.
In contrast, Deepmask achieves 0.45 with a much deeper
network at the expense of being 3 times slower (1.6 s) [22].

With a small decrease in performance, Fast DeepBox can
be made much faster. With a single scale, AUC drops by
about 0.005 when re-ranking top-2000 proposals and 0.01
when re-ranking all proposals. However, it only takes 0.11s
to re-rank all proposals or 0.060s for the top-2000. One can
also make training faster by removing the scanning-window
stage and using a single scale. This speedup comes with a
drop in performance of 0.015 when reranking all proposals
compared to the multiscale two-stage version.

4.8. Impact on Object Detection

The final metric for any proposal method is its impact
on object detection. Good proposals not only reduce the
computational complexity but can also make object detec-
tion easier by reducing the number of candidates that the
detector has to choose from [14, 10]. We found that this
is indeed true: when using 500 DeepBox proposals, Fast-
RCNN (with the VGG-16 network) gives a mAP of 37.8%

on COCO Test at IoU=0.5, compared to only 33.3% when
using 500 Edge Box proposals. Even when using 2000 Edge
Box proposals, the mAP is still lower (35.9%). For com-
parison, Fast R-CNN using 2000 Selective Search propos-
als gets a mean AP of 35.8%, indicating that with just 500
DeepBox proposals we get a 2 point jump in performance.

5. Discussion and Conclusion

We have presented an efficient CNN architecture that
learns a semantic notion of objectness that generalizes to
unseen categories. We conclude by discussing other appli-
cations of our objectness model.

First, as the number of object categories increases, the
computational complexity of the detector increases and it
becomes more and more useful to have a generic objectness
system to reduce the number of locations the detector looks
at. Objectness can also help take the burden of localization
off the detector, which then has an easier task.

Second, Al agents navigating the world cannot expect
to be trained on labeled data like COCO for every object
category they see. For some categories the agent will have
to collect data and build detectors on the fly. In this case,
objectness allows the agent to pick a few candidate locations
in a scene that look like objects and track them over time,
thus collecting data for training a detector. Objectness can
thus be useful for object discovery [16], especially when it
captures semantic properties as in our approach.
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