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Abstract

Analysis-by-synthesis has been a successful approach

for many tasks in computer vision, such as 6D pose esti-

mation of an object in an RGB-D image which is the topic

of this work. The idea is to compare the observation with

the output of a forward process, such as a rendered image

of the object of interest in a particular pose. Due to oc-

clusion or complicated sensor noise, it can be difficult to

perform this comparison in a meaningful way. We propose

an approach that “learns to compare”, while taking these

difficulties into account. This is done by describing the pos-

terior density of a particular object pose with a convolu-

tional neural network (CNN) that compares observed and

rendered images. The network is trained with the maximum

likelihood paradigm. We observe empirically that the CNN

does not specialize to the geometry or appearance of spe-

cific objects. It can be used with objects of vastly differ-

ent shapes and appearances, and in different backgrounds.

Compared to state-of-the-art, we demonstrate a significant

improvement on two different datasets which include a total

of eleven objects, cluttered background, and heavy occlu-

sion.

1. Introduction

Tremendous effort has focused on the tasks of object in-

stance detection and pose estimation in images and videos.

In this paper, we consider pose estimation in a single RGB-

D image, as shown in Fig. 1. Given the extra depth channel,

it becomes feasible to extract the full 6D pose (3D rota-

tion and 3D translation) of object instances present in the

scene. Pose estimation has important applications in many

areas, such as robotics [21, 33], medical imaging [24], and

augmented reality [12]. Recently, Brachmann et al. [5]

achieved state-of-the-art results by adapting an analysis-

by-synthesis approach for pose estimation in RGB-D im-

ages. They use a random forest [6] to obtain pixelwise

dense predictions. Building upon the system of [5], we pro-

Figure 1. Three pose estimation results from the occlusion dataset

from [5] and [14]. Arrows indicate the positions of estimated and

ground truth poses. The green silhouette indicates the ground truth

pose, the blue silhouette corresponds to our estimated pose. Red

indicates the pose estimate from [5]. The marker board served

only for ground truth annotation.

pose a novel method to learn to compare in the analysis-by-

synthesis framework. We use a convolutional neural net-

work (CNN) inside a probabilistic context to achieve this.

Analysis-by-synthesis has been a successful approach

for many tasks in computer vision, such as object recogni-

tion [13], scene parsing [15], pose estimation, and tracking

[9]. A forward synthesis model generates images from pos-
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sible geometric interpretations of the world, and then se-

lects the interpretation that best agrees with the measured

visual evidence. In particular for pose estimation, the idea

is to compare the observation with the output of a forward

process, such as a rendered image of the object of interest

in a particular pose. When attempting pose estimation in

RGB-D images, this comparison is non-trivial due to occlu-

sion or complicated sensor noise. There are for example

areas with no depth measurements in Kinect images due to

poor IR-reflectance.

1.1. Contributions

• We achieve considerable improvements over state-of-

the-art methods of pose estimation in RGB-D images

with heavy occlusion.

• To the best of our knowledge, this work is the first

to utilize a convolutional neural network (CNN) as a

probabilistic model to learn to compare rendered and

observed images.

• We observe that the CNN does not specialize to the

geometry or appearance of specific objects, and it can

be used with objects of vastly different shapes and ap-

pearances, and in different backgrounds.

The paper is organized as follows. Sec. 2 provides an

overview of related work. Our proposed approach is de-

scribed in Sec. 3. In Sec. 4 we present evaluation of our

method compared to the state-of-the-art on two datasets.

We conclude the paper in Sec. 5.

2. Related Work

A large body of work in computer vision has focused

on the problem of object detection and pose estimation, in-

cluding instance and category recognition, rigid and artic-

ulated objects, and coarse (quantized) and accurate (6D)

poses. Pose estimation has been an active topic, ranging

from template-based approaches [14, 8] over sparse feature-

based approaches [21] to dense approaches [25, 5]. In the

brief review below, we focus on techniques that specifically

address CNNs and analysis-by-synthesis.

CNNs are driving advances in computer vision in areas

such as image classification [16], detection [32], recogni-

tion [2, 23], semantic segmentation [20], and pose estima-

tion [27]. CNNs have shown remarkable performance in the

large-scale visual recognition challenge (ILSVRC2012).

The success of CNNs is attributed to their ability to learn

rich feature representations as opposed to hand-designed

features used in previous image classification methods. In

[11], rich image and depth feature representations have been

learned with CNNs to detect objects in RGB-D images. In

[1], CNNs are used to generate an RGB image given the

set of 3D chair models, the chair type, viewpoint and color.

Very recent work from Gupta et al. [10] uses object instance

segmentation output from [11] to infer the 3D object pose in

RGB-D images. Another CNN is used to predict the coarse

pose of the object. This CNN is trained using pixel nor-

mals in images containing rendered synthetic objects. This

coarse pose is used to align a small number of prototyp-

ical models to the data, and place the model that fits the

best into the scene. In contrast to the above approaches, we

use a CNN to compare rendered and observed images. The

output of our CNN is a single energy value, while in [10]

the output of the CNN is the object pose. In [7], a sim-

ilarity metric is learned. The learning process minimizes

a discriminative loss function. A CNN with siamese ar-

chitecture is used to map two faces to a feature space for

comparison. Similarly, in [30] Wohlhart and Lepetit train

a CNN to map image patches to a descriptor space, where

pose estimation and object recognition is solved using the

nearest neighbor method. Our framework is probabilistic.

The posterior distribution of the pose is modelled as a Gibbs

distribution with a CNN as energy function. Zbontar and

LeCun [31] train a CNN to predict how well two image

patches match and use it to compute the stereo matching

cost. The cost is minimized by cross-based cost aggregation

and semi-global matching, followed by a left-right consis-

tency check to eliminate errors in occluded regions. While

in [31] the CNN is used for comparing two image patches,

our CNN is used to compare rendered and observed images.

Analysis-by-synthesis has been a successful approach for

many tasks in computer vision, such as object recognition

[13], scene parsing [15], viewpoint synthesis [13], material

classification [29], and gaze estimation [26]. All these ap-

proaches use a forward model to synthesize some form of

image, which is compared to observations. Many works

learn a feature representation and compare in feature space.

For instance, in [13] the analysis-by-synthesis strategy has

been used for recognizing and reconstructing 3D objects in

images. The forward model synthesizes visual templates

defined on invariant features. In [28] differentiable features

are used to facilitate optimization. Gall et al. [9] propose

an analysis-by-synthesis framework for motion capture and

tracking. It combines patch-based and region-based match-

ing to track body parts. Patch-based matching extracts cor-

respondences between two successive frames for prediction

as well as between the current image and a synthesized im-

age to avoid drift. Recently, Brachmann et al. [5] achieved

state-of-the-art results by adapting a classical analysis-by-

synthesis approach for 6D pose estimation of specific ob-

jects from a single RGB-D image. They use a new represen-

tation in form of a joint dense 3D object coordinate and ob-

ject class labeling. The major difference to our work is that

we learn to compare in the analysis-by-synthesis approach.

For the problem of 6D pose estimation, due to occlusion or

complicated sensor noise, it can be difficult to compare the
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observation with the output of a rendered image of the ob-

ject of interest in a particular pose. In this paper, we propose

an approach, which draws on recent successes of CNNs.

Different from aforementioned approaches, we model the

posterior density of a particular object pose with a CNN that

compares an observed and rendered image. The network is

trained with the maximum likelihood paradigm. One of the

most closely related works is [18]. They use a CNN as a

part of probabilistic model. The CNN is fed in a sequen-

tial manner, first with the rendered image, then with the ob-

served image. This produces two feature vectors, which are

compared in the subsequent step, to give the probability of

the observed image. In contrast to [18], we jointly input the

rendered and observed images into a CNN to produce an en-

ergy value. The major difference is that our CNN is trained,

while they use a pre-trained CNN as feature extractor.

2.1. Review of the Pose Estimation Method [5]

We will now describe the system from [5] in detail, be-

cause it is of particular relevance for our method. Brach-

mann et al. [5] achieved state-of-the-art results by using

a random forest [6] to obtain pixelwise dense predictions,

which facilitate pose estimation. Each tree in their forest

is trained to jointly predict to which object a pixel belongs,

and where it is located on the surface of this object. A tree

outputs a soft segmentation image for each object with val-

ues between 0 and 1, indicating whether a pixel belongs to

the object or not. The predictions of different trees are then

combined to a single object probability. Additionally, each

tree outputs 3D object coordinates for each object and each

pixel. The term object coordinates refers to the coordinates

in the local coordinate system of the object. When esti-

mating the pose of a particular object, Brachmann et al. [5]

utilize the forest predictions in two ways:

Firstly, it is used to define an energy function, which is

minimized to obtain the final pose. All aspects of the energy

follow the analysis-by-synthesis principle. It is based on a

pixelwise comparison between the predictions, the recorded

depth values and rendered images of the object in the partic-

ular pose. In detail, three comparisons are done: (a) the ren-

dered depth image of the object is compared to the recorded

depth image; (b) the rendered image of object coordinates

is compared to the predicted object coordinates; (c) the ren-

dered segmentation mask of the object is compared to the

predicted object class probability for the object. The pixel-

wise error inside the segmentation mask is aggregated and

divided by the area of the mask. Robust error measures are

used to deal with outliers.

Secondly, they use the forest predictions for an effi-

cient optimization scheme to minimize the energy described

above. It consists of two steps. The pixelwise object class

probabilities are used inside the RANSAC pose estimation.

In detail, sets of three pixels are sampled depending on the

object class probability. For each set a pose hypothesis is

calculated using the 3D-3D-correspondences between the

camera coordinates, provided by the depth camera, and the

object coordinates predicted by the forest. The best hy-

potheses, according to the energy function, are refined in

a final step. Refinement is done by repeatedly determining

inlier pixels in the rendered mask of the object, and again

using the correspondences they provide to calculate a better

pose. Finally. the pose with the lowest energy is taken as

the final estimate.

In our work, we build upon the framework of [5]. As

in [5] we use the regression-classification random forest to

obtain the predictions described above. We also use their

optimization scheme, but replace the energy function with a

novel one, based on a CNN, that is trained. The key differ-

ence is that while the energy function in [5] has only a few

parameters which can be trained via discriminative cross-

validation, the CNN has around 600K, which we train with

a maximum likelihood objective. We show that this rich-

ness of parameters makes remarkable difference, and prac-

tical challenges such as occlusion and noise are much better

dealt with. This approach will be described in the next sec-

tion.

3. Method

We will first give a description of the pose estimation

task and introduce our terminology. Then we will describe

our probabilistic model. The heart of this model is a CNN,

which will be discussed subsequently. This is followed by a

description of our maximum likelihood training procedure

of the probabilistic model. Finally, our inference procedure

at test time is described. Fig. 2 gives an overview of our

energy evaluation pipeline.

3.1. The Pose Estimation Task

We will now formally define the task of 6D pose esti-

mation. Our goal is to estimate the pose H of a rigid ob-

ject1 from a set of observations denoted by x, which will be

discussed later. A pose describes the transformation from

the local coordinate system of the object to the coordinate

system of the camera. The local coordinate system has its

origin in the center of the object. Each pose H = (R, T ) is

a combination of two components. The rotational compo-

nent R is a 3 × 3 matrix describing the rotation around the

center of the object. The translational component T is a 3D

vector corresponding to the position of the object center in

the camera coordinate system.

Let us now describe the observation x that is used to es-

timate the object pose. We use RGB-D images as input.

However, since we use the same random forest predictions

1It should be noted that we assume the object to be present in the field

of view, i.e. we do not perform object recognition.
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as in [5], the term observation or observed images will re-

fer to two parts: (a) the forest predictions as described in

[5], as well as (b) the recorded depth image. The reason for

this simplified view is that the focus of our work lies on the

modeling of the posterior density and aspects of the random

forest prediction.

3.2. Probabilistic Model

We model the posterior distribution of the pose H given

the observations x as a Gibbs distribution

p(H|x;θ) =
exp

(

− E(H,x;θ)
)

∫

exp
(

− E(Ĥ,x;θ)
)

dĤ
, (1)

where E (H,x;θ) is the so called energy function. The en-

ergy function is a mapping from a pose H and the observed

images x to a real number, parametrized by the vector θ.

Note that using a Gibbs distribution to model the posterior

is a common practice for conditional random fields (CRFs)

[19]. However, the underlying energies are quite different.

While in a CRF the energy function is a sum of potential

functions, we implement it by using a CNN which directly

outputs the energy value. The parameter vector θ holds the

weights of our CNN.

3.3. Convolutional Neural Network

In order to implement the mapping from a pose H and

the observed images x to an energy value we first ren-

der the object in pose H to obtain rendered images r(H).
Our CNN then compares x with r(H) and outputs a value

f
(

x, r(H);θ
)

. We define the energy function as

E(H,x;θ) = f
(

x, r(H);θ
)

. (2)

Our network is trained to assign a low energy value when

there is a large agreement between observed images and

renderings and a high energy value when there is little

agreement. To perform the comparison we use a simple

architecture, in which we feed all rendered and observed

images as separate input channels into the CNN.

Note that we consider only a square window around the

center of the object with pose H . The width of the win-

dow is adjusted according to the size and distance of the ob-

ject, as suggested by [5]. For performance reasons windows

which are bigger than 100 × 100 pixels are down sampled

to this size. We use in total six input channels for our net-

work. Note that Fig. 2 shows the images from which these

six input channels are derived.

One observed depth channel and one rendered depth

channel that contain values in millimeters. They are nor-

malized by subtracting the z component of the object posi-

tion according to H .

One rendered mask channel of the object. Pixel values

are either +1 for all pixels belonging to the object or −1
otherwise.

One depth mask channel indicating whether a depth value

was measured in the pixel. Again, pixel values are either +1
for all pixels where a depth was measured or −1 otherwise.

One probability channel holding the combined pixel wise

object probabilities from all trees. The values are re-scaled

to lie between −1 and +1.

One object coordinate channel holding the pixel wise Eu-

clidean distances between the rendered object coordinates

and the predicted object coordinates from the tree giving

the highest object probability for the respective pixel. We

divide all values by the object diameter for normalization.

The tanh activation function is used after every con-

volution layer and after every fully connected layer. The

first convolution layer C1 consists 128 convolution kernels

of size 3 × 3 × 6. The second convolution layer C2 con-

sists of 128 kernels of size 3 × 3 × 128, which is followed

by a 2 × 2 max-pooling layer with stride 2 in each direc-

tion. The third convolution layer C3 is identical to C2. The

fourth convolution layer C4 consists of 256 kernels of size

3 × 3 × 128. It is followed by a max-pooling operation

over the remaining image size. The 256 channels are further

processed by two fully connected layers with 256 neurons

each and finally forwarded to a single output unit.

3.4. Maximum Likelihood Training

In training we want to find an optimal set of pa-

rameters θ
∗ based on labeled training data L =

(x1, H
∗

1 ) . . . (xn, H
∗

n), where xi shall denote observations

of the i-th training image and H∗

i the corresponding ground

truth pose. We apply the maximum likelihood paradigm and

define

θ
∗ = argmax

θ

n
∑

i=1

ln p(H∗

i |xi;θ). (3)

In order to solve this optimization task we use stochastic

gradient descent [3], which requires calculating the partial

derivatives of the log likelihood for each training sample

∂

∂θj
ln p(H∗

i |xi;θ) = −
∂

∂θj
E (H∗

i ,xi;θ)

+E

[

∂

∂θj
E (H,xi;θ)

∣

∣xi;θ

] (4)

with respect to each parameter θj . Here E[·|xi;θ] stands

for the conditional expected value according to the poste-

rior distribution p(H|xi;θ), parametrized by θ. While the

partial derivatives of the energy function can be calculated

by applying back propagation in our CNN, the expected

value cannot be found in closed form. Therefore, we use the

Metropolis algorithm [22] to approximate it, as discussed

next.

Sampling. It is possible to approximate the expected value
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Figure 2. Our pipeline for the calculation of the energy function: Input and output are indicated by green arrows. The contents of the

dashed box consists of preparatory steps, that have to be computed only once per image. (a) The RGB-D image we will base our estimate

on. The image is processed by a random forest to calculate predictions. (b) The predicted object probabilities and object coordinates. In

the probability image bright pixels indicate a high probability. In the object coordinate images the 3D object coordinates are mapped to

the RGB cube for visualization. There are multiple object coordinate images. Each one represents the prediction of one tree. The object

probabilities are combined to a single image [5]. (c) The pose we want to calculate the energy for. (d) A 3D model of the object. (e) Images

produced by rendering the 3D model in the input pose. We render an object coordinate image and a depth image. We only use cutouts

around the object. (f) Images of equal size are cut out from the predicted object probabilities, object coordinates and from the recorded

depth image. (g) Finally, the rendered and observed images are processed and fed into the CNN (Sec. 3.3). The single output of the CNN

is our energy function.

in Eq. (4) by a set of pose samples

E

[

∂

∂θj
E (H,xi;θ)

∣

∣xi;θ

]

≈
1

N

N
∑

k=1

∂

∂θj
E (Hk,xi;θ) ,

(5)

where H1 . . . HN are pose-samples drawn independently

from the posterior p(H|xi;θ) with the current parameters

θ. We use the Metropolis algorithm [22] to generate these

samples. It allows sampling from a distribution with a

known density function that can be evaluated up to a con-

stant factor. The algorithm generates a sequence of samples

Ht by repeating two steps:

1. Draw a new proposed sample H ′ according to a pro-

posal distribution Q(H ′|Ht).

2. Accept or reject the proposed sample according to an

acceptance probability A(H ′|Ht). If the proposed

sample is accepted set Ht+1 = H ′. If it is rejected

set Ht+1 = Ht.

The proposal distribution Q(H ′|Ht) has to be symmetric,

i.e. Q(H ′|Ht) = Q(Ht|H
′). Our particular proposal distri-

bution will be described in detail in the next paragraph. The

acceptance probability is in our case defined as

A(H ′|Ht) = min

(

1,
p(H ′|x;θ)

p(Ht|x;θ)

)

, (6)

meaning that whenever the posterior density p(H ′|x;θ) at

the proposed sample is greater than the posterior density

p(Ht|x;θ) at the current sample, the proposed sample will

automatically be accepted. If this is not the case it will be

accepted with the probability p(H ′|x;θ)/p(Ht|x;θ).
Proposal Distribution. A common choice for the proposal

distribution is a normal distribution centered at the current

sample. In our case this is not possible because the rota-

tional component of the pose lives on the manifold SO(3),
i.e. the group of rotations. We define Q(H ′|Ht) implic-

itly by describing a sampling procedure and ensuring that it

is symmetric. The translational component T ′ of the pro-

posed sample is directly drawn from a 3D isotropic normal

distribution N (Tt,ΣT ) centered at the translational compo-

nent Tt of the current sample Ht. The rotational component

R′ of the proposed sample H ′ is generated by applying a

random rotation R̂ to the rotational component Rt of the

current sample: R′ = R̂Rt.

We calculate R̂ as the rotation matrix corresponding to
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an Euler vector e, which is drawn from a 3D zero centered

isotropic normal distribution e ∼ N (0,ΣR).

Initialization and Burn-in-phase. When the Metropolis

algorithm is initialized in an area with low density it re-

quires more iterations to provide a fair approximation of

the expected value. To find a good initialization we run our

inference procedure (described in the next section) using

the current parameter set. We then perform the Metropo-

lis algorithm for a total of 130 iterations, disregarding the

samples from the first 30 iterations which are considered as

burn-in-phase.

3.5. Inference Procedure

During test time, we aim at finding the MAP estimate,

i.e. the pose maximizing our posterior density as given in

Eq. (1). Since the denominator in Eq. (1) is constant for any

given observation x, finding the MAP estimate is equiva-

lent to minimizing our energy function. To achieve this, we

utilize the optimization scheme from [5], but replace their

energy function with ours.

4. Experiments

In the following, we compare our approach to the state-

of-the-art method of Brachmann et al. in [5] for two dif-

ferent datasets. We first introduce the datasets. After that

we describe details of our training procedure, and finally

present quantitative and qualitative comparisons. We will

see that we achieve considerable improvements for both

datasets. Additionally, we observe that our CNN general-

izes from a single training object to a set of 11 test objects,

with large variability in appearance and geometry.

4.1. Datasets, Competitors, Evaluation Protocol

Datasets. We use two datasets featuring heavy occlusion.

The first dataset was created by Brachmann et al. [5] by an-

notating the ground truth poses for eight partially occluded

objects in images taken from the dataset of Hinterstoisser

et al. [14]. We will refer to this dataset as the occlusion

dataset from [5] and [14]. It includes a total of 8992 test

cases (1214 images with multiple objects), which are used

for testing. We choose this dataset because it is more chal-

lenging than the original dataset from [14], on which [5]

already achieves an average of 98.3% correctly estimated

poses.

The second dataset was introduced by Krull et al. in [17].

It provides six annotated RGB-D sequences of three differ-

ent objects and consists of a total of 3187 images. We use

three of the sequences for training and the other three (a

total of 1715 test images) for testing.

Evaluation Protocol. We use the evaluation procedure as

described in [5]. This means we calculate the percentage of

correctly predicted poses for each sequence. As in [14], we

Figure 3. Images from one of our training-testing configurations:

the Samurai 1 sequence is used for training, the Cat 1 for vali-

dation. Sequences of all objects are used for testing. Note, the

objects are of vastly different shape and appearance.

calculate the average distance between the 3D model ver-

tices under the estimated pose and under the ground truth

pose. A pose is considered correct when the average dis-

tance is below 10% of the object diameter.

Competitors. We compare our method to the one presented

in [5]. For doing so we needed to re-implement this method.

We observed that our re-implementation gives on average

slightly superior results. In the following, we mostly report

two numbers, those of our re-implementation and those of

the method of [5], reported in [5] or [17]. For completeness,

we additionally provide the numbers from LineMOD [14]

as reported in [5].

4.2. Training Procedure

Random Forests. We used different random forests for

training and testing on both datasets. The forests were

kindly provided to us by the authors of [5].

CNN. We trained three CNNs, each time using only a sin-

gle object from the dataset provided by Krull et al. in [17].

The sequences Toolbox 1, Cat 1, and Samurai 1 served as

training sets - see Fig. 3. The first 100 frames from Samu-

rai 1 were removed in order to obtain a high percentage of

frames with occlusion. Our validation set consists of 100

randomly selected frames from the Cat 1 sequence, or the

Samurai 1 sequence (in the case where Cat 1 was used as

training set). The weights of the CNN were randomly ini-

tialized. Before training, the random weights of the last

layer were multiplied by factor 1000, in order to cover a

greater range of possible energy values. After every 5th it-

eration of stochastic gradient descent, we perform inference

on the validation set and adjust the learning rate. The learn-

ing rate at step t was proportional to γt = γ0/(1 + λt) [4],

with γ0 = 10 and λ = 0.5. After training we pick the set of

weights which achieved the highest percentage of correctly

estimates poses on the validation set. We use the criterion

from [14] to classify a pose as correct. One training cycle

consisting of five steps of stochastic gradient descent and

validation took2 9min 46sec (2min 27sec + 7min 19sec).

Further details on our training procedure can be found in

2We used an Intel(R) Core (TM) i7-3820 CPU at 3.60GHz with

GeForce GTX 660 GPU. The Cat 1 sequence was used for training and

100 random frames from Samurai 1 for validation.
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the supplementary material.

4.3. Comparison

Occlusion Dataset from [5] and [14]. Quantitative results

for this dataset are shown in Fig. 4, for all individual test

and training objects. Considering the average over all ob-

jects we achieve an improvement of up to 9.23% compared

to our re-implementation of [5] and 10.4% compared to the

reported values in [5]. Some qualitative results are illus-

trated in Fig. 7. In Fig. 5 we show another comparison of

our method with respect to [5]. It illustrates that we achieve

the biggest gain for occlusions between 50% and 60%.

Dataset of Krull et al. For this dataset we observe simi-

lar results as with the previous dataset. Since the other se-

quences were used in training and validation, we evaluated

only with the Toolbox 2, Cat 2, and Samurai 2 sequences.

When averaged over all objects we achieve an improvement

of 10.97% compared to the results of [5]. The quantitative

results can be found in Fig. 6, and a few qualitative results

are shown in Fig. 8.

Discussion of Failure Cases. The failure cases which are

framed red in Fig. 7 have to be considered as failure of our

learned energy function. However, the failure cases framed

orange still exhibit a lower energy at the ground truth pose

than at the estimate. This indicates a failure of the opti-

mization scheme. It should be investigated in which case

the correct pose can be found using an alternative optimiza-

tion scheme. In the dataset introduced by Krull et al. our

accuracy for the Tool Box sequences is below the one of our

competitor (see Fig. 6). We attribute this to the fact that the

Tool Box is the biggest object and most strongly affected by

the down sampling schema described in Sec. 3.3.

Figure 4. Quantitative comparison of our method against the re-

sults of [5] and LineMOD [14] on the occlusion dataset from [5]

and [14]. Circles, Squares, and Triangles indicate the individual

performance of CNNs trained with Tool Box, Cat, and Samurai

respectively. The green bars indicate the average result. Aver-

aged over all test and training objects we obtain the correct pose in

72.98% of cases, in contrast to 63.24% for [5] and 48.84% for

LineMOD [14]. A table with the the detailed numbers can be

found in the supplementary material.

Figure 5. The percentage of correctly estimated poses for all test

cases of the occlusion dataset from [5] and [14], as a function of

the level of occlusion. For this we divided the test cases into bins

according to the amount of occlusion, using a bin width of 10%.

(See details of this procedure in the supplementary material.) We

compare our method (using the CNN trained with the Samurai

object) to our re-implementation of [5]. We achieve improvements

of over 20% for occlusion levels between 50% and 60%.

Figure 6. Comparison of our method on the dataset of Krull et al.,

against the results of [5]. Circles, Squares, and Triangles indicate

the individual performance of CNNs trained with Tool Box, Cat,

and Samurai respectively. The green bars indicate the average re-

sult. We report 56.02%, 59.56%, and 54.65% correctly estimated

poses for Tool Box, Cat, and Samurai respectively. Averaged over

all test and training objects we achieve 56.74%.

5. Conclusion

We have presented a model for the posterior distribu-

tion in 6D pose estimation, which uses a CNN to map ren-

dered and observed images to an energy value. We train the

CNN based on the maximum likelihood paradigm. It has

been demonstrated that training on a single object is suffi-

cient and the CNN is able to generalize to different objects

and backgrounds. Our system has been evaluated on two

datasets featuring heavy occlusion. By using our energy

as objective function for pose estimation, we were able to

achieve considerable improvements compared to the best

previously published results.

Our approach is not restricted to the feature channels and

even the application we demonstrated. The architecture can

in principle be applied to any kind of observed and rendered

image. We think it would be worth investigating if the ap-
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Figure 7. Qualitative results of our method on the occlusion dataset from [5] and [14]. Here, green and blue silhouettes correspond to the

ground truth and our estimate, respectively. The test images depicted with a green frame show correct estimates. Images with orange and

red frame show incorrect estimates. The image with an orange frame shows a case where the energy of the ground truth pose, according to

Eq. (2), is lower than the energy of the estimated pose. In this case a better pose may be found with an improved optimization scheme.

Figure 8. Qualitative results of our method on the test cases from

the dataset introduced in [17]: Green frames correspond to cor-

rectly estimated poses according to the criteria from [14]. Orange

frames correspond to incorrectly estimated poses with a lower en-

ergy at the ground truth than at the estimated pose.

proach could be applied to other scenarios. An example

could be pose estimation from pure RGB without recorded

depth image and a forest to calculate features. Pose esti-

mation for object classes could also benefit from our ap-

proach. Considering the recent success of CNNs in recogni-

tion [2, 23] it might be possible for a CNN to learn to com-

pare observed images to renderings of an idealized model

representing an object class instead of an instance. Our ap-

proach is not limited to comparing images of the same kind,

as for example rendered and observed depth images. In-

stead, it could learn to asses the plausibility of the shading

in an observed RGB image by comparing it to a rendered

depth image, which can be more easily produced than a re-

alistic RGB rendering.

An interesting future line of research could be to train a

CNN to predict pose updates from observed and rendered

images. This could replace the refinement step and might

improve the results.
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