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Abstract

Statistical shape and appearance models are often based

on the accurate identification of one-to-one correspon-

dences in a training data set. At the same time, the de-

termination of these corresponding landmarks is the most

challenging part of such methods. Hufnagel et al. devel-

oped an alternative method using correspondence proba-

bilities for a statistical shape model. We propose the use

of probabilistic correspondences for statistical appearance

models by incorporating appearance information into the

framework. A point-based representation is employed rep-

resenting the image by a set of vectors assembling posi-

tion and appearances. Using probabilistic correspondences

between these multi-dimensional feature vectors eliminates

the need for extensive preprocessing to find correspond-

ing landmarks and reduces the dependence of the gener-

ated model on the landmark positions. Then, a maximum

a-posteriori approach is used to derive a single global opti-

mization criterion with respect to model parameters and ob-

servation dependent parameters, that directly affects shape

and appearance information of the considered structures.

Model generation and fitting can be expressed by optimiz-

ing the same criterion. The developed framework describes

the modeling process in a concise and flexible mathemati-

cal way and allows for additional constraints as topological

regularity in the modeling process. Furthermore, it elimi-

nates the demand for costly correspondence determination.

We apply the model for segmentation and landmark iden-

tification in hand X-ray images, where segmentation infor-

mation is modeled as further features in the vectorial image

representation. The results demonstrate the feasibility of the

model to reconstruct contours and landmarks for unseen

test images. Furthermore, we apply the model for tissue

classification, where a model is generated for healthy brain

tissue using 2D MRI slices. Applying the model to images of

stroke patients the probabilistic correspondences are used

to classify between healthy and pathological structures. The

results demonstrate the ability of the probabilistic model to

recognize healthy and pathological tissue automatically.

?

...

p(si ,m j)

p(si+1 ,m j)

p(si−1 ,m j)

p(si+x ,m j)

m jm j

si

Shape dependent
positions with 

one-to-one
correspondences

Shape independent
positions with 

probabilistic
correspondences

Figure 1. In classical SSMs or AAMs the sampling point posi-

tions are chosen to represent the shape and/or distinctive land-

marks (left) and correct one-to-one correspondences are needed.

In our approach (right) the sampling points are distributed inde-

pendently of the object shape and probabilistic correspondences

p(si|mj) between a point mj ∈ M and all the other sampling

points si ∈ S are computed.

1. Introduction

Statistical models play an important role in image seg-

mentation and classification [10]. Especially in medical

image analysis Statistical Models address the heteroge-

neous nature of anatomical structures with high variability

in shape and appearances. Cootes et al. [3] introduced a

Statistical Shape Model (SSM), where the shapes of objects

are represented by a set of landmarks describing statistical

shape properties. Classical Shape Models are generated us-

ing a principal component analysis (PCA). To determine

the mean shape and possible shape variations of the con-

sidered structure included in a training data set, the corre-

sponding landmarks that represent the same anatomical lo-

cation have to be known. A manual identification of these

points is not practical due to their large number. There-

fore, automatic approaches were proposed in the literature

for the determination of one-to-one corresponding land-

marks [1, 10, 17, 20]. Furthermore, it is debatable whether

the exact same anatomical landmark exists in all images at

well defined positions due to anatomical differences or dif-

ferent acquisition techniques for medical images.

Point-based registration approaches like the Iterative

Closest Point (ICP) algorithm encounter the same problem

of non-identical or non-existing point-pairs. Therefore, al-

gorithms have been developed using probabilistic instead
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of one-to-one correspondences. These probability-based

approaches include the Expectation Maximization-Iterative

Closest Point (EM-ICP) algorithm by Granger et al. [9], the

Softassign [8], or the Coherent Point Drift algorithm [18]

and other non-rigid approaches [2, 13].

Hufnagel et al. [12, 11] proposed the use of correspon-

dence probabilities when building an SSM to model the

uncertainty of the point locations and to reduce the costs

for determining the “correct” landmarks. A maximum-a-

posteriori (MAP) framework was developed estimating the

model parameters (mean shape and variation modes) by

minimization of a single global criterion. Active Appear-

ance Models (AAM) were developed as an extension of

SSMs, modeling also the appearance information of an ob-

ject [4]. However, AAMs equally presuppose the existence

of one-to-one correspondences and are generated in three

steps: (1) identification of corresponding landmarks and

generation of an SSM, (2) warping all images to the mean

shape and sampling image intensities to build the appear-

ance model, and (3) combining both models. In the model

adaption process to an unseen test image, another warping

step is necessary for shape-normalization before computing

intensity differences [4].

The idea of using appearance models for segmenta-

tion and classification of previously trained objects is sim-

ilar to atlas-based approaches [19]. But the problem to

be solved with most atlas-based (therefore registration-

based) approaches is the presupposed existence of all

classes/segmentation regions. The challenge of registrat-

ing occluded images with un-occluded images is not fully

solved yet. Therefore, using a model without presupposed

correspondences allows for more robustness and during the

adaption/registration step not only positions but also ap-

pearances can be fitted to the new unseen image.

In this work we propose a new framework for appearance

models using probabilistic correspondences, where sam-

pling point positions and appearance features are modeled

at the same time using a single global optimization crite-

rion. We extended the method of Hufnagel et al. [12, 11]

by appearance information. For this purpose, we use a

point-based representation of images combining sampling

point positions and appearance information. Then, a MAP

approach is employed to derive a single global optimiza-

tion criterion with respect to model parameters and obser-

vation dependent parameters, that affect shape and appear-

ance information of the considered structures. Model gen-

eration and model fitting can be expressed by optimizing

the same criterion. In contrast to classical AAMs, the pre-

processing for identifying one-to-one correspondences and

the warping-step to eliminate shape differences is no longer

required. Furthermore, we extent the derived criterion by a

regularization term which penalizes implausible topological

changes.

Previous work on sparse appearance models treat shape

and appearance parameters separately and combine them af-

terwards (like AAM) or are based on complex local descrip-

tors [5, 6]. The main idea of our point-based appearance

model is that position and appearance features are treated

the same way and optimized equally at the same time. Fur-

thermore, the approach does not depend on particular ap-

pearance features at interest image points.

We applied the model for segmentation of the hand con-

tour as well as the detection of landmarks describing finger

joints in 2D hand X-ray images. Segmentation informa-

tion (labels/landmarks) is modeled as further features in the

vectorial image representation. The results demonstrate the

feasibility of the model to reconstruct contours as well as

landmarks for unseen test images. Furthermore, we applied

the model for classification, where a model is generated for

healthy brain tissue using 2D MRI slices. Adapting the

model to pathological images containing stroke tissue the

probabilistic correspondences are used to classify between

healthy and pathological structures demonstrating the abil-

ity of the probabilistic model to distinguish between healthy

and pathological tissue.

Our goal is to introduce a flexible approach based on a

closed-form mathematical formulation, that is not depend-

ing on correspondences and is not composed of multiple

steps ((1) correspondence determination, (2) building SSM,

(3) warping, (4) building AAM) but on the minimization of

a single global criterion.

2. Methods

2.1. Sparse Image Representation

We generate a point-based representation of an image

I : Ω → R,Ω ⊂ R
Dx . Under the assumption that we

can compute Df appearance features for each image po-

sition, image I is represented by Ns samples at positions

xi = (xi,1, . . . , xi,Dx
) ∈ Ω, with appearance features

fi = (fi,1, . . . , fi,Df
) for each sample i. The positions and

features are now assembled in Ns vectors si = (xi, fi) of

dimension D = Dx +Df : S = {si|i = 1, . . . , Ns}.

In the simplest case, the appearances are the image’s

gray values. But to generate application-specific representa-

tions, gradient-based, Haar-like or frequency-based features

such as Gabor wavelets [15] can be used.

In contrast to classical SSMs or AAMs, where the shape

is explicitly modeled by landmarks representing the shape

or distinctive landmarks, the idea is to choose the sampling

point positions independently of any shape information (see

Fig. 1), e.g. by setting the points in a grid overlying the im-

age, or to randomize the positions. We have investigated

this approach in a previous work [7]. Here, we determine

the sampling points depending on appearance features (e.g.

highest Gabor wavelet filter answers) under the condition
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that a certain minimal distance (spacing) is maintained be-

tween all samples. This is assumed to lead to sampling

points in similar anatomical regions in all of the observa-

tions and hence improves the data reconstruction from the

sparse image representation.

2.1.1 Probabilistic Correspondences

In contrast to classical SSMs and AAMs, where the cor-

responding point pairs between the objects of the train-

ing data set need to be predefined, the determination of

correspondences or rather correspondence probabilities is

part of the model generation in our approach. Given two

representations S = {si|i = 1, . . . , Ns} (observation) and

M = {mj |j = 1, . . . , Nm} (model), the idea is to deter-

mine the probability that sampling point si is a noisy obser-

vation of model point mj (see Fig. 1). This can be defined

using a multivariate Gaussian distribution:

p(si|mj) =
1

(2π)
D
2 |Σ|

1

2

exp(−
1

2
(si−mj)

TΣ−1(si−mj)),

(1)

where Σ ∈ R
D×D contains the covariances of the point po-

sitions and appearance features (diagonal values, >0). It

should be noted that in contrast to one-to-one correspon-

dences, the number of sampling points Ns in S does not

have to match the number of sampling points Nm in M.

Expectation Maximization (EM) Approach for Cor-

respondence Determination: Given S and M without

known correspondences and a set of parameters θ describ-

ing a transformation of M, the goal is now to find the best

parameters θ to match S and M. To solve this problem,

Granger et al. [9] used an EM approach to perform a point-

based registration. It maximizes the expectation of S for a

given M and θ:

E(log p(S|M, θ)) =
1

Nm

Ns
∑

i=1

Nm
∑

j=1

E(Hij) log p(si|mj , θ),

(2)

under the assumption that si are independent of each other

and with E(Hij) representing the expectation that si corre-

sponds to mj for a given θ:

E(Hij) = p(si|mj , θ) /

Nm
∑

ι=1

p(si|mι, θ). (3)

The EM approach now maximizes the likelihood iteratively,

where it alternates between an expectation step, in which

E(Hij) is estimated for the current parameters θ, and a

maximization step, where the estimated likelihood is maxi-

mized with respect to θ [9].

2.2. Probabilistic Appearance Model (PAM)

The aim of the model generation is to construct a gen-

erative appearance model that optimally fits a given data

IN N observations (with Nf features); number of variation

modes n
INITIALIZE Sk = {sk,i = (xk,i, fk,i)|i = 1, . . . , Ns(k)}
DO WHILE C(Q,Θ) decreases

Optimize model parameter (with fix Q)

DO WHILE C(Q,Θ) decreases

1. estimate variances Σ between Sk and Mk

2. optimize M̄

3. optimize vp and λp, p = 1, . . . , n

Optimize observation parameter (with fix Θ)

DO WHILE C(Qk,Θ) decreases for each k

4. optimize Tk (and update Mk,E(Hij)k)
5. optimize ωk (and update Mk,E(Hij)k)

OUT Mk

OUT Θ = {M̄,vp, λp, n,Σ|p = 1, . . . , n}

Figure 2. Model generation: First model parameters Θ are opti-

mized until convergence (step 1.-3.), then the observation param-

eters are optimized with fixed Θ (step 4.-5.). The model adaption

process consists only of the underlaid steps 4.-5 with output Mk.

set of N images with associated image representations

Sk, k = 1, . . . , N . As for AAMs, our PAM consists of a

mean model M̄ and a set of n variation modes vp (with

standard deviations λp) reflecting the variation in the train-

ing data Sk. The observations Sk are interpreted as ran-

domly generated by the (unknown) model. Now we can

divide the parameters of our approach into model param-

eters Θ = {M̄, vp, λp, n, Σ|p = 1, . . . , n} and observa-

tion dependent parameters Qk = {Tk,ωk}, k = 1, . . . , N ,

where Σ ∈ R
D×D is the covariance matrix (diagonal val-

ues, >0) to regulate the correspondence between si and mj ,

ωk are the observation dependent weights of the variation

modes and Tk is an affine transformation to match Sk to

the model instance Mk, where Tk ⋆ sk,i only transforms

the sampling positions and not the appearance information:

Tk ⋆ sk,i = (Tk(xi), fi)). Given Θ and Qk, the model gen-

erates new instances by

Mk = Tk
−1 ⋆ (M̄+

n
∑

p=1

ωk,pvp), with (4)

mk,j = Tk
−1 ⋆ (m̄j +

n
∑

p=1

ωk,pvp,j). (5)

2.2.1 Maximum A-Posteriori Approach for Parameter

Optimization

To find the optimal parameters for Θ and Qk, the idea is

to optimize the model together with the observation depen-

dent weights and the correspondences between observations
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Figure 3. Model Adaption Process. Note that the observation Snew does neither include the segmentation features nor the sampling points

on the hand border (green dots) but the corresponding model instance Mnew does. Therefore, the wanted segmentation information on the

right (red contour and joint landmarks) is reconstructed with additional points from the model. Furthermore, it should be noted, that the

model adaption is performed by minimizing the differences between the sparse representations Snew and Mnew and not Inew and Mnew.

Sk and associated model instances Mk. Therefore, the a-

posteriori probability that all Sk can be generated by Θ
with Qk is maximized:

∑N
k=1p(Qk,Θ|Sk) → max. Us-

ing Bayes’ theorem we minimize:

C(Q,Θ) = −

N
∑

k=1

log p(Qk,Θ|Sk) (6)

= −

N
∑

k=1

log

(

p(Sk|Qk,Θ)p(Qk|Θ)p(Θ)

p(Sk)

)

Each partial probability can be considered and defined sep-

arately:

Prior probability of observations p(Sk): p(Sk) is as-

sumed to be constant.

Likelihood p(Sk|Qk,Θ): The probability of the model

instances generated by the model depends on the weights

ωk and transformation Tk of Sk:

p(Sk|Qk,Θ) = p(Sk|Tk,ωk,Θ) (7)

=

Ns(k)
∏

i=1

1

Nm

Nm
∑

j=1

E(Hij)k p(sk,i|mk,j , Tk).

Prior probability of observation parameters

p(Qk|Θ): The probability of the transformation Tk is

independent of the model parameters Θ and the current

weights ωk, and p(Tk) is assumed to be constant. The

weights ωk are modeled as Gaussian distributed with

standard deviation λp:

p(Qk|Θ) = p(ωk|Θ) (8)

=

n
∏

p=1

((2π)n/2λp)
−1 exp

(

−ωk,p
2 / 2λp

2
)

.

Prior probability of the model p(Θ): In Hufnagel et

al. [12], p(Θ) is assumed to be constant, meaning implau-

sible topological changes are not penalized. By introduc-

ing a higher number of degrees of freedom (position plus

feature information) to our model a regularization becomes

advantageous. Therefore, we define p(Θ) with the help of

a Markov random field, where the position values for one

sampling point depend on its local neighbors. The idea is

to favor variation modes that keep the distance between the

initial sampling point positions of the initial mean model

and the adapted model instances small. Then, analog to

p(sk,i|mk,j , Tk), we model the distances between the initial

mean model and the adapted model instances as a Gaussian

distribution. It should be noted that p(Θ) does not penalize

absolute point position distances but only relative distances

between neighbors to avoid extreme topology changes.

2.2.2 Model Generation

Given our optimization criterion, C(Q,Θ) is minimized to

determine the optimal model parameters Θ and observation

parameters Q for the training data set. Another advantage of

employing probabilistic correspondences is that the images

in the training data set does not have to be complete in the

sense that all possible structures have to be included in each

image. Therefore, we are able to build an entire model of

partial training images, where the missing parts are simply

defined by zero-value correspondences and therefore are ig-

nored during the model generation (see. Sec. 3.2 and Fig. 7

for an example).

For the optimization of C(Q,Θ) we use an iterative

EM-strategy, which alternates between optimization of Θ
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Figure 4. Classification of pathological structures not included in the model: if the mode is built employing only healthy images (e.g. MRI

brain slices), the new input image (a) including a hyperintense pathological structure is represented by the model without the pathology (b).

Low correspondence values between input Snew and adapted Mk (c) then indicate the location of the pathological structure. (d) shows the

original input image with an expert segmentation (green) and the correspondence based segmentation of the pathology.

and updating the model-to-observation correspondences by

computing Tk,ωk for each observation (see Fig. 2). We

can derive closed form solutions for all parameters except

vp, which is computed with a Lagrange method subject to

the constrains vp
T
vp = 1 and vp

T
vq = 0 for q 6= p to

ensure orthonormal variation modes. The most influential

parameter of the generated model is the covariances matrix

Σ in Eq. 1, determining which points are corresponding de-

pending on their distances. We estimate Σ in each iteration

based on the current distances between Sk and Mk.

2.3. Model Adaption

For the model adaption the model parameters Θ are fixed

and C(Q,Θ) is minimized with respect to Q for a new un-

seen test image (see Fig. 2 step 4.-5.). Due to the vecto-

rial representation of the image data our PAM is very flex-

ible in terms of choice and number of appearance features

with can describe the image information as well as any ad-

ditional information. Furthermore, the use of probabilistic

correspondences provide additional information about the

adapted model instance. Therefore, we can apply our model

to segmentation as well as classification.

2.3.1 Segmentation

To apply the model for segmentation purposes, additional

information about given segmentations or landmarks of the

training set is needed, which can be included into the model

by adding further features describing a set of Dc con-

tours/landmarks (C/L). We use distance maps for each of

the given structures to ensure that all the sampling points

contain information about their positions. Since there is

no limit to the number of features, multi-object segmenta-

tion is included, where an extra distance feature is added

for each object. Now a sampling point consists of position,

features and segmentation information: si = (xi, fi, ci) ∈
R

(Dx+Df+Dc) with ci = (ci,1, . . . , ci,Dc
). During the

model generation process the segmentation information is

treated the same way as the appearance features. To adapt

the model to a new and unseen image Snew without the seg-

mentation information, the computation of ωnew and Tnew

is done with a sub-vector of M̄ without contour informa-

tion ci. The determined weights ωnew can then be used to

reconstruct a model instance Mnew with contour informa-

tion that is interpreted as the segmentation result for Snew.

Fig. 3 shows the segmentation process for a model with con-

tour as well as label information (see Sec. 3.1), and further-

more, the model is built with additional points lying on the

object’s contour (green dots). Therefore, these points are

in the model (model instances) but not in the new unseen

images (without known contour). Due to the use of proba-

bilistic correspondences, this does not lead to problems, but

can be used to increase the accuracy of the model.

2.3.2 Classification

A pixelwise classification of medical image objects can also

be considered as a multi-object segmentation employing

label information for each class. But classifying patholo-

gies, the considered structures can be highly heterogeneous

which leads to problems using shape or appearance mod-

els to model these pathologies. Because models combining

position and appearance information would need a train-

ing data set including all possible manifestations and lo-

cations of the considered structures, which is not practi-

cal when it comes to highly heterogeneous pathologies like

e.g. stroke or tumor tissue in the brain. Another possi-

bility is to build a model of the healthy/normal structure.

Due to our use of probabilistic correspondences a “healthy”

model can be adapted to new images including pathologies

or occlusions. Then, the resulting correspondence proba-

bilities indicate the regions where the new image includes

“unhealthy” structures that do not fully correspond to the

healthy model. In contrast to the segmentation process,

the wanted information is not modeled as additional fea-

tures but is given by the resulting correspondence proba-
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Input image (hand X-ray) Four examples of Gabor wavelet features Segmentation features (contour and landmarks) as distance maps

Figure 5. An example of the input data for a segmentation problem: 2D X-ray image of the hand with Gabor wavelet features as appearance

features and hand contour and landmarks between finger joints as segmentation features described by distance maps.

bilities between the “unhealthy” test image and the adapted

“healthy” model instance. We define for each observation

point si a correspondence value by:

coi =

Nm
∑

j=1

p(si|mj , θ). (9)

Fig. 4 shows an example of a new observation with a pathol-

ogy, its adapted model instance and the correspondence val-

ues between them.

3. Experiments

3.1. Segmentation

For the evaluation of the segmentation process the model

is applied to X-ray 2D hand data. We use 20 image data sets

from the “Digital Hand Atlas Database System”1 as training

data (10 × male, 10 × female, ASI, age 18). We evaluate

the model adaption with 20 images (10 × male, 10 × fe-

male, ASI, age 17). For all 40 images Ik (with resolution of

0.5 ×0.5mm2), we have the hand contour Ck and an image

with 19 landmarks of finger bone joints Lk. As appearances

we use 24 Gabor wavelets-filtered images (3 orientations at

4 scales each real/imaginary) and a sampling point spacing

of 5 mm, leading to ≈ 1300 sampling points (< 1 % of the

input image pixel positions). In total, we have 28 dimen-

sional vectors: 2 positions, 24 appearance and 2 segmenta-

tion features. We compute 10 variation modes.

To evaluate the modeled segmentation information we

reconstruct the full contour/landmarks (Crec
k , Lrec

k ) from the

observation Sk. For Crec
k a scattered data B-spline inter-

polation is used as proposed by Lee et al. [14], where the

sparse contour information (as distance map values) are the

scattered data values. And for Lrec
k a Hough circle trans-

formation is employed, where the sampling position is the

circle center and the distance map value of the associated

1http://www.ipilab.org/BAAWeb

Table 1. The table shows the results for the segmentation experi-

ment 1-3 with mean symmetric contour distance (MSCD) for hand

contours and the mean point distance (MPD) for joint landmarks.

joint feature defines the radius of the circle. The joint land-

marks are then set on the locations of the local maxima. As

evaluation measures, we compute the mean symmetric con-

tour distance (MSCD) for hand contours and the mean point

distance (MPD) for landmarks.

Experiment 1: Sparse Representation Accuracy: We

evaluate the information loss from the input information

(input with Ck, Lk) to the reconstructed point-based sparse

representation (Sk with Crec
k , Lrec

k ).

Experiment 2: Model Generation Accuracy: We

compare reconstructed Crec
k and Lrec

k of the 20 training

observations Sk with their corresponding model instances

Mk, to evaluate the accuracy of the model. For compar-

ison, the mean symmetric contour distance and the mean

point distance between Sk and the unadapted model M̄ are

computed.

Experiment 3: Model Adaption/Segmentation Accu-

racy: We adapt the model to 20 unseen test images without

segmentation information and compare the resulting recon-

structed segmentations of the model instances (Crec
new, Jrec

new)

with the given ground-truth segmentations GT .

See Tab. 1 for the results of the experiments. The ac-

curacy of the sparse representation shows that a reconstruc-

tion leads to an error less than the used image spacing of 0.5

mm2 for a sampling point spacing of 5 mm. By decreasing
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Feature 1: FLAIR image Feature 2: Gaussian filtered FLAIR Feature 3: DW image

Figure 6. An example of the input data for a classification problem:

a 2D-MRI slice from the middle of the brain of stroke patients

with 3 features (FLAIR, smoothed FLAIR, DWI). In contrast to

the segmentation problem of the hand, we do not have additional

label features modeling the location of the stroke tissue.

the sampling point spacing further, the error becomes neg-

ligible. The evaluated model built with 20 training images

and 10 variation modes is able to fit the 20 input data with

an accuracy of 0.91 mm showing the ability of the model to

represent the information in the training images. The seg-

mentation results for 20 unseen images (1.64 mm for the

contour and 2.42 mm for landmarks) reveal the capability

of our approach to adapt and reconstruct contour/landmark

information for unsegmented images.

3.2. Classification

For a proof of concept evaluation of the classification

variant we use 2D slices of multi-spectral Magnetic Reso-

nance Imaging (MRI) brain data of 44 patients with strokes

(see Fig. 6) provided by the ISLES Challenge2. The model

is built with images from 22 patients and is adapted to 22

new unseen patient data. As appearance features we use

the signal values of the “fluid-attenuated inversion recov-

ery” (FLAIR) MRI sequence, the Gaussian-filtered FLAIR

sequence and the diffusion weighted image (DWI), because

these MRI-sequences show pathological brain regions. In

total, we have 5 dimensional vectors: 2 positions, 3 ap-

pearance features and we compute 8 variation modes with a

sampling point spacing of 5 mm.

We built the model using only the healthy regions of the

22 patient data. Employing correspondence probabilities a

model of the entire structure can be built with partial im-

age data without any further preprocessing steps. Fig. 7

shows examples of incomplete training data and the result-

ing model of the entire brain slice without stroke tissue.

To evaluate the classification between healthy and patho-

logical tissue we reconstruct a full correspondence map

from the scattered coi values for each observation point

si. Again a scattered data B-spline interpolation is em-

ployed and Fig. 4 shows an example of a reconstructed map,

where highly corresponding regions are marked yellow-red

2http://www.isles-challenge.org/

Partial 
training 
data (M̄−2⋅λ1⋅v1) (M̄+2⋅λ1⋅v1)

(M̄−2⋅λ2⋅v2) (M̄+2⋅λ2⋅v2)

Model of entire 
brain

Figure 7. Model built with partial input training data with stroke

tissue cut out: Only the first FLAIR-feature is visualized, recon-

structed from the sparse image representations using a scattered

data B-spline interpolation [14]. On the right the healthy model is

visualized by the mean model and the first two variation modes.

and less corresponding regions are blue. For the evalua-

tion we compared the thresholded reconstructed correspon-

dence map with a given expert segmentation of the stroke

affected areas. Tab. 2 shows the Dice’s coefficient, speci-

ficity and sensitivity for 3 different thresholds (50%, 37.5%

and 25% correspondence). The correspondence maps indi-

cate not only pathological regions but all variations not cov-

ered by the model. To identify connected regions with the

low correspondences, we used a region growing algorithms

with very low corresponding regions (< 10%; dark blue in

Fig. 4) as automatic seed points. Tab. 2 row 3 to 6 shows the

results for 3 different thresholds for the region growing seg-

mentation (50%, 37.5% and 25% correspondence). Fig. 8

shows three examples of correspondence based classifica-

tions.

The results (Tab. 2) show that the correspondence values

are able to indicate the location of a pathology in unseen im-

ages. Due to the rather large sampling points spacing of the

model (5 mm) the classification of small lesions is prob-

lematic. Therefore, the values enclosed in brackets show

the results with excluded small lesions (diameter less than

5 mm) for comparison. The best Dice’s coefficients (0.6

for all and 0.68 for stroke regions oven 5 mm) are achieved

with a threshold of 37.5% correspondence with the region

growing approach. The sensitivity obviously increases with

a higher threshold leading to more tissue being classified as

pathological and the specificity shows the best results for

small threshold values. For comparison, other methods for

stroke segmentation show Dice’s coefficients of ≈ 0.50 to

0.65 for 3D data [16].

4. Discussion

In this work we described a probabilistic approach for

statistical appearance models in a MAP framework, where

the model generation and the model fitting can be expressed

as a single optimization criterion. A point-based image rep-

resentation through a set of sampling points combining po-
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0

0.5
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Dice = 0.77

Dice = 0.83

Figure 8. Three examples of classification results: of the left the

input brain slide is shown with the expert segmentation (green)

and the correspondence based segmentation (region growing: red;

threshold red + blue). On the right the correspondence map be-

tween input and adapted model instance is visualized.

sition and appearance is used, modeling the shape informa-

tion implicitly. In contrast to classical SSMs and AAMs, the

use of probabilistic correspondences eliminates the costly

predefinition of one-to-one correspondences and reduces

the dependence of the generated model on the landmark po-

sitions. Furthermore, a model regularization is naturally in-

cluded in the framework by using non-constant prior prob-

abilities of the model.

We applied the model to model-based image segmenta-

tion, with multi-object segmentation included in the frame-

work. The vectorial representation of the image data is very

flexible in terms of choice of appearance features and addi-

tional information, which are not limited to contour (label)

information but can contain any information that can be rep-

Table 2. Classification results: Dice’s coefficient, sensitivity and

specificity between expert segmentation of 22 unseen images

and the correspondence based classification between healthy and

pathological tissue. We compared three different thresholds for the

correspondence maps with and without region growing (RG). The

values enclosed in brackets show the results with excluded small

lesions (diameter less than 5 mm) for comparison.

resented as a feature value. Therefore, the features can be

selected application-specific to generate the most suitable

data representation for the given task. The number of sam-

pling points is also flexible and can be determined for each

image individually.

In a proof-of-concept evaluation of the segmentation, we

have shown the feasibility of the proposed approach and

evaluated the model generation and model-based segmen-

tation using 2D hand X-rays. The segmentation experi-

ments reveal the capability of our approach to adapt and

reconstruct contour/landmark information for unsegmented

images. To improve the accuracy of the joint detection,

the training data size have to be increased and more joint

specific features can be included into the feature vector.

Employing correspondences probabilities instead of one-to-

one correspondences not only eliminates the need of expen-

sive preprocessing but also provides additional information

about the local matching properties between unseen test im-

age and adapted model instance. We use these informa-

tion for classification purposes between healthy and patho-

logical brain tissue in MRI slices. First results show the

ability of the model to distinguish between healthy tissue

(included in the model) and pathological tissue (unknown

by the model). The problems detecting smaller lesions can

simply be solved by decreasing the sampling point spac-

ing in further evaluations. Furthermore, we show that using

correspondences probabilities a model of an entire structure

can be built using partial training images.

The proposed approach describes the modeling process

in a concise and flexible mathematical framework. This

opens up new directions for statistical appearance models

and lays the foundation for further developments.
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