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Abstract

We propose an Active Learning approach to training

a segmentation classifier that exploits geometric priors to

streamline the annotation process in 3D image volumes. To

this end, we use these priors not only to select voxels most

in need of annotation but to guarantee that they lie on 2D

planar patch, which makes it much easier to annotate than if

they were randomly distributed in the volume. A simplified

version of this approach is effective in natural 2D images.

We evaluated our approach on Electron Microscopy and

Magnetic Resonance image volumes, as well as on natural

images. Comparing our approach against several accepted

baselines demonstrates a marked performance increase.

1. Introduction

Machine Learning techniques are a key component of

modern approaches to segmentation, making the need for

sufficient amounts of training data critical. As far as im-

ages of everyday scenes are concerned, this is addressed by

compiling ever larger training databases and obtaining the

ground truth via crowd-sourcing [18, 17]. By contrast, in

specialized domains such as biomedical image processing,

this is not always an option both because the images can

only be acquired using very sophisticated instruments and

because only experts whose time is scarce and precious can

annotate them reliably.

Active Learning (AL) is an established way to reduce this

labeling workload by automatically deciding which parts of

the image an annotator should label to train the system as

quickly as possible and with minimal amounts of manual

intervention. However, most AL techniques used in Com-

puter Vision, such as [14, 13, 34, 21], are inspired by earlier

methods developed primarily for general tasks or Natural

Language Processing [32, 15]. As such, they rarely account

for the specific difficulties or exploit the opportunities that

arise when annotating individual pixels in 2D images and

3D voxels in image volumes.

More specifically, 3D stacks such as those depicted by

Fig. 1 are common in the biomedical field and are particu-

larly challenging, in part because it is difficult both to de-

velop effective interfaces to visualize the huge image data

and for users to quickly figure out what they are looking at.

In this paper, we will therefore focus on image volumes but

the techniques we will discuss are nevertheless also applica-

ble to regular 2D images by treating them as stacks of height

one.

With this, we introduce here a novel approach to AL that

is geared towards segmenting 3D image volumes and also

applicable to ordinary 2D images. By design, it takes into

account geometric constraints to which regions should obey

and makes the annotation process convenient. Our contribu-

tion hence is twofold:

• We introduce a way to exploit geometric priors to more

effectively select the image data the expert user is asked

to annotate.

• We streamline the annotation process in 3D volumes

so that annotating them is no more cumbersome than

annotating ordinary 2D images, as depicted by Fig. 2.

In the remainder of this paper, we first review current

approaches to AL and discuss why they are not necessarily

the most effective when dealing with pixels and voxels. We

then give a short overview of our approach and discuss in

more details how we use geometric priors and simplify the

annotation process. Finally, we compare our results against

those of accepted baselines and state-of-the-art techniques.

2. Related Work and Motivation

In this paper, we are concerned with situations where

domain experts are available to annotate images. However,

their time is limited and expensive. We would therefore like

to exploit it as effectively as possible. In such a scenario,

AL [27] is a technique of choice as it tries to determine

the smallest possible set of training samples to annotate for

effective model instantiation.

In practice, almost any classification scheme can be in-

corporated into an AL framework. For image processing

purposes, that includes SVMs [13], Conditional Random

Fields [34], Gaussian Processes [14] and Random Forests
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Figure 1. Interface of the FIJI Visualization API [25], which is

extensively used to interact with 3D image stacks. The user is

presented with three orthogonal planar slices of the stack. While

effective when working slice by slice, this is extremely cumbersome

for random access to voxels anywhere in the 3D stack, which is

what a naive AL implementation would require.

User User 

inputinput

(a) (b)

Figure 2. Our approach to annotation. The system selects an optimal

plane in an arbitrary orientation—as opposed to only xy, xz, and

yz—and presents the user with a patch that is easy to annotate.

(a) The annotated area shown as part of the full 3D stack. (b) The

planar patch the user would see. It could be annotated by clicking

twice to specify the red segment that forms the boundary between

the inside and outside of a target object within the green circle. Best

viewed in color.

[21]. Typical strategies for query selection rely on uncer-

tainty sampling [13], query-by-committee [7, 12], expected

model change [29, 31, 34], or measuring information in the

Fisher matrix [11].

These techniques have been used for tasks such as Natural

Language Processing [15, 32, 24], Image Classification [13,

11], and Semantic Segmentation [34, 12]. However, selection

strategies are rarely designed to take advantage of image

specificities when labeling individual pixels or voxels, such

as the fact that neighboring ones tend to have the same labels

or that boundaries between similarly labeled ones are often

smooth. The segmentation methods presented in [16, 12]

do however take such geometric constraints into account at

classifier level but not in AL query selection, as we do.

Similarly, batch-mode selection [28, 11, 29, 5] has be-

come a standard way to increase the efficiency by asking the

expert to annotate more than one sample at a time [23, 2].

But again, this has been mostly investigated in terms of se-

mantic queries without due consideration to the fact that, in

images, it is much easier for annotators to quickly label many

samples in a localized image patch than having to annotate

random image locations. In 3D image volumes [16, 12, 8], it

is even more important to provide the annotator with a patch

in a well-defined plane, such as the one shown in Fig. 2,

rather than having him move randomly in a complicated

3D volume, which is extremely cumbersome using current

3D image display tools such as the popular FIJI platform

depicted by Fig. 1. The technique of [33] is an exception

in that it asks users to label objects of interest in a plane of

maximum uncertainty. Our approach is similar, but it has

several distinctive features: 1) The procedure we use to find

the plane requires far fewer parameters to be set, as dis-

cussed in the supplementary material. 2) We search for the

most uncertain patch in the plane and do not require the user

to annotate the whole plane. 3) Our approach can be used

in conjunction with an ergonomic interface that requires at

most three mouse clicks per iteration. Also, as we show in

the result section, our method outperforms the earlier one.

3. Approach

We begin by broadly outlining our framework, which is

set in a traditional AL context. That is, we wish to train a

classifier for segmentation purposes, but have initially only

few labeled and many unlabeled training samples at our

disposal.

Since segmentation of 3D volumes is computationally

expensive, supervoxels have been extensively used to speed

up the process [3, 20]. We therefore formulate our problem

in terms of classifying supervoxels as either part of a target

object or not. As such, we start by oversegmenting the im-

age using the SLIC algorithm [1] and computing for each

resulting supervoxel si a feature vector xi. Note that SLIC su-

perpixels/supervoxels are always roughly circular/spherical,

which allows us to characterize them by their center and

radius.

Our AL problem thus involves iteratively finding the next

set of supervoxels that should be labeled by an expert to

improve segmentation performance as quickly as possible.

To this end, our algorithm proceeds as follows:

1. Using the already manually labeled voxels SL, we train

a task specific classifier and use it to predict for all re-

maining voxels SU the probability of being foreground

or background.

2. Next, we score unlabeled supervoxels on the basis of
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a novel uncertainty function that combines traditional

Feature Uncertainty with Geometric Uncertainty. Esti-

mating the former usually involves feeding the features

attributed to each supervoxel to the previously trained

classifier. To compute the latter, we look at the uncer-

tainty of the label that can be inferred based on a su-

pervoxel’s distance to its neighbors and their predicted

labels. By doing so, we effectively capture the con-

straints imposed by the local smoothness of the image

data.

3. We then automatically select the best plane through the

3D image volume in which to label additional samples,

as depicted in Fig. 2. The expert can then effortlessly

label the supervoxels from a circle in the selected plane

by defining a line separating target from non-target

regions. This removes the need to examine the relevant

image data from multiple perspectives, as depicted in

Fig. 1, and simplifies the labeling task.

The process is then repeated. In Sec. 4, we will discuss

the second step and in Sec. 5 the third. In Sec. 6, we will

demonstrate that this pipeline yields faster learning rates

than competing approaches.

4. Geometry-Based Active Learning

Most AL methods were developed for general tasks and

operate exclusively in feature space, thus ignoring the ge-

ometric properties of images and more specifically their

geometric consistency. To remedy this, we introduce the

concept of Geometric Uncertainty and then show how to

combine it with more traditional Feature Uncertainty.

Our basic insight is that supervoxels that are assigned a

label other than that of their neighbors ought to be consid-

ered more carefully than those that are assigned the same

labels. In other words, under the assumption that neighbors

more often than not have identical labels, the chance of the

assigment being wrong is higher. This is what we refer to as

Geometric Uncertainty and we now formalize it.

4.1. Feature Uncertainty

For each supervoxel si and each class ŷ, let pθ(yi = ŷ|xi)
be the probability that its class yi is ŷ, given the correspond-

ing feature vector xi. In this work, we will assume that this

probability can be computed by means of a classifier which

has been trained using parameters θ and we take ŷ to be 1 if

the supervoxel belongs to the foreground and 0 otherwise 1.

In many AL algorithms, the uncertainty of this prediction is

taken to be the Shannon entropy

Hθ
i = −

∑

ŷ∈{0,1}

pθ(yi = ŷ|xi) log pθ(yi = ŷ|xi). (1)

1Extensions to multiclass cases can be similarly derived.

pθ(yj1 = ŷ)

Figure 3. Image represented as a graph: we treat supervoxels

as nodes in the graphs and edge weights between them reflect

the probability of transition of the same label to a neighbour.

Supervoxel si has k neighbours from Ak(i) = {si1, s
i
2, .., s

i
k},

pT (yi = ŷ|yj = ŷ) is the probability of node si having the same

label as node sij , pθ(yi = ŷ|xi) is the probability that yi , class of

si, is ŷ, given only the corresponding feature vector xi

We will refer to this uncertainty estimate as the Feature

Uncertainty.

4.2. Geometric Uncertainty

Note that estimating the uncertainty as described above

completely ignores the correlations between neighboring su-

pervoxels. To account for them, we can estimate the entropy

of a different probability, specifically the probability that su-

pervoxel si belongs to class ŷ given the classifier predictions

of its neighbors and which we denote pG(yi = ŷ).
To this end, we treat the supervoxels of a single im-

age volume as nodes of a weighted graph G whose edges

connect neighboring ones, as depicted in Fig. 3. We let

Ak(si) = {si1, s
i
2, .., s

i
k} be the set of k nearest neighbors

of si and assign a weight inversely proportional to the Eu-

clidean distance between the voxel centers to each one of

the edges. For each node si, we normalize the weights of all

incoming edges so that their sum is one and treat this as the

probability pT (yi = ŷ|yj = ŷ) of node si having the same

label as node sij ∈ Ak(si). In other words, the closer two

nodes are, the more likely they are to have the same label.

To infer pG(yi = ŷ), we then use the well-studied Ran-

dom Walk strategy G [19], as it reflects well our smoothness

assumption and has been extensively used for image seg-

mentation purposes [9, 33]. Given the pT (yi = ŷ|yj = ŷ)
transition probabilities, we can compute the probabilities pG
iteratively by initially taking p0G(yi = ŷ) to be

p
0
G(yi = ŷ) =

∑

sj∈Ak(si)

pT (yi = ŷ|yj = ŷ)pθ(yj = ŷ|xj) , (2)

and then iteratively computing

p
τ+1
G

(yi = ŷ) =
∑

sj∈Ak(si)

pT (yi = ŷ|yj = ŷ)pτG(yj = ŷ) . (3)
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The procedure describes the propagation of labels to su-

pervoxels from its neighborhood. The number of iterations

τmax defines the radius of the neighborhood involved in the

computation of pG for si and encodes the smoothness priors.

Given these probabilities, we can now take the Geometric

Uncertainty to be

HG
i = −

∑

ŷ∈{0,1}

pG(yi = ŷ) log pG(yi = ŷ) , (4)

as we did in Sec. 4.1 to estimate the Feature Uncertainty.

4.3. Combining Feature and Geometric Entropy

As discussed above, from a trained classifier we can thus

estimate the Feature and Geometric Uncertainties. To use

them jointly, we should in theory estimate the joint proba-

bility distribution pθ,G(yi = ŷ|xi) and the corresponding

joint entropy. As this is computationally intractable in our

model, we take advantage of the fact that the joint entropy

is upper bounded by the sum of individual entropies Hθ

and HG. Thus, for each supervoxel, we take the Combined

Uncertainty to be

H
θ,G
i = Hθ

i +HG
i (5)

that is, the upper bound of the joint entropy.

In practice, using this measure means that supervoxels

that individually receive uncertain predictions and are in

areas of transition between foreground and background will

be considered first.

5. Batch-Mode Geometry Query Selection

The simplest way to exploit the Combined Uncertainty

introduced in Sec. 4.3 would be to pick the most uncer-

tain supervoxel, ask the expert to label it, retrain the clas-

sifier, and iterate. A more effective way however is to find

appropriately-sized batches of uncertain supervoxels and ask

the expert to label them all before retraining the classifier.

As discussed in Sec. 2, this is referred to as batch-mode

selection. A naive implementation of this would force the

user to randomly view and annotate supervoxels in the vol-

ume regardless of where they are, which would be extremely

cumbersome.

In this section, we therefore introduce an approach to

using the uncertainty measure to first select a planar patch

in 3D volumes and then to allow the user to quickly label

positives and negatives within it, a shown in Fig. 2.

Since we are working in 3D and there is no preferential

orientation in the data to work with, it makes sense to look

for spherical regions where the uncertainty is maximal. How-

ever, for practical reasons, we only want the annotator to

consider circular regions within planar patches such as the

one depicted in Fig. 2 and Fig. 4. These can be understood

Figure 4. Coordinate system for defining planes. Plane pi (yellow)

is defined by two angles φ – intersection between plane p and plane

XsiY (blue), γ – intersection between plane pi and plane Y siZ

(red). Best seen in color.

as the intersection of the sphere with a plane of arbitrary

orientation.

Formally, let us consider a supervoxel si and let Pi to be

the set of planes bisecting the image volume and containing

the center of si. Each plane pi ∈ Pi can be parameterized

by two angles φ ∈ (0, π) and γ ∈ (0, π) and its origin can

be taken to be the center of si, as depicted by Fig. 4. In

addition, let Cr
i (pi) be the set of supervoxels lying on pi

within distance r ≥ 0 to its origin, shown in green in Fig. 2.

Recall from Sec. 4, that we have defined the uncertainty

of a supervoxel as either the Feature Uncertainty of Eq. (1),

the Geometric Uncertainty of Eq. (4), or the Combined Un-

certainty of Eq. (5). In other words, we can associate each

si with an uncertainty value ui ≥ 0 in one of three ways.

Whichever way we choose, finding the circle of maximal

uncertainty can be formulated as finding

p∗i = (φ∗, γ∗) = argmax
pi∈Pi

∑

sj∈Cr
i
(pi)

uj . (6)

In practice, we find the most uncertain plane p∗i for the t

most uncertain supervoxels si and present the overall most

uncertain plane p∗ to the annotator.

The idea of this strategy is to evaluate entire subsets of

the parameter space, i.e. φ and γ, using a bounding function

and progressively evaluating the best looking subsets. In

the coordinates of Fig. 4 sectors of the sphere (for example,

sector between planes pmin and pmax in Fig. 5) can be treated

as subsets of the parameter space. Consider any plane p0 =
(φ0, γ0) bisecting the sector between planes pmin and pmax

as shown in Fig. 5. Given that ui ≥ 0 and that Eq. (6) is linear

in ui ≥ 0, the score of the plane p0 will certainly be less

or equal to the score of all the points included between two

planes pmin and pmax. This observation allows us to bound

the score of any plane on the top and to search for planes in

the most promising parameter intervals. We keep a priority
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Figure 5. Bounding function and sector splitting procedure. The

score of the plane p0 is less or equal to the score of all the points

included between two planes pmin and pmax. Best seen in colour.

queue of sectors and at each step we divide the sector with

the highest uncertainty in two new sectors by a bisector plane

as in Fig. 5. The uncertainties of new sectors are computed

added to the priority queue. The optimal parameters are then

attained when the evaluated subset contain is a singleton.

Formal definitions and more details on the procedure are

given in the supplementary material.

By contrast to an exhaustive search that would be excru-

ciatingly slow, our current MATLAB implementation on the

10 images of resolution 176× 170× 220 of MRI dataset of

Sec. 6.3 takes 0.12s per plane selection at supervoxel. This

means that a C implementation would be real-time, which is

critical to such an interactive method to being accepted by

users.

Note that when the radius r = 0, this reduces to what

single-supervoxel labeling does. By contrast, for r > 0,

this allows annotation of many uncertain supervoxels with

a few mouse clicks, as will be discussed further in Sec. 6.

Although planar selection can be applied to any type of

uncertainty value, we believe that it is the most beneficial

when combined with Geometric Uncertainty as the latter

already takes into account the most uncertain regions instead

of isolated supervoxels.

6. Experiments

In this section, we evaluate our full approach both on two

different Electron Microscopy (EM) datasets and a Magnetic

Resonance Imaging (MRI) one. We then demonstrate that a

simplified version is effective for natural 2D Images.

6.1. Setup and Parameters

For all our experiments, we used Boosted Trees selected

by Gradient Boosting [30, 4] as our underlying classifier.

Given that during early AL iterations rounds, only limited

amounts of training data are available, we limit the depth

of our trees to 2 to avoid over-fitting. Following standard

practice, individual trees are optimized using 40% − 60%

of the available training data chosen at random and 10 to 40
features are explored per split. We set the number k of near-

est neighbors of Section 4.2 to be the number of immediately

adjacent supervoxels on average, which is between 7 and 15

depending on the resolution of the image and size of super-

voxels. However, experiments showed that the algorithm is

not very sensitive to the choice of this parameter. We restrict

the size of each planar patch to be small enough to contain

typically not more than part of one object of interest. To this

end, the we take the radius r of Section 5 to be between

10 and 15, which yields patches such as those depicted by

Fig. 6.

Baselines. For each dataset, we compare our approach

against several baselines. The simplest is Random Sampling

(Rs), that is, randomly selecting samples to be labeled. It

serves to gauge the difficulty of the segmentation problem

and quantify the improvement brought by the more elaborate

strategies.

The next simplest, but widely accepted approach is to per-

form Uncertainty Sampling [5, 18] of supervoxel by using

the uncertainty measures of Section 4. Let HU
i be the uncer-

tainty score we use in a specific experiment. The strategy

then is to select

s∗ = argmax
si∈SU

(HU
i ). (7)

We will refer to this as FUs when using the Feature Un-

certainty of Eq. 1 and as CUs when using the Combined

Uncertainty of Eq. 5. For the Random Walk, iterative pro-

cedure with τmax = 20 leads to high learning rates in our

applications. Finally, the most sophisticated approach is to

use Batch-Mode Geometry Query Selection, as described

in Sec. 5, in conjunction with either Feature Uncertainty or

Combined Uncertainty. We will refer to the two resulting

strategies as pFUs and pCUs, respectively. Both plane se-

lection strategies are using t = 5 best supervoxels in the

optimization. Further increase of this value didn’t demon-

strate significant growth of the learning rate.

Fig. 2, 6 jointly depict what a potential user would see for

pFUs and pCUs given a small enough patch radius. Given a

well designed interface, it will typically require to click only

once or twice to provide the required feedback (see Fig. 6). In

our performance evaluation, we will therefore estimate that

each intervention of the user for pFUs and pCUs requires

two clicks whereas for Rs, FUs, and CUs it requires only

one. So, for the method comparison we measure annotation

effort as 1 for Rs, FUs, and CUs and as 2 for pFUs and

pCUs.

Note that pFUs is similar in spirit to the approach of [33]

and can therefore be taken as a good indicator of how this

other method would perform on our data. However, un-

like [33], we do not require user to label the whole plane and

keep our suggested interface for a fairer comparison.
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Figure 7. Estimate mean and standard deviation for classifier scores

of positive class datapoints (red) – µ+ and σ+ and negative class

datapoints (blue) – µ−, σ−, and fit 2 Gaussian distributions. Given

their pdf estimate optimal Bayesian error with threshold h∗.

Adpative Thresholding. Recall from Section 4.1 that for

all the approaches discussed here, the probability of a su-

pervoxel being foreground is computed as pθ(yi = 1|xi) =
(1+ exp−2·(F−h))−1, where F is the output of the classifier

and h is the threshold [10]. Usually, the threshold is cho-

sen by cross-validation but this strategy may be misleading

or not even possible for AL. We therefore assume that the

scores of training samples in each class are Gaussian dis-

tributed with unknown parameters µ and σ. We then find

an optimal threshold h∗ by fitting Gaussian distributions to

the scores of positive and negative classes and choosing the

value that yields the smallest Bayesian error, as depicted by

Fig. 7. We refer to this approach as Adaptive Thresholding

and we use it for all our experiments.

Experimental Protocol. In all cases, we start with 5 pos-

itive and 5 negative labeled supervoxels and perform AL

iterations until we receive 100 inputs from the user. Each

method starts with the same random subset of samples and

each experiment is repeated N = 40 times. We will therefore

plot not only accuracy results but also indicate the variance

of these results.

Fully annotated volumes of ground truth are available for

us and we use them to simulate the expert’s intervention in

our experiments. We detail the specific features we used for

EM, MRI, and natural images below.

6.2. Results on EM data

Here, we work with two 3D Electron Microscopy stacks

of rat neural tissue, one from the striatum and the other

from the hippocampus. One stack of size 318× 711× 422
(165×1024×653 for hippocampus) is used for training and

another stack of size 318× 711× 450 (165× 1024× 883)

is used to evaluate the performance. Their resolution is 5nm

in all three spatial orientations. The slices of Fig. 1 as well

as patches in the upper row in Fig. 6 come from the striatum

and hippocampus volume is shown in Fig. 9 with its patches

shown in the lower row of Fig. 6.

The task is to segment mitochondria, which are the intra-

cellular structures that supply the cell with its energy and are

of great interest to neuroscientists. It is extremely laborious

to annotate sufficient amounts of training data for learning

segmentation algorithms to work satisfactorily. Furthermore,

different brain areas have different characteristics, which

means that the task must be repeated often. The features

we feed our Boosted Trees rely on local texture and shape

information using ray descriptors and intensity histograms

as in [20].

Dataset FUs CUs pFUs pCUs

Hippocampus 0.1172 0.1009 0.0848 0.0698

Striatum 0.1326 0.1053 0.1133 0.0904

MRI 0.0758 0.0642 0.0767 0.0545

Natural 0.1448 0.1389 0.1494 0.1240

Table 1. Variability of results by different AL strategies. 80% of the

scores are lying within the indicated interval. Feature Uncertainty

is always more variable that Combined Uncertainty, batch selection

is always less variable that single-instance selection. The best result

is highlighted in bold.

In Fig. 8, we plot the performance of all the approaches

we consider in terms of the VOC [6] score, a commonly used

measure for this kind of application, as a function of the

annotation effort. The horizontal line at the top depicts the

VOC scores obtained by using the whole training set, which

comprises 276130 and 325880 supervoxels, for the striatum

and the hippocampus respectively. FUs provides a boost

over Rs, and CUs yields a larger one. In both cases, a further

improvement is obtained by introducing the batch-mode

geometry query selection of pFUs and pCUs, with the latter

coming on top. Recall that these numbers are averages over

many runs. In Table 1, we give the corresponding variances.

Note that both using the Geometric Uncertainty and the

batch-mode tend to reduce them, thus making the process

more predictable. Note also the 100 number we use very

much smaller than the total number of available samples.

Somewhat surprisingly, in the hippocampus case, the clas-

sifier performance given only 100 training data points is

higher that the one obtained by using all the training data.

In fact, this phenomenon has been reported in the AL litera-

ture [26] and suggests that a well chosen subset of datapoints

can produce better generalisation performance than the com-

plete set.

6.3. Results on MRI data

Here we consider multimodal brain tumor segmentation

in MRI brain scans. Segmentation quality depends critically

on the amount of training data and only highly-trained ex-

perts can provide it. T1, T2, FLAIR, and post-Gadolinium T1

MR images are available in the BRATS dataset for each one
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(a)

(b)

Figure 9. Examples of 3D datasets. a) Hippocampus volume for

mitochondria segmentation b) MRI data for tumor segmentation

(Flair image).

of 20 subjects [22]. We use standard filters such as Gaussian,

gradient filter, tensor, Laplacian of Gaussian and Hessian

with different parameters to compute the feature vectors we

feed to our Boosted Trees.

In Fig. 10, we plot the performance of all the approaches

we consider in terms of the dice score [8], a commonly

used quality measure for brain tumor segmentation, as a

function of the annotation effort and in Table 1, we give the

corresponding variances. We observe the same pattern as in

Fig. 8, with pCUs again doing best.

The patch radius parameter r of Sec. 5 plays an impor-

tant role in plane selection. To evaluate its influence, we

recomputed our pCUs results 50 times using three different

values for r = 10, 15 and 20. The resulting plots are shown

in Fig. 10. With a larger radius, the learning-rate is slightly
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Figure 11. Comparison of various AL strategies for segmentation

of natural images.

higher as could be expected from since more voxels are la-

beled each time. However, as the patches become larger, it

stops being clear that this can be done with only two mouse

clicks and that is why we limited ourselves to radius sizes of

10 to 15.

6.4. Natural Images

Finally, we turn to natural 2D images and replace su-

pervoxels by superpixels. In this case, the plane selection

of pFUs and pCUs reduces to simple selection of image

patches in the image. In practice, we simply select superpix-

els with their 4 neighbors. Increasing this number would lead

to higher learning rates in the same way as increasing the

patch radius r, but we restrics it to a small value to ensure

labelling can be done with 2 mouse clicks on average. To

compute image features, we use Gaussian, Laplacian, Lapla-

cian of Gaussian, Prewitt, Sobel filters to filter intensity and

color values, gather first-order statistics such as local stan-

dard deviation, local range, gradient magnitude and direction

histograms, as well as SIFT features.

We plot our results on the Weizmann horse database in

Fig. 11 and give the corresponding variances in Table 1.

The pattern is again similar to the one observed in Figs. 8

and 10, with the difference between CUs and pCUs being

smaller due to the fact that 2D batch-mode approach is much

less sophisticated than the 3D one. Note, however, that the

first few iterations are disastrous for all methods, however,

plane-based methods are able to recover from it quite fast.

7. Conclusion

In this paper we introduced an approach to exploiting the

geometric priors inherent to images to increase the effective-

ness of Active Learning for segmentation purposes. For 2D

images, it relies on an approach to Uncertainty Sampling

that accounts not only for the uncertainty of the prediction

at a specific location but also in its neighborhood. For 3D

image stacks, it adds to this the ability to automatically select

a planar patch in which manual annotation is easy to do.

We have formulated our algorithms in terms of back-

ground/foreground segmentation but the entropy functions

that we use to express our uncertainties can handle multiple

classes with little change to the overall approach. In future

work, we will therefore extend our approach to more general

segmentation problems.
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(a) (b) (c)

Figure 6. Circular patches to be annotated by the expert highlighted by the yellow circle in (a) Electron Microscopy data, (b) MRI data,

and (c) natural images. The patches can be entirely foreground, entirely background. Alternatively, the boundary between foreground an

background within the patch can be indicated by tracing a red line segment. In all cases, that would require at most two mouse clicks.
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Figure 8. Comparison of various AL strategies for mitochondria segmentation. Left: striatum dataset, right: hippocampus dataset.
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Figure 10. Comparison of various AL strategies for MRI data for tumor segmentation. Left: dice score for BRATS2012 dataset, right: pCUs

strategy with patches of different radius.
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