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Abstract

A simple yet effective object descriptor for visual track-

ing is proposed in this paper. We first decompose the bound-

ing box of a target object into multiple patches, which are

described by color and gradient histograms. Then, we con-

catenate the features of the spatially ordered patches to rep-

resent the object appearance. Moreover, to alleviate the im-

pacts of background information possibly included in the

bounding box, we determine patch weights using random

walk with restart (RWR) simulations. The patch weights

represent the importance of each patch in the description

of foreground information, and are used to construct an ob-

ject descriptor, called spatially ordered and weighted patch

(SOWP) descriptor. We incorporate the proposed SOWP de-

scriptor into the structured output tracking framework. Ex-

perimental results demonstrate that the proposed algorithm

yields significantly better performance than the state-of-the-

art trackers on a recent benchmark dataset, and also excels

in another recent benchmark dataset.

1. Introduction

Visual tracking has drawn much attention for its various

applications, such as self-driving cars, security and surveil-

lance systems, and augmented reality. With recent advances

in machine learning, numerous tracking-by-detection algo-

rithms [16, 17, 3, 4, 24, 18, 33, 40] have been proposed,

which yield promising performances. A typical tracking-

by-detection algorithm detects a target object over time,

while updating a classifier using tracking results. Positive

and negative samples, which correspond to foreground and

background image regions, respectively, are employed to

train the classifier. However, when training samples are

assigned false labels or when sample descriptors cannot

clearly distinguish between positive and negative samples,

a classifier may be corrupted, degrading the tracking-by-

detection performance.

To overcome these drawbacks, lots of algorithms have

been proposed to reduce the impacts of false labeling [17,

4, 18, 24, 40] and to describe positive and negative samples

distinguishably [33, 10]. However, it is still challenging to

develop a reliable object descriptor, since the bounding box

of a target object often contains background features due to

deformation, occlusion, and object size variation. Attempts

have been made to alleviate the effects of undesirable back-

ground features [7, 19, 31], but these approaches require

prior knowledge or predefined parameters, the validity of

which is hard to be verified.

We propose a novel object descriptor, called spatially or-

dered and weighted patch (SOWP) descriptor, to represent

the appearance of an object faithfully and suppress back-

ground information in a bounding box systematically. To

construct the SOWP descriptor, we divide the bounding box

of a target object into non-overlapping patches and then

describe each patch using an RGB histogram and a gradi-

ent histogram. We then concatenate the patch descriptors

within the bounding box to convey structural information of

the object. Moreover, to reduce the effects of background,

we scale each patch descriptor with a weight, which repre-

sents the importance of the patch in the object description.

For the patch weight computation, we perform two random

walk with restart (RWR) simulations: one for foreground

clustering and the other for background clustering. We in-

corporate this SOWP descriptor into the structured output

tracking framework [18]. When updating the classifier, we

use only the samples with high confidence scores to prevent

bad updates. Experimental results show that the proposed

tracker achieves the best performance on the CVPR2013

visual tracking benchmark dataset [38], and improves the

performance of [18] by 36.3% in precision and 30.6%

in success rate. Moreover, the proposed tracker also pro-

vides a competitive performance in the VOT2014 challenge

dataset [28].

This work has three main contributions: First, we ex-

perimentally find a simple yet effective method to con-

struct a spatially ordered patch descriptor for visual track-

ing. Second, we develop an RWR scheme to suppress the

impacts of background information in an object bounding

box through adaptive weighting. Third, the proposed al-
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gorithm significantly outperforms the recent state-of-the-art

trackers in [21, 9, 1, 39, 5, 22, 14, 40, 32], as well as all 29

trackers in the CVPR2013 benchmark [38].

The remainder of this paper is organized as follows: Sec-

tion 2 reviews related work, and Section 3 describes pre-

liminaries. Section 4 presents the proposed algorithm, and

Section 5 discusses experimental results. Finally, Section 6

draws conclusions.

2. Related Work

Since Avidan [2] first formulated visual tracking as a bi-

nary classification problem, many tracking-by-detection al-

gorithms have been proposed [3, 16]. However, they may

degrade the detection performance with falsely labeled sam-

ples. Grabner et al. [17] tried to prevent false labeling by

training the classifier with labeled samples in the first frame

and unlabeled samples in subsequent frames. Babenko et

al. [4] employed a bag of multiple samples, instead of a

single sample, for updating the classifier reliably. Hare et

al. [18] adopted the structured output SVM [37] to alleviate

the problem, caused by the ambiguity in binary labeling of

samples, and provided excellent tracking results.

Comaniciu et al. [7] employed a color histogram to de-

scribe object appearance, but their method suffers from oc-

clusion and cluttered background due to the lack of struc-

tural information. Patch-based object description has been

adopted to exploit structural information [18, 36, 41], which

divides the bounding box of an object into multiple patches

and describes the object by concatenating low-level fea-

tures of patches, such as the histogram of oriented gradi-

ents(HOG) [8]. Also, multiple features have been com-

bined together to describe an object. Li et al. [33] com-

bined intensity histograms, local binary pattern histograms,

gradient histograms, and Haar-like features, based on a ran-

dom decision tree, for compact and discriminative descrip-

tion. Chen et al. [6] extracted intensity and gradient data

in patches and processed those data to yield a compound

object descriptor. However, these object descriptors may

become inadequate, when a bounding box contains back-

ground regions.

Researches have been carried out to reduce the effects of

background information on object description. For exam-

ple, Comaniciu et al. [7] assigned smaller weights to bound-

ary pixels within a bounding box during the histogram con-

struction. He et al. [19] also assumed that pixels far from

a box center should be weighted less. Note that [7, 19]

may fail to provide reliable tracking results, when a tar-

get object has a complicated shape or is occluded. Lee et

al. [31] assigned a pertinence score to each patch by com-

puting the appearance similarity of the patch to foreground

and background regions. However, [31] uses fixed parame-

ters for the pertinence score computation, which may cause

tracking failures depending on input sequences. A related

approach is to integrate a segmentation step into tracking

in order to identify object patches and trace those patches

directly, instead of a bounding box [15, 12]. These algo-

rithms, however, are sensitive to segmentation results.

3. Preliminaries

The proposed algorithm performs RWR simulations [35]

to reduce the impacts of background information in object

description. Thus, we explain the notion of RWR in this

section. We also describe the structured output tracking

framework [18], into which we incorporate the proposed

SOWP descriptor to design a tracker.

3.1. Random Walk with Restart

Consider a graph G(V,E) with nodes v ∈ V and edges

e ∈ E. A random walker traverses the graph according to

a transition matrix A, in which the (i, j)th element aij is

the probability that the walker at node vj moves to node

vi. In an RWR simulation, the walker is forced to return to

specified nodes, according to a restart distribution r, with a

probability ǫ. Let p(t) denote the probability distribution of

the walker at the tth iteration. Then, we have the recursion

p(t) = (1− ǫ)Ap(t−1) + ǫr. (1)

As t approaches infinity, p(t) converges to the stationary

distribution π = limt→∞ p(t), regardless of an initial con-

dition p(0). The stationary distribution π satisfies

π = (1− ǫ)Aπ + ǫr, (2)

and it can be obtained by applying (1) recursively.

In the interactive image segmentation in [26], the restart

distribution r represents the positions of user scribbles.

Then, the stationary distribution indicates the affinity of

each node to the scribbled nodes, and hence can be used

for the segmentation. RWR has many applications, such

as data mining [35], and saliency detection [25], as well as

interactive image segmentation.

3.2. Structured Output Tracking

Let Φ(xt,y) denote a descriptor representing a bound-

ing box y in the tth frame xt. The Struck algorithm [18]

estimates the object bounding box yt in the tth frame to

maximize a classifier score 〈w,Φ(xt,y)〉, where w is the

normal vector of a decision plane;

yt = argmax
y

〈w,Φ(xt,y)〉. (3)

When training the classifier, Struck attempts to avoid the la-

beling ambiguity by employing structured samples instead

of binary-labeled samples. A structured sample consists

of an object bounding box and nearby boxes in the same
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Figure 1. Examples of video sequences, in which non-target ob-

jects have the same category as a target object does. Target objects

are within yellow bounding boxes.

frame. Struck constrains that the classifier score of an object

bounding box should be larger than that of a nearby box by

a margin, which is determined by the overlap ratio between

the two boxes. Thus, Struck does not require a heuristic

method to assign binary labels to training samples, and can

reduce adverse effects of false labeling. Struck achieves ex-

cellent tracking performance, and its learning strategy has

been adopted by many recent trackers [41, 5].

4. Proposed Algorithm

We propose an accurate and robust object description

technique for visual tracking. First, we divide the bounding

box of a target object into non-overlapping patches and con-

struct a descriptor for each patch using multiple low-level

features. We describe the object appearance by concatenat-

ing the patch descriptors to convey structural information of

the target object. Second, we assign different weights to the

patches adaptively, based on RWR [35], to yield the SOWP

descriptor. We integrate the proposed SOWP descriptor into

the structured output tracking framework in [18] to design

a tracker.

4.1. Spatially Ordered Patch Descriptor

In visual tracking, it is important to construct a descriptor

Φ(xt,y), which represents the contents in a bounding box y

in the tth frame xt distinguishably. To design an accurate

and reliable descriptor, we first decompose the bounding

box into 64 non-overlapping patches and characterize each

patch using low-level features. Then, we construct the spa-

tially ordered patch (SOP) descriptor for the bounding box,

by concatenating the feature vectors of all patches accord-

ing to their spatial orders, given by

Φ(xt,y) = [f1
T , · · · , f64T ]T (4)

where fi is the feature vector of the ith patch. SOP conveys

structural information of the bounding box, by preserving

the orders (or locations) of the patches within the box.

The concept of the SOP descriptor has been used in com-

puter vision techniques. For example, the histogram of ori-

Singer2

#0023 #0143#0005

#0230 #0600#0163

Car4

Figure 2. Inclusion of background information within an ob-

ject bounding box due to complex object shape and size variation.

In each of these sequence, background information causes a drift

problem, and a tracker loses the target object eventually.

ented gradients (HOG), which represents a bounding box by

concatenating the oriented gradient histograms of patches

within the box, is used in object detection [8, 13]. However,

whereas the goal of object detection is to detect objects of

a certain category, that of object tracking is to track a tar-

get object and distinguish it from possibly many non-target

objects. Furthermore, it makes object tracking more diffi-

cult that the non-target objects may belong to the same cat-

egory as the target object does. For instance, in Figure 1,

for successful tracking, the object descriptor should be able

to distinguish the target sprinter (or dancer) from the other

sprinters (or dancers), who have similar shapes or colors as

the target. In such a case, the descriptor, composed of a

single type of features, may be inadequate.

To design a more informative SOP descriptor, we tested

various combinations of five low-level features: RGB color

histogram, Lab color histogram, HSV color histogram, in-

tensity histogram, and gradient histogram. We found that

the combination of a 24-dimensional RGB color histogram

and an 8-dimensional oriented gradient histogram results in

superb tracking performance. Consequently, we describe

each patch by using the 32-dimensional feature vector.

We also empirically set the number of patches within a

bounding box. Too many patches increase the complex-

ity due to a high descriptor dimension. In contrast, only

a few patches cannot describe object structures faithfully.

We tested various numbers of patches from 16 to 100, and

selected 64 to strike a balance between the tracking perfor-

mance and the complexity.

4.2. Adaptive Patch Weighting

It is desirable that the bounding box of a target object

contains foreground information only. However, as shown

in Figure 2, it may contain background information as well,

which corrupts the object descriptor and the classifier. More

specifically, the background information may be used for
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(a) (b) (c) (d)

Figure 3. The computation of the foreground weight vector ρ
t
. In

(a), three sets Ω
in

t , Ωbnd

t , and Ω
out

t are defined over a bounding

box to construct a graph. Then, the stationary distributions πF

t in

(b) and π
B

t in (c) are computed by carrying out the RWR simu-

lations with different restart distributions. In (d), the foreground

weight vector ρ
t

is obtained by comparing π
F

t with π
B

t .

training the classifier improperly, and the wrongly trained

classifier, in turn, detects a bounding box with more back-

ground regions. This series of background expansion within

a bounding box eventually results in tracking failures in

Figure 2. To overcome this problem, we assign different

weights to the patches within a bounding box according to

their relevance to a target object.

Among the patches within a bounding box, we refer to

those patches, sharing the boundary with the bounding box,

as boundary patches, and the other patches as inner patches.

In addition, we consider outer patches, which are located

outside the bounding box but share the boundary. Let Ωin
t ,

Ωbnd
t , and Ωout

t denote the sets of inner, boundary, and outer

patches at the tth frame, respectively, which are depicted

in yellow, green, and blue colors in Figure 3(a). We then

construct a graph G, by taking each patch in these three

sets as a node. If nodes vi and vj are 8-neighbors, they are

connected by edge eij , which is assigned a weight

wij = exp(−γ‖fi − fj‖2) (5)

where γ denotes a scaling parameter. A higher wij means

that the two patches of vi and vj exhibit a stronger similar-

ity. Then, we define a Markov transition matrix A = [aij ]
of a random walker, by normalizing the edge weights as

aij =
wij

∑

i wij

. (6)

We perform the RWR simulations on G twice using two

different restart distributions rFt and rBt , which are associ-

ated with the foreground and background regions, respec-

tively. Then, we obtain the foreground and background sta-

tionary distributions, πF
t and π

B
t , via (2). Specifically,

π
F
t = (1− ǫ)Aπ

F
t + ǫrFt , (7)

π
B
t = (1− ǫ)Aπ

B
t + ǫrBt , (8)

where ǫ is a restart probability. These stationary distribu-

tions πF
t and π

B
t represent probabilistic shapes of a target

object and its background, by forming clusters around the

restart distributions rFt and rBt , respectively [26].

As observed in [31], patches around the center of the

bounding box tend to contain foreground features, whereas

those near the box boundary are likely to have background

features. It means that most patches in Ωin
t tend to be fore-

ground patches, while most patches in Ωout
t background

ones. Based on these assumptions, we determine the restart

distributions as

rFt (i) =

{

κF
t × π

F
t−1(i) if vi ∈ Ωin

t ∪ Ωbnd
t ,

0 if vi ∈ Ωout
t ,

(9)

rBt (i) =

{

0 if vi ∈ Ωin
t ,

κB
t × π

B
t−1(i) if vi ∈ Ωbnd

t ∪ Ωout
t ,

(10)

where κF
t and κB

t are the normalizing parameters to make

rFt and rBt probability distributions. Notice that we employ

the stationary distributions at the previous frame to estimate

the restart distributions at the current frame, since a target

object tends to change its shape smoothly between consec-

utive frames in a typical video sequence. Figures 3(b) and

(c) illustrate the stationary distributions πF
t and π

B
t , respec-

tively, which reflect the likelihoods that each patch belongs

to the foreground and the background, respectively.

We regard the ith patch to be a foreground patch, when

it yields a large π
F
t (i) but a small πB

t (i). Specifically, we

compute the foreground weight ρt(i) of the ith patch by

ρt(i) =
1

1 + exp
(

−α(πF
t (i)− π

B
t (i))

) (11)

where α controls the steepness of the logistic function. Fig-

ure 3(d) shows the foreground weights, where red and blue

colors depict large and small weights, respectively. We see

that the patches, which are assigned relatively large weights,

reveal the shape of the target object effectively. Thus, we in-

corporate the foreground weights of the patches to concate-

nate the patch descriptors in (4), and consequently obtain

the proposed SOWP descriptor, given by

Φ(xt,yt) = [ρt(1)f1
T , · · · ,ρt(64)f64

T ]T . (12)

Figure 4 exemplifies the evolution of computed fore-

ground weights, which reflect the shapes of target objects

over time faithfully. In particular, without the adaptive

weighting, the tracking fails on the “Singer2” and “Car4”

sequences in Figure 2. On the contrary, by using the fore-

ground weights, the proposed tracker successfully trace the

target objects in these sequences in Figure 4. It is worth

pointing out that adaptive foreground weights implicitly re-

shape rectangular bounding boxes according to the defor-

mation of target objects at different frames, and thus facili-

tate more reliable object description, especially when a tar-

get object is occluded or changes its shape and size.
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Figure 4. The evolution of patch weights through video sequences.

4.3. Tracking

We apply the proposed SOWP descriptor to trace a target

object, by incorporating it into the conventional tracking-

by-detection algorithm, Struck [18], which excels in the re-

cent benchmark in [38]. Although Struck is adopted in this

work, the SOWP descriptor also can be combined with other

tracking-by-detection algorithms, such as [5, 40].

Given the object bounding box in a previous frame,

we set a searching window, centered at the correspond-

ing bounding box in the current frame. We construct the

SOWP descriptor for each candidate bounding box within

the searching window. Then, we select the optimal bound-

ing box to yield the maximum classification score, and up-

date the object location. We then update the foreground

weights of the patches and the classifier. Finally, we pro-

ceed to the next frame.

Struck updates the classifier, even when an object

changes its appearance abruptly, e.g., due to illumination

variation and severe occlusion. In such cases, the classi-

fier is trained with corrupted samples, degrading the track-

ing performance. To overcome this issue, we detect abrupt

changes of object appearance. We define a confidence score

θt to measure the reliability of the object bounding box in

the tth frame. Specifically, θt is defined as the average sim-

ilarity between the SOWP descriptor of the object bounding

box and the positive support vectors, given by

θt =
1

|St|
∑

s∈St

〈s,Φ(xt,yt)〉 (13)

where St is the set of the positive support vectors at time

instance t. Note that the positive support vectors provide a

compact summary of the object appearance in the previous

frames [18]. Therefore, we update the classifier only when

the confidence scores are greater than a threshold η.

5. Experimental Results

Implementation Details The proposed algorithm is imple-

mented in C++ and performed at about 7.3 frames per sec-

ond with an i7-4707HQ 2.40GHz CPU. We employ a linear

kernel for the structured output SVM. The parameters are

empirically set as γ = 5.0 in (5), ǫ = 0.75 in (7), α = 35
in (11), and η = 0.3 as the confidence score threshold.

For computational efficiency, we scale each frame so that

the minimum side length of a bounding box is 32 pixels.

The side length of a searching window is fixed to 2
√
WH ,

where W and H denote the width and height of the scaled

bounding box, respectively.

CVPR2013 Visual Tracking Benchmark We evaluate

the performance of the proposed tracker on the CVPR2013

visual tracking benchmark dataset [38] in Section 5.1 and

Section 5.2. Precision (PR) and success rate (SR) are used

to measure the quantitative performances of a tracker. The

precision is the ratio of the frames, in which the distance

between an estimated object location and the ground truth

is smaller than a threshold. The success rate is the ratio of

the frames, in which the overlap ratio between an estimated

bounding box and the ground truth is larger than a thresh-

old. In particular, the precision at the distance threshold of

20 pixels is employed as the representative PR score, and

the average success rate, which is the area under the suc-

cess rate curve over all overlap thresholds, is used as the

representative SR score.

VOT2014 Challenge For more comprehensive evaluation,

we also run the proposed tracker on the VOT2014 challenge

dataset [28], which is an extended version of [27], in Sec-

tion 5.3. Accuracy (ACC) and robustness (ROB) are used

to assess the performance of a tracker. The accuracy com-

putes the overlap ratio between an estimated bounding box

and the ground truth. The robustness indicates the number

of tracking failures, i.e., the number of frames in which the

overlap ratios are zero.
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Table 1. PR/SR scores of the SOP and SOWP descriptors using

various low-level features. A boldface number denotes the highest

score of each descriptor in terms of each measure. The best PR/SR

scores are achieved by the SOWP using ‘RGB+Gradient’ features,

which is hence employed in the proposed algorithm.

SOP SOWP Parameter

RGB 0.775 / 0.568 0.805 / 0.573 γ = 10.0
Lab 0.761 / 0.550 0.775 / 0.559 γ = 20.0
HSV 0.762 / 0.545 0.768 / 0.564 γ = 20.0
Intensity 0.731 / 0.526 0.765 / 0.543 γ = 10.0
RGB + Gradient 0.805 / 0.577 0.870 / 0.604 γ = 5.00
Lab + Gradient 0.820 / 0.580 0.838 / 0.579 γ = 5.00
HSV + Gradient 0.791 / 0.565 0.865 / 0.603 γ = 10.0
Intensity + Gradient 0.772 / 0.558 0.839 / 0.586 γ = 10.0

5.1. Component Analysis

Let us analyze the amount of the performance gain,

which is achieved by each component of the proposed al-

gorithm. Table 1 compares the performances of the de-

scriptors using various low-level features on the benchmark

dataset [38]. SOP uses the spatially ordered patch descrip-

tor only. On the other hand, SOWP performs the patch

weighting, based on RWR, in addition to SOP. Each color

histogram is 24-dimensional, while each intensity or gradi-

ent histogram is 8-dimensional. We set different values of

the parameter γ in (5), to take into account the characteris-

tics of different features when computing the patch similar-

ity. From Table 1, we can make the following observations:

First, the SOP descriptor with the simple intensity feature

only provides even better PR/SR scores than the best track-

ing performances (PR 0.656 by Struck [18] and SR 0.499 by

SCM [42]) reported in the benchmark [38]. Second, the per-

formance of the SOP descriptor is improved by combining

a color histogram with a gradient histogram, which convey

different types of information about an object. Third, the

SOWP descriptor further improves the performance of SOP,

regardless of the used features, by employing the adaptive

patch weighting and reducing the impacts of background

information in a bounding box. Last, the SOWP descriptor

yields the best performance when using RGB color and gra-

dient features together. Therefore, this combination of RGB

and gradient histograms is adopted for the SOWP descriptor

in the proposed algorithm.

Table 2 shows the performance gains of three versions

of the proposed algorithm over the base tracker, Struck [18].

While Struck describes a bound box with Haar-like features,

SOP descriptor divides the box into patches and describes

each patch using RGB and gradient features. This simple

modification improves the PR and SR scores by 22.7% and

21.7%, respectively. Moreover, by performing the adaptive

patch weighting, the proposed SOWP descriptor further im-

proves the performances and outperforms Struck by 32.6%

and 27.4%. Finally, SOWP+SU, which uses the SOWP de-

Table 2. The performance of three versions of the proposed algo-

rithm, as compared with the Struck algorithm [18]. Numbers in

parenthesis are the performance gains over Struck.

Struck SOP SOWP SOWP+SU

PR 0.656 0.805 (22.7%) 0.870 (32.6%) 0.894 (36.3%)

SR 0.474 0.577 (21.7%) 0.604 (27.4%) 0.619 (30.6%)

scriptor together with the selective classifier update in Sec-

tion 4.3, achieves 36.3% better PR score and 30.6% better

SR score than Struck.

5.2. Comparison with Conventional Trackers

Next, we compare the performances of the proposed al-

gorithm (SOWP+SU) with those of the 29 conventional

trackers whose results were reported in [38]. Figure 5

presents the PR and SR curves of the top ten trackers in

the one-pass evaluation (OPE). Notice that the proposed al-

gorithm outperforms the second best trackers significantly,

achieving 36.3% gain over Struck in PR and 24.1% gain

over SCM in SR. In supplemental materials, we show that

the proposed algorithm also provides the best performances

in the spatial robustness evaluation (SRE) and the temporal

robustness evaluation (TRE) as well.

Table 3 compares the PR/SR scores of the proposed and

conventional trackers according to various challenging fac-

tors. We see that the proposed algorithm always yields the

best scores in terms of both PR and SR metrics. In partic-

ular, the proposed algorithm achieves relatively larger per-

formance gains, as compared with the second best trackers,

when target objects experience deformation or occlusion.

Even when a target object changes its shape due to defor-

mation, the proposed algorithm can reflect this structural

change by updating patch weights adaptively. Also, in case

of occlusion, the proposed algorithm efficiently suppresses

the weights of background patches within a bounding box,

based on the RWR simulation. Note that, for scale variation,

the proposed algorithm yields a relatively low SR score, but

maintains a high PR score. The SR performance, based

on the overlap ratio between true and estimated bounding

boxes, is degraded, since we do not adapt the size of a

bounding box in this work. However, even when an ob-

ject size varies, the proposed algorithm still estimates the

object location accurately through the adaptive weighting

of patches, yielding the high PR score.

Figure 6 compares the proposed algorithm with the five

best conventional trackers in the benchmark. The “Bas-

ketball,” “Bolt,” “Lemming,” “Liquor,” and “Tiger1” se-

quences contain object deformation, occlusion, or cluttered

backgrounds. Hence the conventional trackers cannot trace

the target objects accurately on these sequences. For exam-

ple, Struck loses the target sprinter on the “Bolt” sequence,

due to another sprinter with similar appearance. In con-

trast, the proposed algorithm tracks the target successfully.
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Figure 5. Comparison of the PR/SR plots in the OPE method. The representative scores in parenthesis measure the PR score at the

threshold of 20 pixels and the average SR score over all overlap thresholds, respectively.

Table 3. Comparison of the PR/SR scores in the OPE method, according to 11 challenging factors: IV (illumination variation), SV (scale

variation), OCC (occlusion), DEF (deformation), MB (motion blur), FM (fast motion), IPR (in-plane-rotation), OPR (out-of-plane rotation),

OV (out-of-view), BC (background clutters), and LR (low resolution). Numbers in parenthesis in the first column refer to the numbers of

sequences with the corresponding attributes. A boldface number denotes the highest score in each test.

ASLA [23] CXT [11] CSK [20] LSK [34] VTD [29] VTS [30] TLD [24] SCM [42] Struck [18] Proposed

IV(25) 0.517 / 0.429 0.501 / 0.368 0.481 / 0.369 0.449 / 0.371 0.557 / 0.420 0.573 / 0.429 0.537 / 0.399 0.594 / 0.473 0.558 / 0.428 0.842 / 0.596

SV(28) 0.552 / 0.452 0.550 / 0.389 0.503 / 0.350 0.480 / 0.373 0.597 / 0.405 0.582 / 0.400 0.606 / 0.421 0.672 / 0.518 0.639 / 0.425 0.849 / 0.523

OCC(29) 0.460 / 0.376 0.491 / 0.372 0.500 / 0.365 0.534 / 0.409 0.545 / 0.403 0.534 / 0.398 0.563 / 0.402 0.640 / 0.487 0.564 / 0.413 0.867 / 0.603

DEF(19) 0.445 / 0.372 0.422 / 0.324 0.476 / 0.343 0.481 / 0.377 0.501 / 0.377 0.487 / 0.368 0.512 / 0.378 0.586 / 0.448 0.521 / 0.393 0.918 / 0.666

MB(12) 0.278 / 0.258 0.509 / 0.369 0.342 / 0.305 0.324 / 0.302 0.375 / 0.309 0.375 / 0.304 0.518 / 0.404 0.339 / 0.298 0.551 / 0.433 0.716 / 0.567

FM(17) 0.253 / 0.247 0.515 / 0.388 0.381 / 0.316 0.375 / 0.328 0.352 / 0.302 0.353 / 0.300 0.551 / 0.417 0.333 / 0.296 0.604 / 0.462 0.744 / 0.575

IPR(31) 0.511 / 0.425 0.610 / 0.452 0.547 / 0.399 0.534 / 0.411 0.599 / 0.430 0.579 / 0.416 0.584 / 0.416 0.597 / 0.458 0.617 / 0.444 0.847 / 0.584

OPR(39) 0.518 / 0.422 0.574 / 0.418 0.540 / 0.386 0.525 / 0.400 0.620 / 0.434 0.604 / 0.425 0.596 / 0.420 0.618 / 0.470 0.597 / 0.432 0.896 / 0.615

OV(6) 0.333 / 0.312 0.510 / 0.427 0.379 / 0.349 0.515 / 0.430 0.462 / 0.446 0.455 / 0.443 0.576 / 0.457 0.429 / 0.361 0.539 / 0.459 0.802 / 0.635

BC(21) 0.496 / 0.408 0.443 / 0.345 0.585 / 0.421 0.504 / 0.388 0.571 / 0.425 0.578 / 0.338 0.428 / 0.428 0.578 / 0.450 0.585 / 0.458 0.839 / 0.618

LR(4) 0.156 / 0.157 0.371 / 0.312 0.411 / 0.350 0.304 / 0.235 0.168 / 0.177 0.187 / 0.168 0.349 / 0.309 0.305 / 0.279 0.545 / 0.372 0.606 / 0.410

Average(50) 0.532 / 0.434 0.575 / 0.426 0.545 / 0.398 0.000 / 0.395 0.576 / 0.416 0.575 / 0.416 0.608 / 0.437 0.649 / 0.499 0.656 / 0.474 0.894 / 0.619

Table 4. Comparison of the PR/SR scores of the proposed tracker and recent state-of-the-art trackers in the OPE method, according to the

11 challenging factors. For the descriptions of the challenging factors, refer to the caption of Table 3

KCF [21] DSST [9] SAMF [1] LLP [39] MQT [22] TGPR [14] DDCT [5] MEEM [40] MTA [32] Proposed

IV(25) 0.728 / 0.493 0.727 / 0.534 0.735 / 0.563 0.720 / 0.525 0.628 / 0.489 0.687 / 0.486 0.665 / 0.499 0.778 / 0.548 0.738 / 0.547 0.842 / 0.596

SV(28) 0.679 / 0.427 0.723 / 0.516 0.730 / 0.541 0.644 / 0.498 0.692 / 0.464 0.703 / 0.443 0.687 / 0.484 0.809 / 0.506 0.721 / 0.478 0.849 / 0.523

OCC(29) 0.749 / 0.514 0.845 / 0.619 0.716 / 0.534 0.710 / 0.524 0.654 / 0.519 0.708 / 0.494 0.723 / 0.534 0.815 / 0.560 0.772 / 0.563 0.867 / 0.603

DEF(19) 0.740 / 0.534 0.813 / 0.622 0.660 / 0.510 0.754 / 0.566 0.785 / 0.589 0.768 / 0.556 0.804 / 0.602 0.859 / 0.582 0.851 / 0.622 0.918 / 0.666

MB(12) 0.650 / 0.497 0.651 / 0.519 0.547 / 0.464 0.533 / 0.427 0.618 / 0.488 0.578 / 0.440 0.691 / 0.553 0.740 / 0.565 0.695 / 0.540 0.716 / 0.567

FM(17) 0.602 / 0.459 0.663 / 0.515 0.517 / 0.435 0.586 / 0.444 0.614 / 0.494 0.575 / 0.441 0.685 / 0.534 0.757 / 0.568 0.677 / 0.524 0.744 / 0.575

IPR(31) 0.725 / 0.497 0.691 / 0.507 0.765 / 0.560 0.652 / 0.477 0.671 / 0.482 0.706 / 0.487 0.720 / 0.524 0.810 / 0.531 0.773 / 0.547 0.847 / 0.584

OPR(39) 0.729 / 0.495 0.763 / 0.554 0.733 / 0.535 0.622 / 0.470 0.711 / 0.521 0.741 / 0.507 0.726 / 0.518 0.854 / 0.566 0.777 / 0.557 0.896 / 0.615

OV(6) 0.650 / 0.550 0.708 / 0.609 0.515 / 0.459 0.639 / 0.511 0.484 / 0.502 0.495 / 0.431 0.622 / 0.524 0.730 / 0.597 0.612 / 0.534 0.802 / 0.635

BC(21) 0.753 / 0.535 0.708 / 0.524 0.694 / 0.517 0.659 / 0.488 0.673 / 0.518 0.761 / 0.543 0.660 / 0.502 0.808 / 0.578 0.795 / 0.592 0.839 / 0.618

LR(4) 0.381 / 0.312 0.459 / 0.361 0.497 / 0.409 0.256 / 0.230 0.461 / 0.326 0.539 / 0.351 0.526 / 0.411 0.494 / 0.367 0.579 / 0.397 0.606 / 0.410

Average(50) 0.740 / 0.514 0.777 / 0.570 0.737 / 0.554 0.723 / 0.543 0.723 / 0.529 0.759 / 0.539 0.762 / 0.557 0.840 / 0.570 0.812 / 0.583 0.894 / 0.619

In “Ironman” and “Matrix,” the targets change their appear-

ances abruptly at 34th and 2nd frames, respectively, which

causes false updates of the conventional trackers. However,

the proposed algorithm skips updating the classifier on such

frames and thus traces the target objects more reliably.

In Table 4, we also compare the proposed tracker

with recent state-of-the-art trackers, which are not in the

benchmark: KCF [21], DSST [9], SAMF [1], LLP [39],

MQT [22], DDCT [5], TGPR [14], MEEM [40], MTA [32].

We use the PR/SR scores reported in the literatures for the
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Figure 6. Comparison of tracking results of the proposed algorithm and the conventional methods: ASLA [23], CXT [11], TLD [24],

SCM [42], and Struck [18].

LLP, and obtain the scores using the published codes or re-

sults for the other trackers. We observe that the proposed

algorithm still achieves the best performance, as compared

with these recent trackers. Also note that the proposed

tracker is relatively simple, whereas MEEM and MTA re-

quire multiple base trackers to restore corrupted classifiers

or false trajectories. Despite that, the proposed algorithm

achieves performance gains of 6.4% in the PR score over

MEEM and 6.2% in the SR score over MTA.

5.3. Results on VOT2014 Challenge Dataset

Finally, we evaluate the performance of the proposed al-

gorithm on the VOT2014 challenge dataset [28]. Table 5

compares the proposed tracker with the top three trackers

DSST [9], SAMF [1], and KCF [21] in the VOT2014 chal-

lenge. Two types of tests are carried out. In the baseline

test, a tracker is initialized with a ground truth. On the

other hand, in the region noise test, a tracker gets a per-

turbed ground truth.

It can be observed from Table 5 that the proposed tracker

provides relatively low ACC scores, but achieves the best

ROB performances in both tests. This can be explained

by the re-initialization step in the evaluation methodology

in [28]. When a tracking failure is detected, re-initialization

is triggered. Then, a tracker obtains a new ground truth

to trace a target object in remaining frames. However,

each new ground truth tends to improve the overlap ra-

tio. In other words, the top three trackers fail more fre-

quently than the proposed tracker, they request more ground

truths, and thus they yield higher overlap ratios. To con-

firm these effects of the re-initialization, we perform an ad-

ditional experiment without the re-initialization step. The

proposed tracker yields the best ACC scores without the re-

Table 5. Comparison of the proposed tracker and the top three

trackers in the VOT2014 challenge [28]. ‘ACC w/o’ denotes the

ACC score without the re-initialization step. The best performance

in each test is in boldface.

Baseline Region Noise

ACC ROB ACC w/o ACC ROB ACC w/o

DSST [9] 0.622 1.160 0.469 0.578 1.283 0.432

SAMF [1] 0.616 1.280 0.504 0.572 1.435 0.484

KCF [21] 0.629 1.320 0.395 0.575 1.515 0.360

Proposed 0.575 0.560 0.515 0.552 0.685 0.486

initialization (ACC w/o) in Table 5.

6. Conclusions

In this work, we proposed an efficient object descriptor,

called SOWP, to achieve accurate and robust visual track-

ing. We first divided a bounding box into multiple local

patches, and extracted color and gradient histogram fea-

tures at each patch. We then described the object appear-

ance by concatenating the spatially ordered patch descrip-

tors. We also assigned different weights to those patches

adaptively according to their relevance to the object appear-

ance, by performing the RWR simulations of the foreground

and background random walkers. We thus suppressed the

background information efficiently. We incorporated the

SOWP descriptor into the structured output tracking frame-

work [18]. Experimental results demonstrated that the pro-

posed algorithm significantly outperforms all 29 trackers in

the CVPR2013 benchmark [38], as well as the recent state-

of-the-art trackers in [21, 9, 1, 39, 5, 22, 14, 40, 32]. More-

over, the proposed algorithm also excels on the VOT2014

challenge dataset.
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