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Abstract

We address the problem of recognizing a place depicted

in a query image by using a large database of geo-tagged

images at a city-scale. In particular, we discover features

that are useful for recognizing a place in a data-driven man-

ner, and use this knowledge to predict useful features in a

query image prior to the geo-localization process. This al-

lows us to achieve better performance while reducing the

number of features. Also, for both learning to predict fea-

tures and retrieving geo-tagged images from the database,

we propose per-bundle vector of locally aggregated de-

scriptors (PBVLAD), where each maximally stable region

is described by a vector of locally aggregated descriptors

(VLAD) on multiple scale-invariant features detected within

the region. Experimental results show the proposed ap-

proach achieves a significant improvement over other base-

line methods.

1. Introduction

Image geo-localization is the process of determining the

capturing viewpoint’s positioning w.r.t. a geographic refe-

rence [43]. The recent availability of large scale geo-tagged

image collections, enables the use of image retrieval frame-

works to transfer geo-tag data from a reference dataset into

an input query image. Applications of these capabilities

include adding and refining geotags in image collections

[15, 41], navigation [26], photo editing [44], and 3D recon-

struction [11]. However, geo-localization of an image is a

challenging task because the query image and the reference

images in the database vary significantly due to changes in

scale, illumination, viewpoint, and occlusion.

Image retrieval techniques based on local image fea-

tures [27] can achieve increased robustness against pho-

tometric and geometric changes [24, 42]. However, not

all local features are useful for geo-localization [21]. For

example, features extracted from transient scene elements

(pedestrians, cars, billboards) and ubiquitous objects (trees,

fences, signage) can introduce obfuscating cues into the

geo-localization process. Many approaches have been pro-

posed to address this issue by focusing on the uniqueness of

a feature by removing and reweighting non-unique features

within the reference data [21, 32] or in the query image [2].

Indeed, unique features are helpful, but a non-unique fea-

ture may actually help increase the chance of correct local-

ization, either by itself or in combination with others.

We exploit a data-driven notion of good features for

geo-localization. That is, we aim to foster features hav-

ing relatively high matching scores in correct localization

outcomes, in contrast to their relatively low score for neg-

ative outcomes. Further, we cast feature score prediction

as a classification problem, assuming the characteristics are

shared in a reasonably-scaled geographic region. We use a

separate set of geo-tagged Internet images to generate train-

ing data, computing matches against database images. To

cope with noise and high intra-class variation among the

training data, we adopt recent bottom-up clustering tech-

niques for visual element discovery [8, 9] that involves iter-

ative training of linear support vector machines (SVM). At

the query phase, the algorithm selects features in a query

image prior to the geo-localization process by accumulat-

ing predictions from the bank of linear SVMs. Our results

show improved performance is achieved by using only fea-

tures that are predicted as useful, while reducing the number

of features significantly.

The feature representation for such a task should not

only be robust to photometric and geometric changes, but

also have a high discriminative power as we want to learn

features over a large area, e.g. a city. Therefore, we avoid

using low-level features for learning, which are hard to be

discriminative over a large area. We propose a per-bundle

vector of locally aggregated descriptors (PBVLAD) for fea-

ture representation, where each maximally stable (MSER)

[28] region is described with a vector of locally aggregated

descriptors (VLAD) on multiple scale-invariant features de-

tected within the region. This allows us to represent multi-

ple features with a fixed-size vector such that it can be used

in various classification methods such as an SVM. We show

in the experiments that this feature representation has sig-

nificant improvement over low level features in both learn-

ing to predict features and retrieving images.
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Figure 1: Overview of our approach. From an input query image with unknown geo-location (a), MSER regions and SIFT keypoints

forms a bundled feature [40], and consequently represented by PBVLAD (b). Features go through a pre-trained bank of SVMs that outputs

binary predictions about a feature being “good” for geolocalization (c). Predictions are accumulated to compute confidence scores for each

feature (d, left). Features with high scores are selected for geo-localization (d, right). Retrieved geo-tagged image is shown in (e).

Our contribution is two-fold: (1) We offer a way to pre-

dict features that are good in a data-driven sense for geo-

localization in a reasonably-scaled geographic region. We

show that by selecting features based on predictions from

learned classifiers, geo-localization performance can be im-

proved. (2) We propose per-bundle vector of locally aggre-

gated descriptors (PBVLAD) as a novel representation for

bundled local features that is effective for both learning to

predict features and image retrieval.

2. Related work

There are two main categories in image geo-localization

for street-level input images. Our method falls into the cate-

gory of image-retrieval-based methods where a geolocation

of the image is approximated by identifying geo-tagged ref-

erence images depicting the same place [3, 5, 16, 35]. The

other is to estimate the full camera pose of the query image

using a 3D structure-from-motion model constructed from

reference images [13, 17, 25, 31], which is limited to places

with a dense distribution of reference images.

Our work is mostly related to recent works attempting

to select features that are geographically discriminative by

taking advantage of geotags in the database. Schindler et

al. [32] build a vocabulary tree using only unique features

that appear at each location. Arandjelovic and Zisserman

[2] use distribution in the descriptor space as a measure for

distinctiveness. Knopp et al. [21] refine the database by re-

moving features that match to faraway places. Rather than

finding features unique to specific places, Doersch et al. [9]

find image patches that also occur frequently in a geograph-

ical region, and unique with respect to other geographic re-

gions. While these methods focus on the uniqueness of a

feature, we focus on features that explicitly contribute to

geo-localization either positively or negatively. Although

unique features do characterize a location, it may be risky

to discard all non-unique features, some of which may con-

tribute to correct retrieval by having high matching score in

the correct location than in false positives.

Some cast the localization problem as a classification

problem where visual words are weighed according to their

importance to specific locations [4, 12]. Conversely, we

train classifiers to predict whether a feature is useful for

geo-localization over a larger scale of geographic region,

utilizing a separate set of geo-tagged images from photo

sharing websites taken in a city to generate our training data.

Based on the predictions, we select features prior to geo-

localization. We show that better performance is achieved

without using all features. It is also more scalable as the

training images can be much more sparse than the reference

images, with the assumption that these characteristics are

shared among images in the same geographic region.

In the fields of image retrieval, there is a large body of lit-

erature on feature selection and weighting [30, 36, 38, 45].

The closest work to ours is [33], which tries to find the im-

portance of each feature by training a per-examplar SVM

on a given query image with hard negative mining. While

this method can be effective, it is time consuming as a fresh

model is trained every time. In constrast, we refine and or-

ganize the outcomes of geo-localizing training images in

offline, and use this knowledge for selecting features.

In terms of selecting features in advance to matching in

a data-driven way, our work is closely related to [14], but

with different focuses. Whereas [14] tries to predict fea-

tures that are likely to form a match, we predict features that

contribute to correct geo-localization. As we show in our

experiment, not all matches are useful for geo-localization.

Applying VLAD to local regions in previous work was

either based on tiles from rectangular grids [1] (as in spa-

tial pyramids [23]), or on bounding boxes [39], which are

not robust to geometric changes. We propose to use VLAD

for representing a bundled feature [40], which consists of

SIFT keypoints and an MSER region that are both repeat-

able, thus resulting our PBVLAD to be robust to geometric

and photometric changes.

3. Proposed approach

The overview of our approach is shown in Figure 1. In

this section, we first introduce our proposed feature repre-

sentation for image retrieval and training calssifiers (Sec.

3.1). We then illustrate our training framework for automat-
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ically generating training data and training a bank of SVMs

for predicting good features for geo-localization (Sec. 3.2).

3.1. Per­bundle VLAD for feature representation

We want to identify parts of an image that are useful

for geo-localization, using a discriminative classification

method such as SVM. However, it is a hard problem to learn

such characteristics given a low level description of a cor-

ner or a blob. Thus, we propose per-bundle vector of locally

aggregated descriptors, namely PBVLAD. The key idea is

to use groups of low level features, and describe them in

a vector with a fixed-size that allows it to be compared in

standard distance measures, and enables it to be used for

various classification methods.

The concept of a bundled feature was proposed by Wu et

al. [40] for retrieving partial-duplicate images. By bundling

multiple SIFT features detected in the same MSER regions,

the discriminative power is increased while still being re-

peatable, as both components are robust to photometric and

geometric changes. The original representation was a con-

catenation of quantized SIFT features, which changes in

length as a MSER region can contain different number of

SIFT features. The similarity between two bundled features

was measured by computing intersection between them. In

this paper, we propose to describe a bundled feature with a

vector of locally aggregated descriptors (VLAD) [19]. This

representation produces sparse vectors with a fixed-size that

is convenient for comparing distances and training classi-

fiers such as SVM. Compared to the bag-of-words (BoW)

representation, VLAD can have a much smaller dimension

while maintaining high discriminative power, and it can be

further quantized without significant loss in performance.

Note that Min-hash sketches can also provide a compact

representation [6], but it has a comparably low recall and a

limited number of applicable classification methods as stan-

dard distance measures cannot be applied.

Let R and S denote the MSER regions and SIFT fea-

tures detected in image I , respectively. Each MSER region

r ∈ R contains a set of SIFT features B ⊂ S that are de-

tected within that region B = {s = (d, l)|l ∈ r}, where

d and l denote the descriptor and the location of the SIFT

feature. B is called a bundled feature [40]. For a bundled

feature Ba, its associated SIFT features sa = (da, la) ∈ Ba

are each assigned to a visual word of a coarse vocabu-

lary W via nearest neighbor search such that NN(da) =
argmin

w
||da − cw||, where cw is the centroid of the visual

word w. The subvector of per-bundle VLAD that corre-

sponds to the visual word w, denoted as pwa , is obtained

as an accumulation of differences between da’s that are as-

signed to w and the centroid cw. As proposed in [7], we

normalize the differences (i.e., residuals), so that each con-

tribution of SIFT descriptor di to the vector pwa are equal.

This is to limit the effect of possible noise, although bundled

features are robust to photometric and geometric changes.

pwa =
∑

di:NN(di)=w,di∈Ba

di − cw

‖di − cw‖
(1)

The final representation is the concatenation of the vectors

pwa followed by L2 normalization.

pa =
[

p1a, p
2
a, ..., p

|W |
a

]

(2)

We tested multiple normalization schemes [1, 19], but the

combination of residual- and L2- normalization performed

the best in our data. The PBVLAD representation of corre-

sponding bundled features are visualized in Figure 2.

Similarity metrics. The similarity between two PBVLAD

is computed as their dot product M(pa, pb) = pa · pb. Fig-

ure 3 depicts the matched feature regions of two corre-

sponding images. We define the matching score f of a fea-

ture pq in a query image Iq to a reference image Ir as the

maximum possible similarity between pq and features in Ir.

The image similarity Sim between a query image Iq , and

the reference image Ir becomes the sum of matching scores

of individual features pq ∈ Iq with respect to Ir.

f(pq, Ir) = max
pr∈Ir

M(pq, pr), (3)

Sim(Iq, Ir) =
∑

pq∈Iq

f(pq, Ir) (4)

We use above image similarity measure to retrieve reference

images that best matches the query image.

For efficient nearest neighbor search in the reference

data, we reduce the dimension of raw PBVLAD using

principal component analysis (PCA). Instead of performing

PCA on a whole vector, we do on a per-visual-word basis by

performing PCA on subvectors pw that are generated from

each visual word w. We do this in order to preserve the

characteristics of each visual words that might be lost due

to the overall sparsity of the vector. In our implementation,

a coarse vocabulary of 128 visual words was used, yield-

ing 16,384-dimensional raw PBVLAD’s. The dimension is

then reduced to 2,048 by performing PCA on 128 visual

words and taking the top 16 components of each. Note that

PBVLAD matching can be efficiently indexed using prod-

uct quantization [18]. Henceforth, the term feature will re-

fer to PBVLAD representation of a bundled feature.

3.2. Predicting good features for geo­localization

Automatic training data generation. Given an arbitrary

set of geo-tagged images It = {It}, we want to automat-

ically generate good/bad training examples of features for

geo-localization using only their associated GPS locations.

Rather than having assumptions about good and bad fea-

tures for geo-localization, we want to find them in a data-

driven way. This enables our method to adapt to various
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Figure 2: PBVLAD representation of corresponding bundled features. (a,e) Two different images depicting the same place. (b,d) Multiple

SIFT features are bundled within MSER regions. (c) Each bundle is represented with VLAD. We follow the visualization scheme of [19]

where subvectors are represented in 4x4 spatial grid with red representing negative values. Note that only non-sparse blocks that correspond

to overlapping visual words of two bundles are visualized due to space limit.

Figure 3: Matching with PBVLAD with similarity threshold 0.5

geographical regions. For each image in the training set,

we retrieved top n = 100 images from the reference set

Ir = {Ir} using image similarity defined in Eq. 4. We

investigate whether a feature in a training image pt ∈ It is

explicitly contributing to the correct retrieval of the ground

truth image. To this end, we compare a feature’s matching

score to a ground truth reference image f(pt, IGT ), against

the matching score to a falsely retrieved images f(pt, IFP ).
Given that the overall image similarity between two im-

ages is the sum of individual matching scores (Eq. 4), this

comparison helps us differentiate good features based on

their individual contribution. If the difference between two

values |f(pt, IGT ) − f(pt, IFP )| is greater than a certain

threshold, we include the feature into the training set, as-

signing positive label when f(pt, IGT ) > f(pt, IFP ), neg-

ative label otherwise. This process is depicted in Figure

5(a-d) and provides the initial positive and negative training

feature set for data-driven visual component discovery.

Closed-loop training of SVM classifiers. The automatic

labeling approach above can sometimes generate contradic-

tory labels for the features with similar appearance. This

commonly occurs in visual elements that appear in both the

(a)

(b)

(c)

(d)

(e)

Training Image Ground-Truth

Reference Image
Initial Training Data

Figure 4: Initial training data generation. Positive and negative

training examples are depicted in green and blue, respectively.

transient and the static objects. In Figure 4, for example,

text on buses (b) and t-shirts (e) is assigned a negative la-

bel, while text on buildings and store signs (d) belongs to

the positive set. A limited field-of-view overlap between a

training image and a ground truth image can also lead to

such contradictory labelings. Windows on the same build-

ing, for instance, can be assigned to different labels due

to their visibility in the ground-truth reference image IGT .
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Figure 5: Overview of our training framework. For each training images that have GPS-tags (a), we retrieve top n images from the

reference set (b-c). Positive labels are assigned to features that have higher matching score in the ground-truth reference image than in the

falsely retrieved reference images, with a margin greater than thres. Negative labels are assigned in a similar manner. (d). To handle noise

and high intra-class variation, we use bottom-up clustering technique, refining the positive set as well as training SVMs iteratively (e-f).

Figure 6: Top elements in the final clusters with a high ratio of

positive labels. Each half row corresponds to different clusters.

Figure 7: Final negative set elements aligned according to their

initial clusters. Each half row corresponds to different clusters.

Such contradictory labeling on similar features limits the

prediction accuracy.

On the other hand, there exists high intra-class variation

in both the positive and negative classes: Windows have

different appearances from text, for example, yet features

from both appear in the same class. Training a single classi-

fier over the entire data may be negatively affected by such

intra-class variation.

To solve the problems of contradictory labelings and

intra-class variation, we perform bottom-up clustering [9]

on the initial training feature set. By doing so, we obtain

clusters of training examples whose appearances and the la-

bels are most consistent, as well as a bank of linear SVM

classifiers that are trained within each cluster. Each training

example constructs a cluster by finding k nearest neighbors

in the training set. Redundant sets whose top ranked ele-

ments overlap with existing sets are eliminated. If a cluster

has a high ratio of negative labels, the negative examples

in that cluster are assigned to the final negative set N , and

the positive ones are discarded. For the remaining clusters

Ci, a linear SVM is iteratively trained on the positive ex-

amples in each cluster, using N as the negative set for hard

negative mining (Figure 5(e-f)). As the SVM uses its true-

positive firings for the re-training in the iterative procedure,

clusters are left with features having consistent appearances

and labels. Similar to [9], the clusters and N are divided

into three sets to avoid overfitting. We only keep the SVM

classifiers with an accuracy rate greater than 0.8. Finally,

we remove redundant classifiers whose weight vectors have

a high cosine similarity with that of other classifiers as in

[20]. Examples of top elements in Ci are shown in Figure 6.

Figure 7 shows elements in N , which are aligned according

to their initial clusters. Interestingly, although our approach

makes no assumption on features that are useful for geo-

localization, we can observe semantic relationships emerge

through the learning process. Namely, windows, charac-

teristic wall patterns, and letters on signage are detected

as positive elements, while features from trees, people, car

wheels, pavements, and edges are considered as negative

elements.

In the querying phase, we feed query image features into

the bank of linear SVM classifiers. We accumulate predic-

tions from each classifier to compute the confidence score

of a feature being good for geo-localization (Figure 10 (b)),

weighting them using the discriminativeness [34] of the

classifier, which is the ratio of number of firings in its cluster

Ci over that in the entire training set, in order to compen-

sate for the distribution of visual elements that each clus-

ter spans. We discard features with a low confidence score

and keep only the remaining features for performing geo-

localization (Figure 10 (c)).

Implementation details. For generating the training set,

we define the IGT image set as reference images that are
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within 50 meters from the given GPS location and passed

geometric verification w.r.t. the training image by fitting a

fundamental matrix. For IFP , we took reference images

that are retrieved within the top n (n =100), and at least

270m away from the given GPS location. This accounts

for both user-provided geo-tag errors and the fact that large,

symmetric buildings are often observable from extended ar-

eas. Before comparing f(pt, IGT ) and f(pt, IFP ), we nor-

malize the matching scores by multiplying 1
max(f) to com-

pensate for a non-uniform distribution of features. For train-

ing and predicting, we separated features into three scale

levels based on the size of the MSER, as we observed that

the distribution of positive and negative PBVLAD features

varies in different scales. The number of SVM classifiers

used in each level were 35, 150, and 25.

4. Experiments

4.1. Image Geo­localization

Dataset. For the reference image set Ir, we collected

27,520 geo-registered Google Street View images covering

the Pittsburgh (U.S.) area. These images contain 8 overlap-

ping perspective views extracted from the spherical panora-

mas in two different yaw directions, to capture both eye-

level street views and the higher parts of the building in ur-

ban environments. This setting is similar to those used in

[9, 12, 37]. The co-located GPS-tagged training image set

It, comprising positive and negative training data Ci’s and

N for learning, was downloaded from Flickr and consisted

of 850 images that were successfully registered to the near-

est elements in Ir through geometric verification. The test

image set Iq was formed by 145 internet collection images

from the query set of [42] with manually verified GPS-tags.

Results. We compare the proportion of correctly localized

image among a ranked list of top n candidates. All of our

results are without post-processing such as geometric re-

ranking [29]. We consider an image to be localized if it is

within 35m from the ground truth location. For a baseline,

we compare with our implemented version of [42] We also

compare a variant of [42] with SIFT feature selection by

pre-trained linear SVM in a procedure similar to our selec-

tion of PBVLAD features (SIFT Select).

Figure 8 depicts how our systems with selected PB-

VLAD (PBVLAD Select) and all PBVLAD (PBVLAD All)

consistently outperform the baseline methods. Feature se-

lection is more successful in PBVLAD than SIFT. The per-

formance of using selected features is consistently better

than using all features in PBVLAD, whereas this behavior

alternates when considering SIFT features.

The performance at the top of the shortlist (n = 1) dis-

played in Table 1. Our method achieves a recall of 64.83%

using all features and improves to 68.28% with selected fea-

tures, while the best baseline method (SIFT Select) obtains

Method % Correct

PBVLAD All 64.83

PBVLAD Select 68.28

PBVLAD Random 33.38

PBVLAD Select∁ 19.31

SIFT All [42] 49.66

SIFT Select 46.90

Chance 0.20

Table 1: Proportion of correctly localized images at top 1
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Figure 8: Geo-localization performance

49.66%. We also tested the performance of the system us-

ing the same number of PBVLAD features as our selec-

tion framework, but that are picked randomly (PBVLAD

Random). Its poor recall rate supports the effectiveness of

our selection mechanism, illustrating how simply selecting

fewer features does not generally improve the performance.

Moreover, we also tested with the features that are not se-

lected by our framework (PBVLAD Select∁) to illustrate

how discarded features are in general detrimental to the

geo-localization. The random chance of retrieving correct

images is 0.2 %, which reflects difficulty of the dataset.

Figure 9 shows examples of our results using PBVLAD.

The top four retrieved images are shown for each query im-

age. As can be seen, our method retrieves correct reference

images despite partial occlusions and changes in viewpoint,

illumination, and scale. Figure 10 depicts other examples

where PBVLAD Select outperforms PBVLAD All.

We attribute the enhanced performance of PBVLAD-

based retrieval to the increased discrimination power pro-

vided by aggregated features. Figure 11 (b) illustrates the

maximum obtained feature similarity score for the features

within a query image (a) w.r.t. the entire reference dataset.

We can observe that PBVLAD features in foliage image re-

gions are not highly matched to the reference set. Where

individual SIFT features may have many similar features in
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Figure 9: Example result (left) Query images, (right) Top four retrieved images using our proposed PBVLAD. Query images are of various

sizes.

(a) (b) (c) (d) (e)

Figure 10: Qualitative comparison of retrieved image using selected PBVLAD and using all of the features. (a) Query image (b) Heat

map representation of confidence being a good feature (c) Selected features (green:selected, blue:discarded.) (c) retrieved image using

selected features (d) retrieved image using all features.
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(a) (b) (c)

Figure 11: (a) Query image (b) Heat map of maximum matching

scores max
Ir

(f(pq, Ir)) of each features pq . (c) Confidence scores

Query image                        Ground-truth                    Retrieved image  

Figure 12: Failure cases. Retrieved images are more than 100m

away from ground-truth locations.

the dataset, the analysis of their local ensembles is more dis-

criminative. Moreover, our final predicted feature scores (c)

illustrate how our framework discriminates good features

prior to direct feature similarity estimation.

Failure cases. There are many cases where the ranked

list contained the same building in the query image, but at

different locations. The first and second row of Figure 12

show such examples. This occurs often for images depict-

ing a large and symmetric buildings. In many cases, the

building itself looked more similar to the retrieved image

than the ground-truth reference image. Another observation

is that when it comes to severe scale changes, the number of

SIFT keypoints detected within the MSER region is reduced

due to lack of details. In such cases, it becomes hard to

match a PBVLAD as many of its group members are miss-

ing. This could be alleviated by using spectral SIFT [22],

or by only including keypoints detected within some scale

range from the MSER region similar to [6].

4.2. PBVLAD for general image retrieval

We evaluate PBVLAD as a descriptor for image retrieval

on the Oxford5k Buildings dataset [29]. Table 2 com-

pares our method against state-of-the-art image retrieval

approaches [10, 19], which includes VLAD, Fisher vector

(FV), and a bag-of-words baseline. The evaluation was per-

formed without dimensionality reduction for all methods.

PBVLAD shows competitive performance to other state-of-

the-art descriptors. Table 3 shows the effect of dimension

reduction using PCA. The decrease in the performance is

not significant until the dimension is reduced to 12.5%.

Descriptor # Vocabulary mAP

BoW [19] 200,000 0.364

BoW [19] 20,000 0.319

Fisher [19] 64 0.317

VLAD [10] 128 0.339

PBVLAD 128 0.369

Table 2: Comparative image retrieval performance of PBVLAD

on the Oxford 5k dataset. The accuracy is measured by the mean

Average Precision (mAP). All descriptors are uncompressed.

Full Dim Reduced

Dim 16384 8192 4096 2048 1024

mAP 0.369 0.364 0.334 0.264 0.210

Table 3: Retrieval performance of PBVLAD on Oxford 5k

dataset, before and after the dimensionality reduction using PCA.

The accuracy is measured by the mean Average Precision (mAP)

5. Conclusion

In this work, we proposed per-bundle vector of locally

aggregated descriptors (PBVLAD) for maximally stable re-

gions in an image. PBVLAD provides a convenient and

effective representation for classification of grouped local

features. Using this descriptor and a geo-tagged internet im-

age collection, good/bad features for geo-localization were

exploited with the notion of good/bad being explicitly de-

fined in terms of the feature’s contribution to the retrieval

process. To remove noisy labels and deal with the large

intra-class variation, bottom-up clustering was performed,

generating a bank of SVM classifiers. At the query phase,

outputs of each classifiers were accumulated to select good

features. The experimental results show an improvement in

the geo-localization accuracy when only good features pre-

dicted by our algorithm were used.
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