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Abstract

A variety of studies in neuroscience/neuroimaging seek

to perform statistical inference on the acquired brain im-

age scans for diagnosis as well as understanding the patho-

logical manifestation of diseases. To do so, an important

first step is to register (or co-register) all of the image data

into a common coordinate system. This permits mean-

ingful comparison of the intensities at each voxel across

groups (e.g., diseased versus healthy) to evaluate the effects

of the disease and/or use machine learning algorithms in

a subsequent step. But errors in the underlying registra-

tion make this problematic, they either decrease the statis-

tical power or make the follow-up inference tasks less ef-

fective/accurate. In this paper, we derive a novel algorithm

which offers immunity to local errors in the underlying de-

formation field obtained from registration procedures. By

deriving a deformation invariant representation of the im-

age, the downstream analysis can be made more robust as

if one had access to a (hypothetical) far superior registra-

tion procedure. Our algorithm is based on recent work on

scattering transform. Using this as a starting point, we

show how results from harmonic analysis (especially, non-

Euclidean wavelets) yields strategies for designing defor-

mation and additive noise invariant representations of large

3-D brain image volumes. We present a set of results on syn-

thetic and real brain images where we achieve robust statis-

tical analysis even in the presence of substantial deforma-

tion errors; here, standard analysis procedures significantly

under-perform and fail to identify the true signal.

1. Introduction

A broad spectrum of research in neuroscience including

studies focused on understanding the process of aging, the

effects of trauma and the manifestation of neurological dis-

orders rely heavily on statistical analysis of neuroimaging

data [26]. Typical questions may include identifying which

brain regions are affected as a function of disease and/or

finding associations or correlations of regional measure-

ments in the image with future cognitive decline [10, 16, 8].

A key component which precedes much of the “analysis”

pipeline is co-registration [1]. For instance, if the study

cohort includes a set of 100 participants/subjects, the co-

registration step will warp each of the 100 images into a

common template coordinate system. It is easy to see that

doing so enables one to retrieve the measurement at a spe-

cific voxel v across the entire cohort — in other words, for

any arbitrary voxel in one image, we know its correspond-

ing voxels in all other images. This process, often called

as ”spatial normalization”, is essential for performing ei-

ther voxel-wise inference (i.e., independently, one voxel at

a time) or utilizing such data for classification or regression

tasks [29, 35, 36].

Given the critical role of registration in statistical im-

age analysis of brain imaging data, the community has in-

vested much effort in algorithms and (mature) software li-

braries that are reliable and easily deployable. Depending

on the clinical question and the type of image modality un-

der study, methods based on non-linear/free-form deforma-

tions optimizing various loss functions (e.g., mutual infor-

mation) are broadly available [20, 21, 27, 24]. Note that

while the general ideas driving image registration do not

change very frequently, most popular toolboxes are regu-

larly fine-tuned, to achieve better accuracy. These “incre-

mental” refinements seem routine, but are very valuable in

practice. To see why, let us use an example to answer a

closely related question, namely, what happens when the

registration pre-processing is slightly imperfect?

Consider a dataset which consists of two groups: healthy

and diseased subjects. Once the initial co-registration is

done, our goal may be to perform a voxel-wise parametric

test to identify voxels that are statistically different across

the groups suggesting a potential disease effect [2]. It is

commonly observed by practitioners that using a newer reg-

istration method that is marginally better relative to its older
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version improves the final analysis in measurable ways:

for example, by revealing a stronger disease effect (i.e.,

lower p-values) and possibly more image regions where dif-

ferences are statistically significant (survive a threshold of

α = 0.05) across the healthy and diseased groups. This

suggests that even small errors in the registration may have

a detrimental effect on the downstream analysis. The statis-

tical power improvements described above have important

and real consequences; an actual experiment or study that

may have needed 500 participants to evaluate a hypothesis

may now be possible (using a better registration procedure)

with a slightly smaller sample size.

Clearly, image registration algorithms will continue to

improve. But separate from these developments, this pa-

per considers a complementary (but potentially more inter-

esting) question that is not tied to which method is cur-

rently the best. Assume that there is an ideal registration

(or transformation), T and the one estimated by a state

of the art registration method is T + ǫ with error ǫ > 0.

Based on the foregoing discussion, actively pursuing bet-

ter registration schemes is obviously important. But inde-

pendent of these improvements, can we derive statistical

analysis methods that are, by design, immune to nominal

values of ǫ? In other words, as long as the registration pro-

cedure provides a reasonable estimate of T , the follow-up

analysis operates on alternate representations of the image

that are invariant to local deformations (of up to magni-

tude ǫ′ ≤ ǫ) [17, 19, 25, 18, 34, 33]. Such a tool, if

available, will have two direct implications. Notice that

if the upstream registration is already good, such a local-

deformation invariant analysis framework may occasionally

offer a small improvement or at worst, will match the results

that we obtained anyway. But more importantly, if the re-

sults from state-of-art registration methods are imperfect,

such a framework will be extremely useful. In some sense,

the final analysis results will be consistent with a (hypo-

thetical) registration procedure that did not make those er-

rors. Note that while spatial smoothing may provide some

resilience to such local registration errors, it will be desir-

able to obtain algorithms that are invariant to such errors.

The contribution of this paper is to take a small step to-

wards registration invariant analysis of brain imaging data.

To do so, we leverage recent results from harmonic analysis,

namely, scattering coefficients, to derive image representa-

tions that are provably invariant to local deformations. This

so-called scatter transform is obtained via a cascade of op-

erations, involving wavelet expansions using an orthonor-

mal basis derived from a function of the image. The down-

stream statistical questions can then be simply reformulated

in terms of such representations, which are immune to nom-

inal levels of errors in the given registration. We show sim-

ulation results as well as empirical evidence obtained from

experiments on real brain images.

2. The Continuous Wavelet Transform

The core of our proposed ideas relies on the theory of

wavelets and their various applications in computer vision

and image processing. Our framework will essentially ap-

ply these transforms in a sequential/network manner to the

given data and as we will see shortly, the resultant coeffi-

cients when appropriately averaged will offer the type of

invariance properties we desire. Since the wavelet expan-

sion is critical to the description of our ideas, we will give a

brief overview next and then describe our algorithm.

The wavelet transform is conceptually similar to the

Fourier transform, in that a given function is transformed

using a specific set of basis functions. While the Fourier

transform uses sin() bases with infinite support, the wavelet

transform uses a mother wavelet basis ψ which is localized

in both time and frequency domain [22].

The definition of wavelet transform starts from the con-

struction of a mother wavelet ψt,a, a function of two param-

eters, a scale parameter t and a translation parameter a,

ψt,a(x) =
1

t
ψ(
x− a

t
) (1)

Here, the parameters t and a control the dilation and local-

ization of ψt,a respectively. Using ψt,a as the bases, the

wavelet transform of a function f(x) is defined as the inner

product of the ψ and f , represented as

Wf (t, a) = 〈f, ψ〉 =
1

t

∫
f(x)ψ∗(

x− a

t
)dx (2)

where Wf (t, a) is the wavelet coefficient at scale t and lo-

cation a, whereas ψ∗ is the complex conjugate of ψ.

For our purposes, it will in fact be more convenient to

think of this transform as an operator T t acting on f . We

can check that this operation can now be represented in

terms of convolution by defining ψ̄t(x) = 1
t
ψ∗(−x

t
). The

expression in (2) becomes

(T tf)(a) =

∫
ψ̄t(a− x)f(x)dx = (ψ̄t ⋆ f)(a) (3)

When the mother wavelets ψt (t = 1, 2, · · · , J) of mul-

tiple scales are transformed to the frequency domain, they

form a group of band-pass filters. Since these band-pass

filters do not cover the low-frequency band, we need to

introduce an additional low-pass filter, a scaling function

φ. Since the scaling function φ acts as a low-pass filter,

the forward transform using φ returns a smoothed (or av-

eraged) representation of the original function f in terms

of the wavelet coefficients. The transform using φ is often

referred as the wavelet transform at scale 0 using ψt0 .

3. Obtaining a Deformation Invariant Repre-

sentation via Scattering Coefficients

Our primary strategy is to use the recently proposed

scattering transform of an image to obtain a deforma-
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tion invariant representation. Consider a set I =
{I1, · · · , IN , IN+1, · · · , I2N} of images that we seek to

perform classification experiments on, where the indices

{1, . . . , N} and {N + 1, . . . , 2N} correspond to the first

(and second) class respectively. If each of the images corre-

sponds to handwritten digits with arbitrary orientations and

translations, the scattering transform attempts to offer re-

silience to such variations. To do so, the scattering trans-

form maps an image to a lower dimensional space where

the distances between data classes are maximized (while

within class distances are minimized). It does so without us-

ing the class labels and in this sense, is fully unsupervised.

The underlying machinery uses a combination of rotational

wavelets (i.e., Gabor filter) and modulus/averaging opera-

tions to obtain an embedding for the given image, to subse-

quently compute meaningful similarities between them de-

spite the fact that the rotation/translation of each individual

image is arbitrary. Due to some of these interesting proper-

ties, the scattering transform will serve as an excellent start-

ing point for our algorithm which we will then modify to

derive the type of behavior needed in our application.

3.1. Scattering Transform

The scattering transform is motivated by a need for a

representation that is robust to group actions. It utilizes

the wavelet transform and the modulus operator together

to obtain such group invariants. We know that the mother

wavelet function ψ is shaped as a localized oscillating func-

tion with finite duration, which is different from the Fourier

basis with infinite support. It is precisely this localization

property that offers at least partial robustness to deforma-

tion within the classical wavelet transform. Unfortunately,

it is this localization property that makes the wavelet trans-

form variant to local translations, in fact, the wavelet trans-

form is covariant. Recall that our objective is to perform im-

age analysis even when the overall registration has not ade-

quately estimated the local deformations. In free-form non-

linear registration, local deformations are generally repre-

sented as local translations, which in addition to the covari-

ance property of the wavelet transform poses a significant

technical issue. To overcome this, the scattering transform

uses an additional non-linear operation to make the resul-

tant representations invariant to such localization which we

will describe next.

There are several non-linear operations one can use in

the above setting. One of the simplest non-linear operations

that are popular and easy to analyze are piecewise linear op-

erators. Scattering transform uses the modulus operator,M ,

which is in fact a piecewise linear operator and moreover it

satisfies the following three important properties, each of

which is important in a special way. It is pointwise, non-

expansive (i.e., ||Mf−Mg|| ≤ ||f−g|| ) and signal energy

preserving [3].

Now, we will see intuitively why scattering transform is

rotation invariant. In practice, scattering transform uses a fi-

nite number of filters at different phase angles. These phase

angles are generally chosen to be the n−th root of unity and

hence form a finite group under multiplication as the group

operation. In order for us to come up with an invariance to

this group (rotation) action, we can use a popular trick in

group representation theory (see chapter 2 in [28]), specif-

ically, to take the average over all the filters. We will see

how this is done more explicitly in the next section. Note

that even though the averaging operation makes sense only

when the group is finite, one can nonetheless extend this

line of thought to compact Lie groups by replacing the sum

in the averaging operation by integral, please see [23] for

more details.

To summarize the above discussion, the scattering

transform obtains its non-linear invariants by combining

wavelets (for additive noise invariance), modulus (for lo-

cal translation invariance) and averaging operation (for lo-

cal rotation or some other group invariance) in a cascade

fashion thus obtaining a local deformation invariance. Let

U [s]f = |f ⋆ ψs|, and any sequence p = (s1, s2, · · · sm)
define a path of an ordered product of operators as

U [p]f = U [sm] · · ·U [s2]U [s1]f (4)

= | · · · ||f ⋆ ψs1 | ⋆ ψs2 | · · · ⋆ ψs1 | (5)

Using this concept, a scattering transform (represented as a

convolution network) along path p at the location u is de-

fined as

S[p]f = U [p]x ⋆ φ(u) (6)

= | · · · ||f ⋆ ψs1 | ⋆ ψs2 | · · · ⋆ ψs1 | ⋆ φ(u) (7)

yielding scattering coefficients S[p]f for path p. These scat-

tering coefficients are invariant to translation of f and al-

though it has many similarities with the Fourier transform

modulus, S[p]f is Lipschitz continuous to deformation in

contrast to the Fourier transform modulus. So far, appli-

cations of the scattering transform have been fairly limited

to analyzing signals in 1-D and (small sized) 2-D settings

and to a few problems such as texture [3, 31, 32] and hand

writing analysis [3].

Despite these useful properties of the scattering trans-

form, the standard construction of the scattering transform

is inapplicable to our application where the dimension of

the function space and size of the data is much larger. Many

medical imaging modalities provide high dimensional im-

ages, and the number of scattering coefficients becomes

very large and makes further analysis very inefficient, of-

ten infeasible. For instance, utilizing rotation filters at small

incremental resolutions at all possible locations is computa-

tionally intractable for most image datasets of interest, es-

pecially 3-D images.

Key Idea. A potential solution to the above issue must

utilize the underlying structure of the given data and avoid
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a computational cost that increases rapidly with the dimen-

sion. The most natural mathematical object that offers such

properties is a graph. In most medical images, each voxel

is highly correlated to its spatial neighbors as well as across

subjects for a given voxel location. When expressed as a

graph, the correlations are encoded as edges whereas the

number of nodes only depends on the size of the image,

not on its dimensionality. In this scenario, intuitively, the

notion of rotation can be substituted by strategies based

on anisotropic filtering governed by the edge weights. If

some additional technical conditions hold (to be described

shortly), one can still offer the types of properties obtained

in the conventional scattering transform.

While the above idea is promising, there is still one sig-

nificant gap. Recall that the core part of the scattering trans-

form depends on the wavelet transform, which classically

has been defined only in the Euclidean space. In order to

define scattering transform on data that lives in the non-

Euclidean space (i.e., a graph), we first need to write down

the wavelet expansion on a graph. Luckily, recent results

from harmonic analysis provide theoretically rigorous con-

structions to do so [9, 11, 6]. Based on these ideas, we de-

scribe how a wavelet can be constructed and used to define a

wavelet transformation in a graph setting, where in general,

the notion of ‘scale’ and ‘translation’ in the spatial domain,

essential in wavelets, are difficult to specify directly.

3.2. Wavelet Transformation on Graphs

A graph G = {V,E, ω} consists of a vertex set V , an

edge set E and corresponding edge weights ω, and let N be

the number of vertices. The graph is given as an adjacency

matrix A, where each element aij in A denotes the connec-

tion between vertex i and j. Here, vertices will correspond

to distinct voxels in the image. The degree matrix D of

G, is a diagonal matrix where the ith diagonal is the sum

of all the edge weights associated with the vertex i. From

these two graph representation matrices, a graph Laplacian

is computed as L = D − A. The spectrum of the graph

Laplacian L yields the eigenvalues λl and corresponding

the eigenfunctions χl, l = 0, 1, · · ·N − 1, which defines a

dual domain analogous to the frequency domain for Rn.

Invoking spectral graph theory [5] offers a very impor-

tant advantage in this setting. Since the graph Laplacian L
is a self-adjoint operator, one can use these χl as the bases

to define the graph Fourier transform as

f̂(l) =

N∑
n=1

χ∗

l (n)f(n) and f(n) =

N−1∑
l=0

f̂(l)χl(n) (8)

where f̂ is the transformed function in the frequency do-

main. Notice that the only difference between the formula-

tion above and the textbook definition of the Fourier trans-

form is the bases we use, which in this case are derived

from a self-adjoint operator of the graph. Interestingly, the

above expression will be used next to perform the Wavelet

transform of a graph.

As mentioned in Section 2, wavelets in the frequency do-

main serve as band-pass filters. Therefore, in order to con-

struct a mother wavelet, the intuition is to design a band-

pass filter function g() in the frequency domain instead

of implementing one in the original domain. The mother

wavelet ψ can be constructed by first defining g in the fre-

quency domain and then localizing it by a delta function δ
in the original domain. Utilizing the graph Fourier trans-

form and the idea above, a mother wavelet ψs,n at scale s
and localized at a vertex n is implemented as

ψt,n(m) = T t
gδ(n) =

N−1∑
l=0

g(tλl)χ
∗(n)χl(m) (9)

where scale t is defined inside the kernel function g using

the scaling property of Fourier transform [30]. Notice that

the eigenvalues serve the analog of the frequency in this set-

ting. Once the bases ψ are constructed, the wavelet trans-

form operator at scale s on function f is defined as

T t
gf(n) =Wf (t, n) = 〈f, ψt,n〉 (10)

=

N−1∑
l=0

g(tλl)f̂(l)χl(n) (11)

Such a wavelet transform on graphs, known as the recently

proposed Spectral Graph Wavelet Transform (SGWT) [9],

is not novel to this paper but has been limited to only few

problems in vision and machine learning [12, 13, 14].

3.3. Scattering Transform on Graphs

With the above components in hand, deriving a Scatter-

ing transform on a graph can be performed mechanically.

First, we define a single scattering operation by combining

the wavelet and modulus operations together as,

S(t, n) = |f ⋆ ψ̄t,n| (12)

which yields the local deformation invariant coefficients

S(t, n) in scale t at vertex n. Note that in order for a trans-

form to achieve robustness to deformation, it must be non-

expansive, so we should expect the graph scattering trans-

form presented above to offer these properties. We provide

this analysis next.

First, notice that S(·, ·) is local deformation invariant

since ψ̄ is one. Now, we show that it is also invariant to

additive noise (possibly as a consequence of incorrect local

warps and subsequent interpolations) which is an important

property that does not hold for the classical Fourier trans-

form. This can be accomplished by showing that it is a non-

expansive operator [23],

Proposition 1. The scattering operation S on a graph us-

ing SGWT operator T s
g at scale s with a kernel g() that is∫

g(x)dx = 1 is non-expansive.
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S[∅]f =
|f ⋆ ψt0 |

S[t0]f =
||f ⋆ ψt0 | ⋆ ψt0 |

S[t0, t0]f =
|||f ⋆ ψt0 | ⋆ ψt0 | ⋆ ψt0 |

· · ·

S[t1]f =
||f ⋆ ψt0 | ⋆ ψt1 |

S[t1, t0]f =
|||f ⋆ ψt0 | ⋆ ψt1 | ⋆ ψt0 |

· · ·

· · ·

· · · · · ·

S[tJ ]f =
||f ⋆ ψt0 | ⋆ ψtJ |

· · ·
S[tJ , tJ ]f =

|||f ⋆ψt0 |⋆ψtJ |⋆ψtJ |

Figure 1: Illustration of the convolution network using scattering operation. A function f propagated through the network using SGWT and modulus

operation. At first, f is averaged using scaling function ψt0 and modulus transformed to obtain the scattering coefficients in the first layer. The scattering

coefficients are recursively propagated through the branches by convolution using SGWT in multiple scales, then applied with modulus operation to generate

scattering coefficients in the next layer.

Proof. Given two functions f and h defined on a graph,

‖Sf − Sh‖ =
∥

∥|T s
g f | − |T s

g h|
∥

∥

=

∥

∥

∥

∥

∥

|

N−1
∑

l=0

g(tλl)f̂(l)χl| − |

N−1
∑

l=0

g(tλl)ĥ(l)χl|

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

N−1
∑

l=0

g(tλl)f̂(l)χl −

N−1
∑

l=0

g(tλl)ĥ(l)χl

∥

∥

∥

∥

∥

= ‖f − h‖

We can now construct the scattering operation in a cas-

cade fashion in multiple layers, and obtain a convolutional

network that provides a deformation invariant representa-

tion of a given function f as

S[∅]f = |f ⋆ ψ̄t0 | (13)

S[tl1 ]f = ||f ⋆ ψ̄t0 | ⋆ ψ̄tl1
| (14)

S[tl1 , tl2 ]f = |||f ⋆ ψ̄t0 | ⋆ ψ̄tl1
| ⋆ ψ̄tl2

| (15)

...

where S[l]f gives the scattering coefficients obtained by the

wavelet bases at the lth layer. In layer lk, the scattering co-

efficients from the previous layer lk−1 are processed by the

forward wavelet transform at multiple scales and then the

modulus operator is applied to generate the new scattering

coefficients to be passed to the next layer lk+1.

Our construction of scattering transform is distinct from

the transform proposed in [3] in that we use scales, not the

rotation, for branching. Notice that in a graph setting, we do

not have a notion of direction, but the anisotropic filtering is

still affected by the graph edge weights. By branching out

using scales instead of rotation, we obtain a multi-resolution

view of the scattering coefficients from each layer and local

stability to scales. Additionally, the use of spectral graph

theory to derive the scattering transform is new and likely

interesting for various vision applications. The work in [4]

explores a related idea but it uses a different construction of

scattering transform and experiments are demonstrated on

smaller digits datasets.

4. Experimental Result

In this section, we demostrate two sets of experimen-

tal results focused on applying a standard statistical group

difference analysis pipeline: on the original representation

of the data and then, the deformation invariant representa-

tions derived by our method. We describe experiments both

with synthetic images and real brain image datasets. First,

we assess group differences between two groups of sim-

ulated images where the goal is to detect the true voxel-

wise group-level differences between the first and the sec-

ond group, even when the images undergo arbitrary local

rotations and deformations as well as additive noise in each

image sample in the cohort. When the registration is good,

the analysis will pick out voxels where the distributions of

measurements (intensities) are statistically different across

the two groups. Next, we evaluate group differences based

on a well-known risk factor for Alzheimer’s disease (AD)

on a cohort of real fluorodeoxyglucose Positron emission

tomography (FDG-PET) images. Here, when the images

are perfectly registered, the statistical group analysis results

are evident — those regions known to be affected by the dis-

ease/risk factor are identified. However, if there are errors

in the underlying deformation field obtained from the reg-

istration (quite common in practice), the analysis loses its

statistical power because we are not comparing correspond-

ing voxels across images. With various levels of errors, the

results progressively deteriorate. Ideally, if the proposed al-

gorithm works perfectly, we will obtain group differences

as if we had an ‘error-free’ registration procedure.

4.1. Toy Example for Group Analysis of Images with
Rotation and Translation

In this section, we demonstrate results of statistical anal-

ysis for identifying group level differences using our frame-

work on a population of synthetic images, representative of

two distinct groups.

Design. For the first group, we consider a default im-

age of an apple (a proxy for the first group) and for the

second group, we artificially introduce two separate holes,
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Figure 2: Toy example of our framework on a dataset of images from

two groups. First row: the mean image (left) and synthetic images (middle

and right) from the first group, Second row: the mean image (left) and

synthetic images (middle and right) from the second group, Third row: p-

value maps from group analysis using initial images (left), using synthetic

images (middle) and using our framework (right). The bottom row shows

that standard statistical analysis detects the group differences correctly on

registered images, but it fails in presence of rotation and translation in the

images. However, our algorithm accurately detects the group differences

(the two holes) despite the deformations.

which are representatives of the group-level differences, see

top two rows of the first column in Fig. 2. Based on these

‘models’ for the two groups, which serve as the mean µ, we

draw samples from each group to populate the cohort: 20
images for each group (total of 40). The image intensities

are normalized to [0, 1]. In other words, for each individ-

ual image, the intensity at a specific pixel is drawn from a

distribution centered on the mean intensity for that pixel in

the model image (first or second group). At this stage, the

images are in correspondence and performing a pixel-wise

parametric test is meaningful and will reveal precisely the

holes as the group-wise difference. Now, we apply a trans-

form A, which consists of random rotation and translation

drawn from Gaussian distribution (with a mean of 5 percent

of the image space for translation, 10◦ for rotation and a

variance 1 for both), to each image to simulate deformations

in the images. The pixels across the dataset are no longer in

correspondence, so a pixel-wise test cannot be performed.

We then add Gaussian noise to each pixel in each image.

The modified images for the first and second groups are,

Ygroup 1(i, j) = Aµgroup 1(i, j) +N(0, 0.3) (16)

where A is an arbitrary transformation sampled from a dis-

tribution described above. Examples of these synthetic im-

ages are shown in the top two rows of the second and the

third column of Fig. 2.

From the two representative images (top and middle row

images in the first column of Fig. 2), we can easily tell that

the true difference between the models of the groups are the

two holes. When standard statistical group analysis is ap-

plied pixel by pixel on the two groups of images (with noise

and transformation), by performing a t-test at each pixel and

using Bonferroni correction at α = 0.05 level for multi-

ple comparisons correction, we detect no pixels as showing

significant group differences. This is expected because the

pixels are no longer in correspondence. On the other hand,

using our framework, i.e., first constructing grid graph us-

ing the image intensities, applying scattering transform on

the graphs to obtain scattering coefficients and performing a

hypothesis test at each pixel, and finally, applying a Bonfer-

roni correction at α = 0.05 level, we are able to detect most

of the true group differences. This result demonstrates that

our framework does offer a reasonable level of invariance to

local rotation and translations. If we imagine the two holes

in the second group is a consequence of some pathology

and the samples drawn from that distribution reflect indi-

vidual level variations, these simulations suggest that even

if the registration is not perfect, the downstream statistical

analysis can be made robust to such errors.

4.2. Statistical Analysis on FDGPET Scans

In this study, we utilize a general statistical group anal-

ysis pipeline on real 3-D FDG-PET scans to identify those

brain regions that are related to Alzheimer’s disease (AD)

risk factors such as the Apolipoprotein E (APOE) genotype

of the subjects and evaluate our framework in the presence

of varying levels of registration error. Note that an increase

in FDG is a known manifestation of AD pathology, which

is caused by an uptake of glucose in certain brain tissue.

APOE ǫ4 is genetically related to the development of AD,

where the risk for AD is largely increased with increase in

the number of APOE ǫ4 alleles [7].

Dataset. We use a dataset of 130 healthy control partic-

ipants where some subjects have potential AD risk factors

(i.e., APOE ǫ4 genotype, family history and etc). The co-

hort is comprised of 38 males and 92 females, with a mean

age of 64.18. The 3-D FDG-PET scans are spatially reg-

istered to the Montreal Neurological Institute (MNI) space,

and image intensity values are normalized using intensities

from the cerebellum as the reference region. During the

registration process, a deformation field — a warp field of

the original image to the template image, is acquired. We

introduce errors in this deformation field by 1) adding un-

correlated errors, up to 5%–10% of the deformation mag-

nitude at each voxel, 2) adding realizations of a Gaussian

(a) (b) (c) (d) (e)

Figure 3: Registered FDG-PET scans of a subject. a) Using the original

deformation field, b) Using deformation field with 5% noise level, c)

Using deformation field with 10% noise level, d) Using deformation field

with spatially correlated noise, e) A slice of GRF used for generating d).
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Figure 4: Montage of axial views of the p-value (in − log10 scale) map on a template T1-weighted brain image. Group analysis was performed between

APOE ǫ4 genotype positive and negative groups. On the left column, the blue-light blue intensities indicate p-values using properly registered scans, and

on the right column, the red-yellow intensities indicate p-value map using imperfect registration (5% noise level), both in the range of [0 0.05]. We can see

that the identified regions from both analysis are consistent though the second row shows a few regions which were not picked up by our algorithm.

Random Field (GRF) with variance 0.5 to simulate spatially

correlated error (∼5 voxels). Examples of these imperfectly

registered images are shown in Fig. 3.

Experimental Setup. In this experiment, we used three

different datasets with different noise levels in the deforma-

tion field for registration (Gaussian noise with mean of 0%,

5% and 10% of the warp magnitude and variance 1). As

a baseline, we used properly registered FDG-PET images

and divided them into two groups using APOE ǫ4 status, a

well-known AD risk factor, to find which brain regions are

most strongly affected by the genotype. This baseline result

will serve as the ground truth showing risk factor specific

regions. We applied t-test at each voxel and thresholded the

resultant p-values at 0.05 level. These p-values were pro-

jected onto a T1-weighted template image to identify the

risk factor specific regions.

On the imperfectly registered datasets, i.e., 1) 5% and

10% noise levels, 2) GRF structured noise in the deforma-

tion field, we applied our framework to detect the risk fac-

tor specific brain regions. Given an FDG-PET image I for

each subject, we first constructed a grid graph (i.e., defined

each voxel as a vertex and defined an edge between a voxel

and its six neighboring voxels in the 3-D volume space with

edge weights of exp(−‖I(x)− I(y)‖2/σ2). Then, the pro-

posed scattering transform on graphs was applied on each

grid graph to generate scattering coefficients. For the scat-

tering transform, we used a wavelet transform with five

scales for each layer, and we went up to the third layer of

the cascade to derive scattering coefficients for the original

image. In much of brain image analysis, lower frequency

components with less noise are preferred, so we took the

first three descendant branches from each branch in each

layer. Then, these coefficients were defined in a vector form

at each voxel (total of 13 features), and Hotelling’s T 2 test

(a generalized version of student t-test) was applied at each

voxel. Again, these resultant p-values were thresholded at

0.05 level and projected onto a T1-weighted template image

to obtain a apples-to-apples comparison with the baseline.

Analysis. The main result of our analysis is demon-

strated in Fig. 4. The baseline analysis using APOE ǫ4 as a

predictor on properly registered FDG-PET images revealed

cuneus regions, known to be closely tied to AD pathology

[15], and some lower cerebellum regions as shown in blue-

light blue regions in Fig. 4. Using our algorithm on the

imperfectly registered scans (5% noise level), we also de-

tected the exact same regions with almost the same statis-

tical power as shown in red-yellow regions in Fig. 4. Note

that when the general statistical procedure (baseline analy-

sis), was applied on the imperfectly registered images, the

statistical power deteriorates as the noise level increases,

and it fails to detect the group differences.

A closer view of the regions identified in an orthogonal

view are shown in Fig. 5. In the first row of Fig. 5, they

clearly show the cuneus (and some partial precuneus) and

cerebellum regions respectively from the baseline analysis

(in blue-light blue) with p-values in the range of [0, 0.05]
in − log10 scale. However, as shown in the second row of

Fig. 5 in red-yellow, the statistical power to detect risk fac-

tor related regions diminishes due to noise in the registration

process. At the 10% noise level, it returned salt-and-pepper

type result, completely failing to obtain any meaningful re-

sult. In contrast, using our algorithm on the both datasets

with 10% level voxel-wise noise and GRF, we were able

to successfully detect exactly the same regions (i.e., cuneus
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Figure 5: Comparison of statistical group analysis results on cuneus (left column) and cerebellum (right column) using FDG-PET scans with respect to

APOE genotype. Resultant p-value maps on a T1-weighted image template are demonstrated. First row: Using properly registered scans (baseline), Second

row: Using imperfectly registered scans (10% noise level), Third row: Our results on imperfectly registered scans (10% noise level), Fourth row: Our

results on imperfectly registered scans (GRF noise). Compared to the baseline result in the first row, the results in the second row shows decreased statistical

power with increased error in the registration, and is unable to detect the cuneus and lower cerebellum. However, even when there are errors during the

registration (voxel-wise noise or GRF), our algorithm correctly identifies the cuneus as shown in the third and fourth rows, consistent with the analysis

performed on properly registered images as in the first row.

and lower cerebellum regions) that were found in the base-

line analysis, as demonstrated in red-yellow regions in the

third and fourth row of Fig. 5. Note that the scattering coef-

ficients do not exhibit any ”ensemble” behavior and there-

fore cannot exploit voxel-wise independent noise in the reg-

istration. The results above indicate that even when a good

registration is unavailable, our framework may offer a ro-

bust solution by performing the same analysis using a de-

formation invariant representation of the original images.

All reported results have been controlled for multiple com-

parisons correction.

5. Conclusion

It is well known that the statistical analysis of brain

imaging data (including classification and regression ex-

periments) can only proceed once the images have been

warped into a common template space. But when individual

subjects have significant atrophy or a pathology (resulting

from tumor or vascular factors), the registration is imper-

fect. Separately, in some populations creating a common

template itself may be difficult which leads to sub-optimal

registration. But independent of where the registration er-

rors come from, their effect on the downstream analysis can

be significant and has serious implications on the success of

the study. We provide an algorithm that derives local defor-

mation invariant representations of the image. In practice,

this means that inference using the image data can proceed

as if a (much superior) registration method were available.

Our method is based on the recently proposed Scattering

transform which we adapt in interesting ways using ideas

related to spectral graph wavelets in the harmonic analysis

literature. The performance of the proposed approach does

not depend on whether the noise in the warp field is i.i.d. or

correlated. The scattering operator is provably invariant to

the action of any compact Lie group on the measured signal

[23]. We show that deriving wavelet expansions using the

graph representation of the data (together with other modi-

fications) makes the scatter transform a viable tool for ana-

lyzing large 3-D image datasets. The proposed ideas have

direct applications in neuroimage analysis but are likely to

be more broadly applicable in other computer vision prob-

lems where invariance to group actions (e.g., rotation, trans-

lation, diffeomorphism) is desired. Finally, supplemen-

tary explaining details of our framework can be found at

http://pages.cs.wisc.edu/˜wonhwa.

6. Acknowledgment

This research was supported by NIH grants AG040396,

AG021155, and NSF CAREER award 1252725. Partial

support was provided by UW ADRC AG033514, UW

ICTR 1UL1RR025011, UW CPCP AI117924 and NIH

AG027161.

673

http://pages.cs.wisc.edu/~wonhwa


References

[1] J. Ashburner and K. Friston. Multimodal image coregis-

tration and partitioninga unified framework. Neuroimage,

6(3):209–217, 1997. 1

[2] J. Ashburner and K. J. Friston. Voxel-based morphometrythe

methods. Neuroimage, 11(6):805–821, 2000. 1

[3] J. Bruna and S. Mallat. Invariant scattering convolution net-

works. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 35(8):1872–1886, 2013. 3, 5

[4] X. Chen, X. Cheng, and S. Mallat. Unsupervised deep haar

scattering on graphs. In Advances in Neural Information

Processing Systems, pages 1709–1717, 2014. 5

[5] F. R. Chung. Spectral graph theory, volume 92. AMS Book-

store, 1997. 4

[6] R. R. Coifman and S. Lafon. Diffusion maps. Applied and

Computational Harmonic Analysis, 21(1):5–30, 2006. 4

[7] E. Corder, A. Saunders, W. Strittmatter, et al. Gene dose

of apolipoprotein E type 4 allele and the risk of Alzheimer’s

disease in late onset families. Science, 261(5123):921–923,

1993. 6

[8] C. D. Good, I. S. Johnsrude, J. Ashburner, et al. A voxel-

based morphometric study of ageing in 465 normal adult

human brains. In Biomedical Imaging, pages 16–pp. IEEE,

2002. 1

[9] D. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets

on graphs via spectral graph theory. Applied and Computa-

tional Harmonic Analysis, 30(2):129 – 150, 2011. 4

[10] K. Herholz, E. Salmon, D. Perani, et al. Discrimination be-

tween Alzheimer dementia and controls by automated anal-

ysis of multicenter fdg pet. Neuroimage, 17(1):302–316,

2002. 1

[11] T. Hou and H. Qin. Admissible diffusion wavelets and their

applications in space-frequency processing. Visualization

and Computer Graphics, IEEE Trans. on, 19(1):3–15, 2013.

4

[12] W. H. Kim, B. B. Bendlin, M. K. Chung, et al. Statistical

inference models for image datasets with systematic varia-

tions. In CVPR, pages 4795–4803. IEEE, 2015. 4

[13] W. H. Kim, M. K. Chung, and V. Singh. Multi-resolution

shape analysis via Non-euclidean wavelets: Applications

to mesh segmentation and surface alignment problems. In

CVPR, pages 2139–2146. IEEE, 2013. 4

[14] W. H. Kim, D. Pachauri, C. Hatt, et al. Wavelet based multi-

scale shape features on arbitrary surfaces for cortical thick-

ness discrimination. In NIPS, pages 1250–1258, 2012. 4

[15] W. H. Kim, V. Singh, M. K. Chung, et al. Multi-resolutional

shape features via non-Euclidean wavelets: Applications

to statistical analysis of cortical thickness. NeuroImage,

93:107–123, 2014. 7

[16] W. E. Klunk, H. Engler, A. Nordberg, et al. Imaging brain

amyloid in Alzheimer’s disease with Pittsburgh Compound-

B. Annals of neurology, 55(3):306–319, 2004. 1

[17] E. Kowalski. An introduction to the Representation Theory

of Groups, volume 155. American Mathematical Society,

2014. 2

[18] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face

recognition: A convolutional neural-network approach. Neu-

ral Networks, IEEE Transactions on, 8(1):98–113, 1997. 2

[19] H. Ling and D. W. Jacobs. Deformation invariant image

matching. In ICCV, volume 2, pages 1466–1473. IEEE,

2005. 2

[20] F. Maes, A. Collignon, D. Vandermeulen, et al. Multimodal-

ity image registration by maximization of mutual informa-

tion. IEEE TMI, 16(2):187–198, 1997. 1

[21] J. A. Maintz and M. A. Viergever. A survey of medical image

registration. Medical image analysis, 2(1):1–36, 1998. 1

[22] S. Mallat. A wavelet tour of signal processing. Academic

press, 1999. 2

[23] S. Mallat. Group invariant scattering. Communications on

Pure and Applied Mathematics, 65(10):1331–1398, 2012. 3,

4, 8

[24] D. Mattes, D. R. Haynor, H. Vesselle, et al. PET-CT image

registration in the chest using free-form deformations. IEEE

TMI, 22(1):120–128, 2003. 1

[25] J.-M. Morel and G. Yu. Asift: A new framework for fully

affine invariant image comparison. SIAM Journal on Imag-

ing Sciences, 2(2):438–469, 2009. 2

[26] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and

T. E. Nichols. Statistical parametric mapping: the analysis

of functional brain images: the analysis of functional brain

images. Academic press, 2011. 1

[27] A. Roche, G. Malandain, X. Pennec, et al. The correlation

ratio as a new similarity measure for multimodal image reg-

istration. In MICCAI, pages 1115–1124. Springer, 1998. 1

[28] J. P. Serre. Linear representations of finite groups. 1977. 3

[29] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, et al.

Magnetic resonance image tissue classification using a par-

tial volume model. NeuroImage, 13(5):856–876, 2001. 1

[30] S.Haykin and B. V. Veen. Signals and Systems, 2nd Edition.

Wiley, 2005. 4

[31] L. Sifre and S. Mallat. Combined scattering for rotation in-

variant texture analysis. In European Symposium on Artifi-

cial Neural Networks, 2012. 3

[32] L. Sifre and S. Mallat. Rotation, scaling and deformation in-

variant scattering for texture discrimination. In CVPR, pages

1233–1240. IEEE, 2013. 3

[33] I. J. Simpson, M. Woolrich, A. R. Groves, and J. A. Schn-

abel. Longitudinal brain mri analysis with uncertain regis-

tration. In MICCAI, pages 647–654. Springer, 2011. 2

[34] I. J. Simpson, M. W. Woolrich, J. L. Andersson, A. R.

Groves, J. Schnabel, et al. Ensemble learning incorporating

uncertain registration. TMI, 32(4):748–756, 2013. 2

[35] S. M. Smith, M. Jenkinson, M. W. Woolrich, et al. Advances

in functional and structural MR image analysis and imple-

mentation as FSL. Neuroimage, 23:S208–S219, 2004. 1

[36] D. Zhang, Y. Wang, L. Zhou, et al. Multimodal classifica-

tion of Alzheimer’s disease and mild cognitive impairment.

Neuroimage, 55(3):856–867, 2011. 1

674


