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Abstract

Tuning the models and parameters of common segmen-

tation approaches is challenging especially in the presence

of noise and artifacts. Ensemble-based techniques attempt

to compensate by randomly varying models and/or param-

eters to create a diverse set of hypotheses, which are subse-

quently ranked to arrive at the best solution. However, these

methods have been restricted to cases where the underlying

models are well established, e.g. natural images. In prac-

tice, it is difficult to determine a suitable base-model and the

amount of randomization required. Furthermore, for multi-

object scenes no single hypothesis may perform well for all

objects, reducing the overall quality of the results.

This paper presents a new ensemble-based segmenta-

tion framework for industrial CT images demonstrating that

comparatively simple models and randomization strate-

gies can significantly improve the result over existing tech-

niques. Furthermore, we introduce a per-object based rank-

ing, followed by a consensus inference that can outperform

even the best case scenario of existing hypothesis ranking

approaches. We demonstrate the effectiveness of our ap-

proach using a set of noise and artifact rich CT images from

baggage security and show that it significantly outperforms

existing solutions in this area.

1. Introduction

Broadly speaking, the goal of image segmentation is to

use the low level information at each voxel to infer high

level semantics such as objects. However, in applications

where the source data contains large amounts of noise and
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Figure 1. The difficulty in choosing the optimal parameters limits

the performance of industrial CT segmentation. From left to right,

the original CT image, ground-truth segmentation, region-growing

method which wrongly merges two objects even after careful pa-

rameter tuning, and the proposed segmentation.

artifacts low level features such as edges or voxel values

become unreliable. A common solution is to require addi-

tional domain knowledge, i.e. the shape of an organ in medi-

cal CT segmentation, to constrain the segmentation [14, 19].

However, many applications do not readily admit a param-

eterized model, for example due to the sheer variety of ob-

jects to consider. In such cases the additional information

is typically given in form of training data, providing exam-

ples of objects of interest. Traditionally, the training data

is used to tune parameters of the segmentation algorithm,

e.g. thresholds, energy functionals, etc. However, this pro-

cess can be labor intensive, is difficult to control, and the

results typically do not generalize gracefully. Despite so-

phisticated optimization tools for inference with segmenta-

tion models (e.g., Markov Random Fields), the underlying

model, learned from a finite training set, is often insufficient

to produce accurate results. In order to bridge this gap, ap-

proaches that learn multiple hypotheses to produce an over-

all more accurate solution have been developed [9, 24]. In

these techniques both model and/or parameters are varied

to create an ensemble of possible solutions. These are then

ranked using information from the training data to choose

the best hypothesis from the ensemble.

Ensemble approaches are attractive since their random-

ized nature can compensate for some level of noise and

artifacts. However, adapting these ideas to new applica-

tions can be challenging. In particular, picking an appro-

priate base-model to vary is difficult as is understanding the

amount of diversity required to produce good results. Fur-

thermore, for complex, multi-object segmentations no sin-
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gle hypothesis may be accurate for all objects equally. Fi-

nally, creating optimal ranking criteria is challenging and it

is well known that for many metrics the ground truth solu-

tion can be ranked lower than inferior results [20].

Instead, we introduce a new ensemble based segmen-

tation framework that uses a simple bottom-up hierarchi-

cal segmentation with a randomized merge order to create

multiple hypotheses, similar to the approach in [11]. We

demonstrate that with a reasonable degree of randomness,

our method can generate hypotheses that are significantly

better than the greedy solution and can compensate for a

large amount of noise and artifacts. Furthermore, rather

than ranking different hypotheses as a whole, we explore

the space of all potential objects in the ensemble and use

the training data to identify likely matches. The different

variations of a (potential) object are then combined in per-

object consensus segmentation to arrive at the final result.

This enables us to exploit locally accurate segmentations

from globally sub-optimal hypotheses. Additionally, this

strategy reduces the dependency on an optimal ranking cri-

terion as we no longer use it to evaluate the final result but

only to extract likely candidate objects. We shown that by

locally combining information from multiple hypothesis in

this manner our approach can outperform even the best case

scenarios in existing ranked hypothesis approaches, making

our results qualitatively different from the one in [24]. We

demonstrate the effectiveness of our system using a chal-

lenging set of CT scans from a baggage security system.

This data is well known to contain noise as well as severe

artifacts which makes many existing segmentation methods

ineffective. In particular, as shown in Figure 1 and dis-

cussed in Section 5, our results are significantly better than

even hand-tuned versions of existing methods.

2. Related Work and Contributions

Finding multiple hypotheses: The idea of identifying mul-

tiple hypotheses has been explored in a variety of computer

vision problems. In particular, a class of methods collec-

tively referred as “M-Best Map” have been successfully

used to generate multiple configurations for image segmen-

tation [16, 25, 9]. However, these methods produce solu-

tions that tend to be very similar to the Maximum a Poste-

riori (MAP) solution and each other. Batra et al. [4] de-

veloped a sequential model selection technique that empha-

sized the diversity of the solutions and showed it can pro-

duce significantly better results. An alternative approach

to generating multiple hypotheses is to use sampling strate-

gies that perturb the parameters of a segmentation algorithm

[6, 18, 17]. However, refining these solutions can be chal-

lenging if the data is sensitive to the parameter settings. Re-

cently, Kim et al. [11] proposed an ensemble creation strat-

egy that randomized the merge order in bottom-up hierar-

chical segmentation for foreground-background separation.

Industrial CT segmentation: Three dimensional CT im-

age segmentation is a well-studied problem, and used in a

wide variety of applications [23]. One of the most chal-

lenging aspects of industrial CT segmentation is the pres-

ence of severe metal artifacts in form of streaks, blooming,

or cupping (see Section 4). In several of these applications,

it is typical to start with a prior knowledge (or parametric

model) of the objects present in the image, e.g. mechani-

cal part, and use accurate segmentation results to compen-

sate for metal artifacts and other sources of noise, so that

interesting anomalies, such as defects, can be easily iden-

tified. For example, Li et al. [12] adopt a non-parametric

estimation method to estimate the spatial probability distri-

bution of gray-level intensities, and use the minimum cross

entropy technique to segment an object of interest. In [2],

the authors address a more challenging problem of detecting

metal features of varying thickness, and showed that region-

growing is very effective in such cases. Nevertheless, these

techniques are targeted specifically to metal objects and do

not perform well for other materials.

Transportation security: Finally we review the applica-

tion considered in this paper, where the goal is to iden-

tify potentially suspicious material signatures from baggage

scans. In [15], the authors adopt a fuzzy connectedness

technique to obtain an initial object segmentation for de-

tecting potential threats. However, this system requires ex-

tensive parameter-tuning, and cannot easily generalize to a

broader class of objects or materials. In order to improve

robustness against artifacts, Stratovan Tumbler, a medical

image segmentation framework, has been adapted for de-

lineating objects in baggage scans [22] and has shown to be

effective in partitioning some heterogeneous objects (for ex-

ample, parts of a laptop). Since the performance of bottom-

up hierarchical segmentation depends heavily on the merg-

ing order, the authors in [10] proposed a reverse approach

which begins by separating the set of object voxels from the

background, and then creates candidate splits into individ-

ual objects based on global criteria. However, the process

of identifying object voxels typically needs rigorous train-

ing and appears very sensitive to image artifacts.

2.1. Contributions

In this paper, we propose to build an ensemble of hierar-

chical segmentations for industrial CT volumes, and lever-

age semantic information to perform localized consensus

inference. Our contributions in detail are

Segmentation Ensembles: Following the work in [11], we

build an algorithm to create randomized ensembles for CT

volumes, and empirically determine the required degree of

randomness to compensate for the inherent uncertainties;

Semantic Candidate Selection: We develop a novel dis-

criminative feature for regions in CT images, and design

a simple reference-based scheme for identifying potential
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Figure 2. An overview of the proposed approach for CT segmentation. Starting with an initial oversegmentation of the volume, it builds an

ensemble of hierarchical segmentations and exploits the semantic information from supervisory data to identify candidate segments, that

are likely to contain objects of interest. Finally, consensus segmentation with graphcuts provides the overall partitioning.
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Figure 3. Hierarchy construction through randomization. In each

level of a hierarchy, candidate edges are randomly shuffled and

these edges are incrementally merged.

segments of interest;

Consensus Inference: Instead of ranking the hypotheses in

an ensemble, we propose to obtain a localized consensus

inference using graph-cuts for each object of interest; and

Application to Airport Security: We use the pro-

posed method in a transportation security application and

demonstrate its effectiveness in comparison to the popu-

larly adopted region-growing methods, using a challeng-

ing dataset provided by the Awareness and Localization of

Explosives-Related Threats (ALERT) Center of Excellence.

3. Proposed Approach

As illustrated in Figure 2, our method is comprised of

four stages: (a) initial oversegmentation, (b) building seg-

mentation ensembles, (c) semantic candidate selection, and

(d) localized consensus inference.

3.1. Initial Oversegmentation

Similar to several existing approaches, we begin by over-

segmenting the CT volume to create perceptually meaning-

ful atomic groups, referred to as supervoxels. In addition to

providing a non-uniform partitioning, supervoxels can cap-

ture the image redundancy, and greatly reduce the compu-

tational complexity of subsequent stages. In this paper, we

generate the initial supervoxels (each of size 10− 123 vox-

els) using the SLIC algorithm [1].

3.2. Building Segmentation Ensembles

Though region-growing methods have produced state-

of-the-art results in industrial CT segmentation, we ob-

served that a simple bottom-up hierarchical segmentation

can generate greedy solutions of reasonable quality. Moti-

vated by its flexibility and simplicity, as discussed in [11],

we adopted a bottom-up approach for creating segmentation

ensembles with industrial CT images. Note that, all hierar-

chies in the ensemble start with the same set of supervoxels.

Each hierarchy incrementally merges regions from the pre-

vious level. The edge affinity, wℓ
i,j , between two regions rℓi

and rℓj in level ℓ is measured as the similarity between their

intensity histograms:

wℓ
i,j = exp

(

− σ1χ
2(H(rℓi ), H(rℓj))

)

. (1)

Here, H(rℓi ) is the intensity histogram of region rℓi , χ2 mea-

sures the chi-square distance between two histograms, and

σ1 is the parameter for the Gaussian radial basis function.

We now generate multiple independent segmentations

from the same set of supervoxels by randomizing the merg-

ing order of candidate edges, which allows us to explore as

many aggregations as possible. At level ℓ, we sort the edges

in the descending order based on their edge weights. We

then extract the candidate edge set, Eℓ
C = {eℓi,j |w

ℓ
i,j ≥ δ},

where δ is a predefined threshold. From the candidate set,

we randomly choose edges sequentially, merge the regions

corresponding to that edge if either of the regions have not

been merged previously. For this random sampling, we can

use a simple uniform distribution for all candidates or cre-

ate a discrete distribution that is proportional to the edge

similarity. Figure 3 illustrates this randomization proce-

dure. Note that, in contrast to the approach in [11], we can

control the degree of randomness through the parameter δ.

Low degree of randomness will produce hypotheses that are
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Figure 4. Candidate object regions of different hierarchical seg-

mentations, each of which shows a different object configuration.

very similar to the greedy solution. Whereas, arbitrarily in-

creasing the degree of randomness can result in inaccurate

segmentations. In Section 5, we will empirically study the

effect of randomness on the solution diversity, and show

that the greedy solution can be significantly improved by

compensating for artifacts with a low degree of randomness

in the merging order. Note that, this process is computa-

tionally very simple when compared to solving a complex,

discrete optimization problem as in [4].

3.3. Semantic Candidate Selection

Given a set of hypotheses, it is typical to adopt a super-

visory approach that predictively ranks the solutions based

on object plausibility [6] or other criterion on the segmen-

tation quality [24]. These approaches assume that for an

image with multiple objects, the best hypothesis can pro-

vide accurate segmentations for all objects equally. How-

ever, in industrial CT images with severe non-uniform ar-

tifacts, finding such an optimal hypothesis is very difficult.

The proposed approach addresses this challenge by using

supervisory data to filter the large pool of segments from

the ensemble and identify a small set of candidate segments,

that can potentially contain the objects of interest. Instead

of identifying the best hypothesis, this approach identifies

multiple configurations of the same object from different

hypotheses, and obtains a weighted consensus inference.

In order to identify candidate segments, we propose to

build discriminative features for the segments in the hierar-

chy. We begin by extracting the following set of features for

each region in the ensemble: (a) Intensity statistics (mean,

standard deviation, and percentiles); (b) Histogram of num-

ber of voxels in each radii bin from the center of mass [3];

(c) Area; (d) Volume-to-surface area ratio. Following this,

we use local discriminant embedding (LDE) [8], a super-

vised graph embedding approach, to build a semantic de-

scriptor for each region. Note that, this step can be replaced

with any semantic feature learning technique.

Similar to existing supervisory approaches, we assume

that the total number of ground truth objects, Nc, is known

apriori. The features for the ground truth segments in the

training data are stored in the matrix X = [x i]
T
i=1 and their

class labels are denoted as {yi|yi ∈ {1, 2, . . . , Nc}}
T
i=1.

The goal of LDE is to exploit both the supervisory label

information, and the local structure in data to create a sub-

Candidate object region set C!

Graphcuts!

Graphcuts!

Graphcuts!

Graphcuts!

CH
0 :!

CH
1 :!

CH
2 :!

CH
3 :!

Figure 5. Localized consensus inference for each potential object.

space representation that can discriminate between different

classes of objects. We construct the undirected, intra-class

and inter-class graphs G and G0 respectively, and the edges

between the samples are coded in the affinity matrices W
and W 0. The affinities are defined as follows:

wij =

{

1 if yi = yj AND [i ∈ Nk(j) OR j ∈ Nk(i)],

0 otherwise.

w0
ij =

{

1 if yi 6= yj AND [i ∈ N 0
k(j) OR j ∈ N 0

k(i)],

0 otherwise.

Here Nk(i) and N 0
k(i) denote the intra-class and inter-class

neighborhood for the sample x i. Following this, we build

the intra-class graph Laplacian as L = D −W , where D is

a degree matrix with each diagonal element containing the

sum of the corresponding row or column of L . Similarly,

we construct the inter-class graph Laplacian L 0. The d pro-

jection directions for LDE, V , is computed by optimizing

max
V

Tr[V T X T L 0XV ]

Tr[V T X T LXV ]
. (2)

Instead of finding the global solution to the trace-ratio max-

imization problem in (2), a greedy solution can be obtained

by converting it to an equivalent ratio-trace maximization,

maxV Tr[(V T X T LXV )� 1V T X T L 0XV ]. The solution

to this problem can be obtained using the generalized eigen

value decomposition.

Given the semantic descriptor for a segment, V T x , our

goal is to estimate the likelihood of that segment containing

each of the Nc objects. Though any non-parametric model-

ing technique can be used to obtain the likelihood estimates,

we observed that a simple reference-based scheme [13] was

sufficient for this task. By computing the average similar-

ity of the semantic descriptor for a segment to each class of

ground truth data, we measure the relevance of each class.

We use the following similarity metric:

S(r, gki ) = 1−
γ
(

k
2 ,

d(r,gk
i )

2

)

Γ( t2 )
, (3)
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