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Abstract

The central projection model commonly used to model

cameras as well as projectors, results in similar advan-

tages and disadvantages in both types of system. Consid-

ering the case of active stereo systems using a projector

and camera setup, a central projection model creates sev-

eral problems; among them, narrow depth range and ne-

cessity of wide baseline are crucial. In the paper, we solve

the problems by introducing a light field projector, which

can project a depth-dependent pattern. The light field pro-

jector is realized by attaching a coded aperture with a high

frequency mask in front of the lens of the video projector,

which also projects a high frequency pattern. Because the

light field projector cannot be approximated by a thin lens

model and a precise calibration method is not established

yet, an image-based approach is proposed to apply a stereo

technique to the system. Although image-based techniques

usually require a large database and often imply heavy com-

putational costs, we propose a hierarchical approach and a

feature-based search for solution. In the experiments, it is

confirmed that our method can accurately recover the dense

shape of curved and textured objects for a wide range of

depths from a single captured image.

1. Introduction

One-shot active scanning systems for capturing dynamic

scenes have been intensively investigated because of strong

demands in various fields, e.g., medical, robotics, games,

etc [13, 18]. Previous works mainly used light projectors

that radiate a structured light pattern from a single optical

center. An advantage of the model is that there is an inher-

ent duality between the geometrical properties of such pro-

jectors and the central projection model, e.g., a pinhole or

lens camera model, so that the projector in an active stereo

system can be formalized as an ‘inverse camera’ from a pas-

sive stereo system. Because of this analogy, the projected

pattern image can be treated as an image which is captured

by a virtual camera placed at the projector’s position, and

most passive stereo algorithms can be directly applied to the

image pair (i.e., the pattern image and the image captured

by the camera) for stereo reconstruction.

Recently, camera models other than central projection

models, i.e., non-central projection models, such as gener-

alized cameras or light-field cameras, have attracted many

researchers for their unique possibilities for specific pur-

poses [20, 22, 24, 17]. Especially light-field cameras, which

can capture a bundle of incoming light rays from different

directions and their intensities for each point of the image

plane, are widely studied and commercialized because of

their unprecedented capability of controlling the focus at

each pixel, which allows to create all-in-focus images [1].

Considering the geometric duality between a camera and

a projector, if a pattern projector with a non-central pro-

jection model is realized, patterns with novel properties,

such as depth-dependent and/or defocus-free projection, are

made possible. However, the naive method for constructing

a light-field projector in which a large number of projectors

are arranged together is known to have several problems,

such as optical design, costs and installation [9, 15].

To solve these issues, we propose a novel light field pro-

jector that consists of an off-the-shelf video projector with

a coded aperture mask attached. The system has the same

capability as a densely arranged array of projectors, and

the projected patterns change their appearance depending

on depth. Such nature is in contrast with a traditional cen-

tral projection system, where generated patterns are invari-

ant with respect to the depth. By making use of the depth-

dependent pattern, the camera and the projector are not re-

quired to be set up with a wide baseline, even with no base-

line, the depth can be still reconstructed. To leverage both

the depth-dependency of the projected pattern and the dis-

parities caused by the baseline between the camera and the

projector of our system, we propose a hybrid method fusing

light-field projection and active stereo technique.

As for the actual implementation of a light-field projec-

tor, we use lines or dots pattern for both an aperture and a

pattern for projection. As shown later, by using the pattern,

we can generate depth-dependent patterns without blurring
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out the high-frequency features. Such defocus free projec-

tion is one of our important advantage.

The contributions of the proposed method are:

1. A novel light field projector for defocus free projec-

tion is proposed and formalized by combining a coded

aperture mask to a standard video projector.

2. A robust depth-dependent high-frequency pattern is

designed both for the coded aperture mask as well as

the projector, which allows accurate shape recovery.

3. An image-based stereo algorithm which can solve the

challenging problem of calibrating the light field pro-

jector with complicated distortion characteristics is

proposed.

4. Alternative implementation of light field projector us-

ing diffractive optical elements (DOEs) is proposed.

2. Related works

In an active stereo system, the video projector is often

used as a light source to measure a wide area in a short

period of time. To realize fast and accurate acquisition, effi-

cient encoding methods are required and both temporal and

spatial approaches have been widely studied [19]. How-

ever, as described in the introduction, a light field projec-

tor, which cannot be modeled by central projection, has not

been utilized for active stereo systems yet. In terms of sys-

tem setup, several systems have been proposed [9, 15, 7].

Jurik et al. proposed a method using a large number of laser

projectors to construct a light field directly onto the human

retina [9]. Nagano et al. extended the technique to make

a 2D light field onto a predefined screen [15]. One se-

vere problem of these methods is that they require many

laser projectors for the system. Hirsch et al. proposed a

method using lenticular lenses inside the optics of a video

projector [7]. However, the resolution of the system tends

to be low and only a narrow angle of light field can be con-

structed. In this paper, we propose a mask based light field

projector. Although a similar idea has been already pro-

posed for light field cameras [23], it has not been applied to

projectors yet.

The configuration of the mask-based light field projector

is the same as a video projector with a coded aperture mask.

In terms of a video projector with a coded aperture mask,

this has been studied for various purposes, however, there

are no previous techniques using coded aperture for active

stereo (structured light). For example, Grosse et al. put a

coded aperture in the video projector to mitigate the defocus

effect at the projection [5]. Girod et al. used asymmetric

aperture to distinguish the forward and backward blur for

depth from defocus (DfD) [4]. Moreno-Noguer et al. put

a small circular aperture to realize DfD [16] and Kawasaki

et al. put a coded aperture on a video projector to improve

accuracy and density on DfD [10, 11]. However, for all

the techniques, depth range is limited because defocus blur
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Figure 1. Optical configuration.df is a depth of the focal plane.
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Figure 2. Actual optical system. (a) Setup with a short baseline

and (b) coded aperture installed on the projector lens.

increases rapidly. In contrast, since our system is designed

not to defocus, depth range is significantly broadened.

There have been several attempts to achieve the same

purpose and to enlarge the depth range in traditional active

stereo. The typical solution is to use an aerial laser light

source that has been shown to have successful results [13].

However, satisfying requirements of reconstruction density,

precision, safety and usability is still an open problem. Mo-

hit et al. proposed an active stereo system that decreases

the effect of defocus blur by projecting several special pat-

terns based on frequency analysis [6], however, the pat-

tern information degrades rapidly due to defocus, thus mak-

ing the expansion of possible depth range limited. Ma-

suyama et al., proposed a DfD method that projects multi-

ple patterns along the same optical axis with different focal

lengths, which can overcome the above stated problems [8].

However, the complexity of sharing the same optical axis

and the decreased contrast of multiple overlapping patterns

make practical construction difficult. Zhang et al. proposed

a method for projecting different patterns and successfully

reconstructed a high density depth map by analyzing the

captured defocused image set [25]. Achar et al. proposed

a method projecting a pattern with different foci to enlarge

the possible depth range [2]. However, those approaches re-

quire multiple images to be captured, which make the appli-

cation range limited. Our technique can recover the shape

from a single image without aforementioned problems.

3. 3D reconstruction using light field projector

3.1. System configuration and algorithm overview

The system setup is similar to the common active stereo

setup as shown in Fig. 1 and Fig. 2(a). A projector and a

camera are placed with a certain baseline, and a light pattern

is projected on the object. The difference from conventional

systems is the coded aperture placed over the projector lens

to realize a light field projection as shown in Fig. 2(b).

As shown in Fig. 2(a), the camera is placed near the pro-
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Figure 3. Overview of the reconstruction algorithm.This process

is executed for both coarse and fine steps.

jector lens so that the distance from the camera to the tar-

get becomes approximately the same as the distance from

the projector. Similar to the projector, the camera has its

own depth of field, however, we do not discuss the effect,

because camera defocus is typically much weaker than the

projector’s and it could be generally ignored. However, for

applying the technique to wider depth ranges, a solution will

be sought in our future research.

Fig.3 shows the algorithm overview. The technique

mainly consists of two parts: image database creation and

shape reconstruction. Note that the image database creation

is an offline process required only once. To this end, ref-

erence images are captured by changing the depth of a pla-

nar board with known position on which the specially de-

signed pattern is projected. The reason why we take an

image-based approach is explained in the Sec. 4.1. Since

the surface normals may not always be parallel to the view

direction, stereo matching will fail if the angle difference

between the normals on the object surface and reference

plane is large. We solve the problem by synthesizing slanted

planes from captured images as explained in Sec. 4.2.

During the shape reconstruction phase, we capture the

target object by projecting the same pattern and doing

stereo matching between the captured image and the image

database. To recover the shape of arbitrary objects, small

patches from the captured image are compared to the ref-

erence images, and the depth which gives the highest cor-

relation is selected. It should be noted that in principle any

pattern can be used in active stereo. Since our proposed pat-

tern consists of only vertical lines as described in Sec. 3.3,

we use horizontally long rectangular window for matching.

In our experiments, we use 8x4, 16x4 and 32x4 pixels win-

dows for evaluation. As for matching algorithm, because of

the brightness changes caused by the changing distance to

the target surface, materials and normal directions, a scaling

invariant technique is required; e.g., normalized cross cor-

relation (NCC), etc. Since NCC computation for all depths

requires large memory and computational costs, we intro-

duce two solutions such as hierarchical matching approach

and approximate nearest neighbor (ANN) search technique

(Sec. 4.3).

camera

projector

In focus

Installed 

aperture

Figure 4. Projected patterns with high frequency aperture and cir-

cular aperture.

3.2. Light field projection using a coded aperture

In a normal setup with a traditional projector, the pro-

jected pattern, which is a convolution of the pattern image

and the aperture shape, rapidly blurs out, eliminating high-

frequency details. Conversely, we propose to preserve high-

frequency patterns while we keep the total amount of light

energy as large as possible. Since a convolution of high fre-

quency patterns keeps high frequency, lines or dots for both

the pattern on the projector plane and the shape of the coded

aperture can be a solution. Furthermore, such configura-

tion has another important feature: the set of rays generated

by the convolution of the aperture and the projector pattern

forms a light field, realizing depth-dependent pattern pro-

jection. Such depth-dependency adds rich new features for

depth estimation by altering the patterns depending on the

distance. Fig. 4 shows the real patterns generated with a

projector with the coded aperture of slit pattern and those

of a normal projector with circular aperture for compari-

son. As shown in the figure, high frequency patterns are

preserved with our pattern for all ranges, whereas patterns

are rapidly blurred out with circular aperture.

Fig. 5(a) shows an example of how the convolution of

high frequency patterns constructs the light field in the

space. In the paper, the features of the pattern on the pro-

jector plane are composed of lines or dots, which are shown

as green points (f1, f2 and f3) in the figure. Similarly, the

aperture also consists of lines or dots. In this setup, the pro-

jected light becomes a set of sharp rays. The red lines in

the figure are rays that are emitted from a point in the pro-

jector plane, are then refracted by the lens, go through the

aperture mask (h1 and h2) and illuminate the target surface.

The projected patterns are shown as blue points.

Let the pattern on the projector plane be Ip, the aperture

shape be Ia, the distance between the aperture to the focal

plane be df , and the depth-dependent point spread function

(PSF) at depth d be Ia(d), where d is measured from the

aperture plane. Theoretically, Ia(d) can be calculated by

geometrically scaling Ia by factor of
df−d

df
(i.e., Ia(0) = Ia

and Ia(df ) = δ(0)). Then, the projected pattern observed

from the optical center of the projector approximately be-
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(c)

Figure 5. Projection of light field. (a) Pattern projection with coded

aperture for different target depths, (b) rays from different aperture

holes, and (c) alternative light field projector using DOEs.

comes the convolution Ia(d) ∗ Ip
1. In designing both of

the aperture shape Ia and the projected pattern Ip, we aim

to preserve the high-frequency components of the projected

pattern, as described in Sec. 3.3.

In Fig. 5(a), there are three features (f1, f2 and f3 in the

figure) on the projector plane, and two holes (h1 and h2) on

the aperture. Then, the number of features on the projected

plane becomes generally 3× 2 = 6, except for the overlaps

of multiple features. As the distance from the projector to

1 Rigorously, the projected pattern in the 3D space is Ia(d) ∗ Ip(d),

where Ia(d) is a geometrically scaled image of Ia by factor of
df−d

df
, and

Ip(d) is a geometrically scaled image of Ip by factor of d
df

. For d near

df , Ia(d) ∗ Ip(d) can be approximated by Ia(d) ∗ Ip scaled by factor of
d
df

, and the observed pattern from the point of d = 0 can be approximated

by Ia(d) ∗ Ip.

the target surface changes, the projected patterns change.

Note that, if the target plane is in focus (d = df ), all the

rays from each slit will overlap, and the resultant pattern is

the same as Ip.

In Fig. 5(b), rays are classified by the aperture holes that

the rays go through. This is analogous to placing a small

projector at each aperture hole. If the aperture hole A is

large, the rays from the hole A will be blurred. Thus, we

make the size of the aperture holes small. To compensate

the decrease in light intensity, we increase the number of

aperture holes to obtain a higher total light energy. From

this perspective, using a line aperture pattern, which can be

considered continuously aligned dots, is advantageous.

The light field that can be generated by the proposed pro-

jector has some constraints, such as, the rays are focused at

the focal plane d = df so that the projected pattern becomes

the same as Ip. Similarly, for the plane d = 0, the pattern

becomes Ia. The light field should be designed under such

constraints.

In this paper, we also show that a similar light field pro-

jection is possible using two diffractive optical elements

(DOEs) as shown in Fig. 5(c). An advantage of such a de-

vice is a smaller energy loss. We experimented on this con-

figuration only for uniform repetitive patterns, and further

experiments will be a part of our future work.

3.3. Pattern design of projected pattern and coded
aperture

For stable depth estimation, a combination of the pro-

jected pattern and coded aperture should be designed care-

fully to present distinctive features on the target surface as

well as considering light energy efficiency. In the field of

DfD and deblurring, isotropic 2D broadband patterns are

commonly used for aperture design [27, 26, 23, 12, 21]. In

contrast with active depth measurement, uniqueness of the

projected pattern on the horizontal axis has priority over the

vertical information. Moreover, 2D patterns tend to lose

contrast because of the law of averages; Specifically, the

convolution operator in the defocusing effect Ia(d)∗ Ip acts

as an averaging filter and the more elements we have in the

projected and aperture pattens Ip and Ia, the lower contrast

we observe on the target surface because of the central limit

theorem. Therefore for the depth measurement, we should

consider the following conditions:

1. Horizontal spatial frequency of the projected pattern

on the target surfaces should be broadband.

2. The number of elements of the projected and aperture

patterns for convolution should be small to keep the

contrast high.

3. The number of elements of the projected and aperture

patterns should be dense to keep a large total energy.

4. The projected pattern on the target surface should be

unique on the horizontal axis.
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Since some of the conditions are competing, we inves-

tigated the trade-offs involved by conducting simulations

for multiple cases of Ia and Ip, by generating images of

Ia(d) ∗ Ip for various d to find the best parameters. Ex-

amples of the generated patterns are shown in Fig. 6 (mid-

dle column). From condition 4, it is desirable that these

patterns have distinctive characteristics for different d. To

analyze this, the normalized correlations between the sim-

ulated patterns are calculated and visualized. The results

are shown in Fig. 6 (right column). Large diagonal (i.e., for

the images of right column of Fig. 6, the values of diagonal

lines that run from the left bottom corners to the right top

corners) and low off-diagonal values indicate high autocor-

relation and uniqueness at different depths. From the simu-

lation, we found that the randomly arranged vertical stripe

patterns for both projected pattern and coded aperture are

the best for the depth measurement as shown in Fig. 6 (case

D). Thus, in this paper, we use the combination shown in

case D. To minimize the effect of texture, we prepare three

different random lines patterns for each color channel.

In this combination, since all the projected pattern fea-

tures become vertical lines, vertical baseline of the cam-

era with respect to the projector does not generate parallax.

By positioning the camera with horizontal baseline, the ob-

served patterns include parallax effects.

4. Implementation and method details

4.1. Data sampling for image based approach

There are mainly two reasons why we propose an image-

based approach. The first is the difficulty of calibrating light

field parameters, since the observed patterns are a convolu-

tion of two patterns and decomposition is usually not an

easy task. The second is complex lens distortions, which

can be usually ignored or approximated by a simple distor-

tion model for passive stereo method, should be taken into

account in our method. For example, if a mathematically

ideal lens is assumed, PSF is shift-invariant, however, in re-

ality, actual lenses have numerous imperfect characteristics,

e.g., field curvature, coma and astigmatism, and they make

the PSF not only shift variant but also rotationally asym-

metric. Further, the PSF of the frontal defocus differs from

the backward defocus when the lens has a spherical aber-

ration. Chromatic aberrations also degrade the PSF intri-

cately. These imperfections of the lens clearly appear and

affect the results in our method, since all light rays from the

lens are independently utilized with a light field projector.

Moreover, both phenomena are mixed together and only an

integrated image is observed, so decomposition and param-

eter estimation become more difficult.

Considering this scenario, an image-based approach is

a simple solution because these factor affect equally input

and reference images and cancel each other. Moreover, we

(case A) random dots-random dots

(case B) random dots-random lines

(case C) uniform lines-uniform lines

(case D) random lines-random lines

Figure 6. Selected combinations of simulated patterns Ip and

aperture Ia, and visualized correlation matrices between the pat-

terns and depth d. (Left column) Projected patterns Ip outside the

red square, and coded apertures Ia inside the red square, (Mid-

dle column) simulated results Ia(ds) ∗ Ip, and (Right column)

visualized correlations. For the correlations, the horizontal axis

is dx, the vertical axis is dy , and the origin is at the bottom left

corner. Color at (dx, dy) means a sampled normalized correlation

between Ia(dx)∗ Ip and Ia(dy)∗ Ip. The center of the correlation

image corresponds (df , df ).

have a chance to exploit such effects to make the depth esti-

mation more robust. For example, spherical aberration has

the potential to disambiguate the frontal and rear defocus.

The actual sampling process is as follows. First, we set

a white planar board perpendicular to the projector’s op-

tical axis and images are captured by using a motorized

stage. Dense sampling is required because our projected

pattern drastically changes its appearance with small depth

changes. Note that higher precision than the sampling in-

tervals can be naturally realized with our method because

reconstruction is based on stereo, which usually achieves

sub-pixel accuracy with a window matching approach.

The advantages of our image-based framework are sum-

marized as follows: (1) multiple depth cues such as dis-

parity and defocus can be handled by a unified algorithm,

(2) most nonlinear phenomena such as optical aberrations
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angle #1
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angle #2

Figure 7. Synthesizing the image with arbitrary rotation angles.

can be naturally canceled, (3) complicated calibrations, for

example, PSF modeling or epipolar analysis of defocused

images are not necessary.

4.2. Slanted plane adaptation

Since the surface normal of the object is not always par-

allel to the optical axis of the projector, the projected pat-

terns are naturally distorted. The naive solution is to capture

many reference images by rotating the plane for all possi-

ble angles, however, it increases capturing time and data

storage. As a solution, we synthesize images for the re-

quired orientations from the captured image set online. Fig.

7 shows the process of synthesizing images for two differ-

ent rotation angles. Note that since all the matching steps

are applied after rectification, only a single rotation axis is

needed to be considered since vertical lines are being con-

sidered as features.

4.3. Efficient stereo matching with hierarchical ap-
proach and a feature based search technique

Our image-based method requires a large reference im-

age database which consists of captured images and syn-

thesized images for various rotation angles (in our case

−60,−30, 0, 30, 60 degrees). Furthermore, given such a

large database, the computational cost of template match-

ing becomes enormous. In order to solve the problem, this

paper proposes two algorithms for depth estimation using

a hierarchical template matching and approximate nearest

neighbor (ANN) search [14]. The former approach prior-

itizes depth estimation accuracy rather than the processing

speed; the latter reduces the processing time with a little

sacrifice in accuracy.

For hierarchical matching, the coarse level solution of

NCC matching is searched first with large depth intervals

and low spatial resolution, and then, the fine level solution

is searched around the low level solution with fine resolu-

tion of depth and images. It should be noted that we cannot

drastically decrease the number of depth samples for the

coarse level because the pattern changes distinctively for

small depth changes. In our experiment, 2.5mm and 0.5mm

intervals are used for coarse and fine levels respectively.

Finally, since the result presents small noise, we apply a

global optimization algorithm based on belief propagation

to remove the error [3]. The matching costs of NCC for the

In focus zone
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DfD with coded aperture
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Proposed (32x4 NCC with BP)

Kinect v2

Figure 8. Depth estimation results. Brown broken line repre-

sents DfD result [10], green dotted line represents simple random

dot stereo result, yellow dotted line represents the result using a

circular aperture with the same algorithm of ours and red dotted

line represents the result using a time-of-flight sensor (Kinect v2).

Note that we make the circular aperture size to be the same as total

aperture size of our slit aperture.

searched solution is used for the energy term of belief prop-

agation, with the regularization term for improving spatial

smoothness of the solution.

For the ANN approach, first, we make a compact feature

vector from a matching window, and then, we build a tree

structure from all the feature vectors. To make a compact

feature vector representation, intensities of pixels along a

vertical line in the matching window are integrated. Note

that pixel values are normalized in advance to mitigate the

scaling effect. The length of the feature vector can be fur-

ther shortened by averaging the vector with a certain length.

In our experiment, a matching window of 32 × 4 pixels is

first integrated vertically to produce a 32D feature vector,

and then, averaged every 4 pixels each to make an 8D fea-

ture. Then, those feature vectors are stacked into Kd-tree

using depth value as an index. In the reconstruction step, the

Kd-tree is searched directly from the compact feature vec-

tor constructed from the window of the camera image, and

thus, the reconstruction performance is much improved.

5. Experiment

5.1. Plane estimation for evaluation

The first experiment was conducted by using the opti-

cal system shown in Fig.2. Images were captured by shift-

ing the target screen placed on a motorized stage. Because

of the limitation of the length of the motorized stage, we

put a close-up lens to change the scale as to be 1/3 of real

length. With this scale, the motion range of the screen is

3573



Table 1. ANN calc. time.

Data creation 108.8

Search 3.2

Table 2. NCC calc. time.

Coarse search 39.1

Fine search 83.7

Total 122.8

(a) Checker

board

(b) Wooden

board
(c) Dappled

texture

(d) News

paper

Figure 9. Texture samples used for experiment.

(a) Checker

board

(b) Wooden

board

(c) Dappled

texture

(d) News

paper

Figure 10. Captured images of the board with various textures.
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(b) NCC

(a) ANN

Figure 11. RMSE of estimated depth of textured planes using (a)

ANN and (b) NCC for matching.

150mm-625mm from the projector and the camera, in-focus

distance is 250mm ±100mm for the projector, the reference

plane capturing interval is 0.5mm, the target plane capturing

interval is 10mm, and the matching window sizes were 8x4,

16x4 and 32x4 pixels. The depth value was estimated by us-

ing the proposed method and other methods for comparison

with RMSE shown in Fig.8. In the graph, we can observe

our methods including all the window sizes and time-of-

flight sensor can recover the correct depth for all the ranges,

whereas others rapidly decrease their accuracies when they

enter the defocus range. We can also confirm that even if

an accuracy of ANN is almost same as NCC, it drastically

reduces the processing time as shown in Table 1 and 2.

5.2. Accuracies on textured object

Next, we evaluated our method on textured objects.

Checkerboard pattern, glossy board, wooden board, dap-

pled pattern and newspaper were tested. Sample textures

are shown in Fig.9. The configuration of the camera and

the projector is the same as described in Sec.5.1. The cap-

tured images in Fig.10 show that the projected patterns are

strongly affected by textures. Fig.11 shows the RMSE re-

sults of both ANN and NCC. For both technique, the ac-

curacy decreases if there is a texture on the object, how-

ever, the proposed method can still estimate depth with high

accuracy even if the projected patterns are diminished and

some of them are divided into several parts by color dif-

ferences. We can also confirm that the quality of NCC is

slightly better than ANN, and thus, the rest of the experi-

ments are done by hierarchical NCC.

5.3. Accuracies of slanted planes

(a) input

image
(b) surface

direction
(c) top view (d) 3D shape

(e) input image
(f) suraface

orientation
(g) 3D shape (h) top view

Figure 12. Shape reconstruction result of slanted planes and curved

surfaces.

To confirm the effectiveness of the slanted image synthe-

sis technique for arbitrary rotation angles, we reconstruct a

cube-shaped object and a sphere-shaped object. From the

sampled images of the reference plane, virtually rotated ref-

erence images with rotation angles of -60 ,-30, 0, 30, and

60 degrees were synthesized. From the real and synthesized

image set, the shapes of the objects were reconstructed. The

results are shown in Fig. 12, including the estimated direc-

tions of the normal vectors. As the reconstructed shape and

the visualized normal directions show, the positions of the

points were accurately estimated, although the normal di-

rections were just roughly estimated. For the cube-shaped

object, we extracted 3D points and calculated the RMSE of

the 3D points by fitting them to the dominant plane. The

value was 2.9mm where the distance from the camera to the

cube was about 300mm. The reason why the result is worse

than previous experiments is that each face of cube consists

of different color blocks with black border lines, and it is

more challenging object than previous cases.

5.4. Arbitrary shape and wide depth range test

We estimated the depth of more generic objects. First,

we measured the objects placed widely apart as shown in

Fig.13(a) and (b). Four objects are placed about 150mm,

300mm, 450mm and 620mm from the lens, respectively.

Fig.13 (a) shows the captured image with the projected pat-

tern and (c) and (d) show the reconstruction results. We
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can confirm that the shapes are correctly estimated at right

position with small details. With this experiment, we need

to capture a high dynamic range (HDR) image with differ-

ent exposure time. An efficient HDR capturing system is

desired for achieve real one-shot scan.

Finally, we applied our method to shapes with curved

surfaces and non-uniform texture as shown in Fig.14(left

column). Those objects are placed between 250mm to

450mm from the projector. Fig.14 middle column shows

the reconstruction results with five pixel intervals for fast

calculation and the right column shows all pixel reconstruc-

tion to show capability of dense reconstruction. Fig.14(j)

shows zoom-up views of the dense reconstruction results of

(a). We can confirm that the curved surface is restored ac-

curately without any postprocess. In the results, we also ob-

serve some parts are missing in 3D shapes. This is because

the texture presents dark areas where no pattern is observed.

5.5. Shape reconstruction using DOE projector

We also tested shape reconstruction using DOE based

system as shown in Fig. 15(a). A target object is placed

at 150mm from the camera. Fig.15(b) shows the captured

image and (c) shows the reconstruction result. In the experi-

ment, since we use regular pattern for first DOE and just two

different regular patterns for second DOE, uniqueness of the

pattern and possible depth range is limited, however, we can

confirm that the shape is correctly restored with our proto-

type system. Construction of more unique patterns will be

investigated in the future.

6. Conclusion

In this paper, we propose a one-shot shape reconstruc-

tion method using a light field projector which is not a cen-

tral projection model. The projector is constructed by using

a combination of a special projected pattern and a coded

aperture, which preserves high frequency information while

maintaining a wide depth range. We also propose an image-

based stereo matching technique, which achieves robust re-

construction despite the severe distortion which inevitably

occurs with actual optics. Because of the heavy compu-

tational requirements of the basic image-based technique,

a hierarchical matching as well as ANN search are intro-

duced. By using our technique, arbitrary objects with com-

plicated texture are reconstructed for wide depth range with

high accuracy. In the future, joint optimization for design-

ing the projected pattern and coded aperture will be investi-

gated.
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(a)
(b)

(c) (d)

Figure 13. Wide depth range shape reconstruction result. (a) Input

image, (b) top view, and (c, d) reconstruction results.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Figure 14. Arbitrary shape with texture object reconstruction. Left

column (a,d,g) shows target object, middle (b,e,h) shows sparse

reconstruction and right column (c,f,i) shows dense reconstruction

results. Bottom row (j) shows zoomed up views, from left to right,

of the high resolution reconstruction to show the density.

(a)

(b)

(c)

Figure 15. DOE system experimental result. (a) The system con-

figuration, (b) target object illuminated by DOE, and (c) recon-

struction results.

3575



References

[1] Lytro redefines photography with light field cameras, June

2011. http://www.lytro.com. 1

[2] S. Achar and S. G. Narasimhan. Multi focus structured

light for recovering scene shape and global illumination. In

European Conference on Computer Vision, pages 205–219.

Springer, 2014. 2

[3] P. Felzenszwalb and D. Huttenlocher. Efficient belief prop-

agation for early vision. International Journal of Computer

Vision, 70:41–54, 2006. 6

[4] B. Girod and S. Scherock. Depth from defocus of structured

light. In 1989 Advances in Intelligent Robotics Systems Con-

ference, pages 209–215. International Society for Optics and

Photonics, 1990. 2

[5] M. Grosse, G. Wetzstein, A. Grundhöfer, and O. Bimber.
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