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Abstract

Is it possible to determine the visible subset of points

directly from a given point cloud? Interestingly, in [7] it

was shown that this is indeed the case—despite the fact

that points cannot occlude each other, this task can be per-

formed without surface reconstruction or normal estima-

tion. The operator is very simple—it first transforms the

points to a new domain and then constructs the convex

hull in that domain. Points that lie on the convex hull of

the transformed set of points are the images of the visible

points. This operator found numerous applications in com-

puter vision, including face reconstruction, keypoint detec-

tion, finding the best viewpoints, reduction of points, and

many more. The current paper addresses a fundamental

question: What properties should a transformation func-

tion satisfy, in order to be utilized in this operator? We

show that three such properties are sufficient—the sign of

the function, monotonicity, and a condition regarding the

function’s parameter. The correctness of an algorithm that

satisfies these three properties is proved. Finally, we show

an interesting application of the operator—assignment of

visibility-confidence score. This feature is missing from pre-

vious approaches, where a binary yes/no visibility is deter-

mined. This score can be utilized in various applications;

we illustrate its use in view-dependent curvature estimation.

1. Introduction

The last decade has witnessed a vast increase in the use

of range imaging and 3D scanning devices. A point cloud,

sampled from a surface, is the standard output of these de-

vices. This paper explores an operator that determines the

visibility of a point cloud, given a viewpoint.

As points cannot occlude each other (unless they acci-

dentally fall on the same line from the viewpoint), the tra-

ditional way to solve the problem is to reconstruct the sur-

face [1, 8] and determine visibility on the reconstructed sur-

face. In [7] an elegant operator is proposed to determine the

sought-after subset directly from the point set, without sur-

(a) Input (b) Output
Figure 1. Given points sampled from a surface and a viewpoint

(a), only the points that would be visible if the surface were known,

are extracted (b).

face reconstruction or normal estimation, as demonstrated

in Figure 1. This operator, termed the HPR (Hidden Point

Removal) operator, is supported by theoretical guarantees.

This operator has found numerous applications, both

within computer vision and computer graphics, and in other

domains. Some of these applications are surface reconstruc-

tion [3, 12], 3D face reconstruction [9], 3D keypoint de-

tectors [17], finding the best views of 3D shapes [14, 16],

finding silhouettes [15], orienting point sets [2], flock ani-

mation [10], 3D pose estimation [4], object relighting [18],

determining meaningful points [6], and even wireless com-

munication [11, 13].

Given a point cloud P and a viewpoint C, the operator

consists of two steps:

1. Point transformation: A function maps every point

pi ∈ P to an inverted domain. Assuming, without loss

of generality, that the viewpoint is at the origin, the

flipping transformation function is defined as

p̂i = F (pi) = pi + 2(R− ||pi||)
pi

||pi||
, (1)

where the parameter R > 0 is the radius of a sphere.
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2. Convex hull construction: The convex hull of the

transformed points and the viewpoint is calculated.

The main result of [7] is that the points that reside on the

convex hull of Step 2 are the images of the visible points.

Our goal in this paper is to generalize the HPR operator

by identifying the properties that should be satisfied by any

function used in Step 1. The main contribution of this paper

is establishing three such properties: the sign of the func-

tion, monotonicity, and a condition regarding the function’s

parameter (Section 2). This is not only interesting theoreti-

cally, but may also be practical, as various applications can

benefit from different functions that suit their needs.

We analyze the generalized HPR operator (GHPR) that

satisfies these requirements (Section 3). We also prove its

correctness in the limit and provide guarantees for the more

practical case of finite sampling (Section 4).

An additional contribution is demonstrating the useful-

ness of the operator for a new type of applications, which

require a score reflecting the confidence in the visibility,

rather than a binary visibility decision (Section 5). We

present an example of such application: view-dependent

curvature estimation.

2. Properties of the transformation function

Figure 2 describes the pseudo code of the generalized

HPR operator (GHPR) for visibility detection. This section

focuses on the first step of the operator. Our goal is to iden-

tify the properties of the transformation function of Step 1,

which are essential for the correctness of the visibility op-

erator.

GHPR(P ,C,γ)

Pre-processing: Move the points in P s.t. C is the origin

Step 1: Apply the transformation in Equation 2 ∀pi ∈ P , using γ;

Step 2: Apply a convex hull algorithm to the set of transformed

points

Output: Return the set of points whose images reside on the convex

hull

Figure 2. Pseudo-code of the GHPR operator

We are given a point set P ⊂ R
D sampled from a con-

tinuous surface, a point pi ∈ P and a viewpoint C. Let f be

a 1-dimensional continuous kernel function f : R+ → R
+

that, given the distance of pi from C, outputs an updated

distance after applying f . We assume that f is invertible.

We define Ff : RD → R
D to be a radial transformation, as

follows:

Ff (pi, C) =

{
C + pi−C

‖pi−C‖f(‖pi − C‖) pi 6= C

pi, pi = C
.

If we define, without loss of generality, a coordinate system

where C is at the origin, we get:

Ff (pi) =

{ pi

‖pi‖
f(‖pi‖), pi 6= 0

0 pi = 0
. (2)

Claim 2.1 The inverse transformation of Ff is:

F−1
f (p̃i) =

{
p̃i

‖p̃i‖
f−1(‖p̃i‖), p̃i 6= 0

0 p̃i = 0
, (3)

where f−1 is the inverse kernel, such that f−1(f(d)) = d.

We identify the following sufficient properties, which

should hold in order for a kernel, f , to be used for visibil-

ity determination (i.e., they will be used in the subsequent

sections):

1. f ′(d) < 0, or in other words, f(d) is monotonically

decreasing, s.t. f(‖pi‖) < f(‖pj‖) iff ‖pi‖ > ‖pj‖.

This means that points that are closer to the viewpoint

become farther away after being transformed.

2. f(d) > 0. This condition assures that the orientation

of the points is maintained relative to the viewpoint

after the transformation.

3. For a γ-controlled kernel fγ , it is required that for any

d1, d2 ∈ R
+, s.t. d1 > d2 and for any 0 < ǫ < 1, there

exists a value of γ = Γ, s.t.

1 >
fΓ(d1)

fΓ(d2)
> 1− ǫ. (4)

It should be noted that the left-hand side of the equa-

tion results directly from the monotonicity of f and

therefore, it is correct for any value of γ. The ad-

ditional requirement on the right-hand side will be

shown useful for proving, in Section 4, the correctness

in the limit of GHPR, as well as for providing guaran-

tees when P is a sample of the surface.

Exemplary kernels: It can be easily verified that the fol-

lowing kernels satisfy the required properties.

1. Mirror/Linear Kernel: This kernel, which was used

in [7], can be written as fmirror(d) = γ − d, γ ≥
maxpi∈P (‖pi‖). It describes flipping around an imag-

inary spherical mirror, centered at C, with a user spec-

ified radius R = 1
2γ.

2. Exponential Inversion Kernel: This kernel is defined

as fexponential(d) = dγ , where γ < 0 is a parameter.

3. Natural Exponential Kernel: This kernel is defined

as fnatural(d) = e−γd, γ > 0.
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Figure 3. The curve Λ is transformed to the line Λ̂ by Ff . The

empty region associated with Λ is in purple.

We note that in [6] a related operator is introduced:

the Target-Point Occlusion (TPO) operator. TPO finds the

points that would occlude a given point from outside ob-

servers. This operator can be generalized very similarly to

what is proposed in this paper, with modifications only to

properties 1 and 3 above (the function should be monotoni-

cally increasing, rather than decreasing).

3. Empty regions & The visibility condition

According to the visibility condition, for a point pi to be

visible, its image Ff (pi) should lie on the convex hull of the

set of transformed points. This means that the curve that is

the source of an edge of that convex hull, should be empty

of points of P . This is illustrated by the purple region in

Figure 3. Intuitively, if the empty region between pi ∈ P

and the viewpoint is large, our confidence in the visibility

should be large as well. Therefore, if we could determine

the empty region associated point pi, we could threshold its

size.

This section explores this curve. It begins by defining a

family of curves, Λ-curves, which are transformed to lines

by the GHPR operator in R
2 (Section 3.1). Then, we discuss

the empty region induced by a Λ-curve (Section 3.2). We

prove the relationship between the size of the empty region

and the angle between the x-axis and the line to which the

Λ-curve is transformed. Finally, we use this relationship to

define a mathematical condition for visibility, which can be

efficiently computed (Section 3.3). This section generalize

the proofs that were given in [7] for a specific function, to

the family of functions that satisfy the conditions presented

in Section 2.

3.1. Boundaries of empty regions – Λ­curves

We are given a kernel f , a point cloud P , a viewpoint C,

and a point pi ∈ P .

Definition 3.1 Λ-curve: Given pi, Λ(α) = (rΛ(α), α) is a

parametric curve that is the pre-image under Ff of a line

passing through a transformed point Ff (pi).

The following lemma can be easily proved.

Lemma 3.1 A Λ-curve passes through the viewpoint C =
(0, 0).

From Definition 3.1, it is clear that this curve is important

for understanding the empty region associated with pi. This

is so, since after computing the convex hull during the sec-

ond stage of the GHPR operator, pi is visible if p̂i is on the

convex hull, that is to say, all the transformed points reside

to one side of a straight line (half-space). We are therefore

interested in determining the shape of Λ.

Without loss of generality, attach a polar coordinates sys-

tem (R,α), such that its origin is at the viewpoint C, and

the x-axis (α = 0) lies on the line connecting C with pi
(Figure 3). The line Λ̂ = {q̂ = Ff (q)|q ∈ Λ} represents

the straight line to which the curve Λ is transformed by Ff .

This line creates an angle β with the x-axis. Any point on

the Λ-curve, having a polar angle α, is transformed to a

point on the line Λ̂ with distance f(rΛ(α)) from C.

Using the Law of Sines we get:
f(ri)

sin(π−α−β) =
f(rΛ(α))

sin β
.

Therefore, for pi 6= C, we define the parametric equation of

Λ(α) with respect to this polar coordinate system as:

Λ(α) = (rΛ(α), α) =

(
f−1(

f(ri) sinβ

sin(α+ β)
), α

)
. (5)

Since the inverse function f−1 is assumed to exist, Λ al-

ways exists. Figure 4 shows the Λ-curve profiles for our

exemplary kernels.

3.2. Empty regions induced by the Λ­curves

We are interested in finding the largest empty region,

which indicates our confidence in the visibility result. We

start by defining the region associated with a Λ-curve. Then,

in Lemma 3.2 we show a way to measure the relative sizes

of such regions. The result of this lemma lets us charac-

terize in Lemma 3.3 the largest empty region, formally de-

fine it (Definitions 3.3, 3.4) and prove that the definition is

correct, i.e.,that the region is indeed empty of points (Lem-

mas 3.4, 3.5).

Definition 3.2 ΩΛ-region: Let ΩΛ be the region bounded

by the x-axis and the curve Λ(α) = (rΛ(α), α), 0 ≤ α < π,

s.t. pq = (rq, θ) ∈ ΩΛ iff 0 < rq < rΛ(θ).

The next lemma proves the relation between the size of

ΩΛ and the angle β between the line Λ̂ and the line connect-

ing the viewpoint to point pi. In particular, it proves that as

the first increases, the latter decreases.

Lemma 3.2 Let ΩΛ1 and ΩΛ2 be two regions associated

with a point pi ∈ P and defined by Λ1 and Λ2, where the

lines Λ̂1 and Λ̂2 create angles β1 and β2 with the x-axis,

respectively. Then, ΩΛ1
⊆ ΩΛ2

⇐⇒ β1 > β2.
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(a) fmirror, γ = 20 (b) fexponential, γ = −0.5 (c) fnatural, γ = 0.1

(d) fmirror, γ = 40 (e) fexponential, γ = −1 (f) fnatural, γ = 0.01
Figure 4. Λ-curve profiles for different kernels and parameter values for a single point, pi = (10, 0) and C = (0, 0). Each graph contains

several curves, each corresponds to a different value of β. It can bee seen that the size of the region captured between the x-axis and the

curve above the x-axis increases as β gets smaller.

Proof: We prove one direction of the lemma; the other di-

rection is similar. Assume that β1 > β2; we want to prove

that ΩΛ1
⊆ ΩΛ2

. This is done by showing that the bound-

ary, Λ1, of the region associated with β1, is closer to the ori-

gin compared to Λ2, for every possible angle 0 < α < π.

This means that for a region boundary Λ = (rΛ(α), α),
rΛ(α) increases when β decreases. Therefore, we need to

show that ∂rΛ
∂β

< 0.

Applying the derivation by β to rΛ = f−1
(

f(ri) sin β

sin(α+β)

)

from Equation (5), results with

∂rΛ

∂β
= (6)

= f(ri)
cosβsin(α+ β)− sinβcos(α+ β)

sin2(α+ β)
f−1′

(
f(ri)sinβ

sin(α+ β)

)

= f(ri)
sin(α)

sin2(α+ β)
f−1′

(
f(ri)sinβ

sin(α+ β)

)
.

In order to find the sign of ∂rΛ
∂β

, we note that: (1)

f(ri) > 0 by definition. (2) sin(α) > 0 for 0 < α < π and

therefore,
sin(α)

sin2(α+β) > 0. (3) Since f ′(f−1(x)) 6= 0 (since

f is strictly monotonically decreasing) then f−1′(x) =
1

f ′(f−1(x)) , and by the derivative of inverse function rule,

we get

f−1′
(

f(ri)sinβ

sin(α+ β)

)
=

1

f ′(f−1( f(ri)sinβ
sin(α+β) ))

.

For Λ we required that f ′(d) < 0, so f−1′( f(ri)sinβ
sin(α+β) ) < 0.

Therefore, the term ∂rΛ
∂β

is always negative.�

Lemma 3.3 For a given point pi ∈ P , the Λmax-curve,

which passes through pi and defines the largest empty re-

gion ΩΛmax
, passes through at least one additional point

pj ∈ P .

Proof: Suppose, by way of contradiction, that Λmax does

not pass through an additional point. Then, Λ̂max does not

pass through an additional transformed point and we can

define a line Λ̂, with a smaller β angle, which would still

create an empty half space. According to Lemma 3.2, this

half space originates from a larger region, which contradicts

the assumption.�

Combining the above lemmas suggests that in order to

find the largest empty region for a point pi, one needs to find

another point in the transformed domain, for which the line

connecting the two transformed points, creates the smallest

possible angle β. We therefore define a region associated

with a pair of points:
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(a) pi is considered visible (b) pi is considered invisible
Figure 5. Visibility condition. If the angle βij + βik between the lines (to which the Λ-curves are transformed) is greater than π, then the

point is invisible; otherwise it is visible.

Definition 3.3 A region Ωi,j associated with two points

pi and pj: Ωi,j is the region associated with a Λ-curve

transformed by Ff to the line segment connecting pi with

pj .

Until now we considered only points in the upper half-

plane. We now extend our definitions to the whole set P .

We divide P into two subsets: P+ and P−, where P+ con-

tains all the points above the x-axis and P− contains the

points below it. The region associated with a point pi is

defined as follows:

Definition 3.4 A region Ωi associated with a point pi is

Ωi = (
⋂

pm∈P−,m 6=i

Ωi,m)
⋃

(
⋂

pn∈P+,n 6=i

Ωi,n).

Lemma 3.4 Let pj ∈ P+ and pk ∈ P− be the points that

minimize the sizes of Ωi,j and Ωi,k correspondingly. The

region Ωi can be calculated by Ωi = Ωi,j ∪ Ωi,k.

Proof: We choose a point pk ∈ P− below the bisecting

line, such that Ωi,k is minimized. This means that βik is

maximized among all the points that are above the bisecting

line. Using the result of Lemma 3.2, Ωi,k is contained in all

Ωi,m for pm ∈ P−. Therefore, Ωi,k =
⋂

pm∈P−

Ωi,m and

similarly, Ωi,j =
⋂

pn∈P+
Ωi,n.�

Lemma 3.5 Ωi is empty of points from P .

Proof: In order to show that Ωi is empty, it is enough

to show that Ωi,j and Ωi,k, as defined in Lemma 3.4, are

empty. Assume, by way of contradiction, that Ωi,j is not

empty. Then, it contains a point pq for which the line Λ̂i,q

creates an angle βiq with the x-axis, such that βiq > βij .

This contradicts the fact that Ωi,j is minimized and max-

imizes βij. Similarly, it is possible to show that Ωi,k is

empty.�

3.3. Condition on visibility

To determine visibility, we should threshold the points

according to the size of their associated empty region. Intu-

itively, points associated with large regions are visible. Us-

ing Lemma 3.2, we can threshold the values of β instead

of directly thresholding the size of the empty region. We

formulate our condition for visibility as:

βi,j + βi,k ≤ threshold, (7)

where j and k are the indices of neighboring points as de-

fined in Lemma 3.4.

One way to apply the condition is to find, for each point

pi ∈ P , two other points pj ∈ P+ and pk ∈ P− that min-

imize the β angles, as shown in Figure 5. However, this

method is inefficient.

Instead, setting threshold = π gives rise to an efficient

method (e.g., O(n log n) in 2D and 3D), the generalized-

HPR (GHPR) operator. This is so since βi,j + βi,k ≤ π

means that p̂i is on the convex hull of P̂ , where P is trans-

formed to P̂ , as illustrated in Figure 5:

GHPR(P ) ≡ (P∩{C})∪{p|p̂ ∈ convexhull(P̂∪{C})}.

Note that using the convex hull construction is more than

just accelerating the computation. A theoretical beauty of

this approach is that it essentially provides a reduction of

the problem of visibility detection to that of convex hull

construction—linking two seemingly different problems.

Figure 6 shows examples of applying the GHPR oper-

ator. In these drawings, blue points on the boundary of

the gray regions are visible, while the green points are oc-

cluded.

4. Correctness & Properties

In this section, we first prove the correctness of the

GHPR operator in the limit, where the distance between
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(a) γ = −0.05, (b) γ = −0.01, (c) γ = −0.05, (d) γ = −0.01,

C is inside P C is inside P C is external to P C is external to P
Figure 6. The visible region, marked in gray, as viewed from a given point in red, calculated using the exponential inversion kernel. Blue

points on the boundary of the gray region are visible, whereas green points, which are not on the boundary of the gray region, are occluded.

It can be seen that the size of the region detected as visible increases as γ gets closer to 0.

the points approaches 0. Then, we provide theoretical guar-

antees for the case where P is a finite sample of S. The

proofs generalize those of the HPR operator [7], which as-

sume the special case of a mirror kernel. They rely on the

three properties introduced in Section 2 and are given in the

supplementary.

The next three lemmas assume that the input consists of

the set of all the points of the surface S and a viewpoint

C. Let V ⊆ S be the set of visible points from C and

GHPR(P ) ⊆ S be the set detected as visible by the GHPR

operator, using a kernel fγ with parameter γ.

Lemma 4.1 GHPR(P ) ⊆ V , i.e., every point detected

visible by the GHPR operator is indeed visible from C.

Lemma 4.2 For every valid kernel, fγ , there exists a value

Γ s.t. limγ→Γ GHPR(P ) = V , assuming T = inf{‖p −
C‖ |p ∈ S} > 0.

In other words, Lemma 4.2 guarantees that when γ → Γ,

the set of points detected by the GHPR operator is equal to

the set of visible points—an accurate solution is obtained.

If the condition for the value of γ does not hold, we can fur-

ther analyze which points are detected visible by the GHPR

operator, by considering the influence of the curvature on

the results, as follows.

Lemma 4.3 Let S be an infinitesimal surface patch around
p. Then, p ∈ GHPR(P ) if and only if p is visible and the
curvature κ at p is below a threshold κΛ:

κΛ =
(sin(β)3 − sin(β))(fb(d)f(d)d + fa(d)d − 2f2

a(d)) − fa(d)d sin(β) + d2 sin(β)3

(fa(d)2 + (d2 − fa(d)2)sin(β)2)
3
2

,

(8)

where fa(d) = f(d) · (f−1)′(f(d)), fb(d) = f(d) · (f−1)′′(f(d)).

In conclusion, given a kernel f with a specific parameter,

the GHPR algorithm correctly detects the visible points if

1. Locally, the surface is either convex or concave with

sufficiently low curvature.

2. The surface is close enough to the viewpoint C (i.e.,

d = ||p|| is sufficiently small).

3. The angle between the surface normal and the line of

sight is sufficiently small.

This means that misclassification errors are expected to

occur around regions whose tangent plane is parallel to the

line of sight or with large surface perturbations. Further-

more, these errors become worse for far-away points.

Now assume that P is a ρ-sample of S, with ρ > 0, i.e.,

for every sample p ∈ P , there exists another point q ∈ P

whose distance to p is smaller than ρ. We consider a point to

be ǫ− visible, if moving it by ǫ will make it visible. Using

these definitions, we extend the correctness lemmas to the

more practical case of sampled data.

Formally, let Vǫ ⊆ P be the set of ǫ-visible points from

C. We assume that the distance of S to C is at least T > 0
and that the sample is sufficiently dense.

Theorem 4.4 For every valid γ, there exists ǫ > 0 such that

every point detected visible is ǫ−visible.

Theorem 4.5 For sufficiently large ǫ > 0, there exists a

value of γ s.t. a point is detected visible only if it is

ǫ−visible.

In summary, we proved that assuming that the sam-

ple is sufficiently dense, for every γ, there exists an ǫ,

such that every point marked visible by the operator is

ǫ−visible. Moreover, for sufficiently large ǫ, there exists

γ, such that every point marked visible by the operator is

indeed ǫ−visible.
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5. Application: Assigning Visibility Scores

As mentioned before, point visibility is a fundamental

component in many applications, both within computer vi-

sion and in other communities [3, 9, 12, 14, 15, 16, 17, 18].

Traditionally, in these applications, a binary decision is uti-

lized, i.e., for each point, it is determined whether it is visi-

ble or not.

We propose an alternative—rather than producing a bi-

nary visibility decision, we will generate the degree of con-

fidence in the visibility results. In many situations, this ad-

ditional information is beneficial. For instance, in regis-

tration of point clouds generated by range cameras, points

having high visibility scores may get high weights, hence

influencing the registration more than points for which the

scanner is likely to err. In the sequel, however, we discuss a

different use— view-dependent curvature estimation.

Our goal is to attach to each point, which was detected

visible, a Visibility Score (VS). The key idea is to assign

large visibility scores to points associated with large empty

regions. Therefore, we wish to efficiently measure the size

of the empty region.

To do that, recall that the size of the empty region is large

when the sum of the β angles is small. For points on the

convex hull that are detected as visible, these angles can

be directly calculated from the convex hull. Hence, for a

visible point pi ∈ P in 2D, we define V S as the angle be-

tween the edges on the convex hull that are adjacent to p̂i.

Similarly, in 3D we define the visibility score as the sum

of angles between the edges of the triangles on the convex

hull, which are adjacent to p̂i.

Figure 7(left) shows results of our method, using the ex-

ponential inversion kernel, where dark blue indicates high

values of V S and red marks lower values. The middle col-

umn shows the same results from another angle, to demon-

strate that invisible points get the value 0.

As shown in Equation (8), V S is affected by the local

curvature, the angle between the normal and the line of

sight, and the distance of the surface to the viewpoint. For

example, the creases in the hand model (Figure 7(a)) have

a low value of V S due to deep concavities. In the Bimba

model (Figure 7(b)), it can be seen that regions whose tan-

gents create almost-perpendicular angles with the line of

sight receive low scores.

View-dependent curvature estimation: Judd et al. [5] pre-

sented a method for extracting apparent ridges of surfaces

(represented as meshes), which are the maxima of the view-

dependent curvature. As shown below, V S behaves like

a view-dependent curvature and can, therefore, be used for

direct drawing the apparent ridges of point sets, without sur-

face reconstruction.

The right column in Figure 7 shows the results of the

commonly-used estimation of the curvature of P , subtract-

ing the sum of angles from 2π. This estimation is performed

on the reconstructed polygonal models.

Our curvature is estimated similarly, as the sum of the

angles adjacent to the point, but this is done on the convex

hull of the transformed set P̂ . The results show that our es-

timation indeed finds the features with high curvatures, and

it is less sensitive to noise. Intuitively, this can be explained

by the fact that the calculated visibility is a global measure

and is therefore more resistant to small noise, compared to

the conventional calculation of the curvature.

6. Conclusion

This paper has addressed the detection of visible points

from a viewpoint. It generalizes the HPR operator, by an-

swering the fundamental question of which properties a

transformation function should satisfy in order to be appli-

cable to visibility calculation. The paper enumerates three

such properties and uses them to analyze the operator. It

proves the operator’s correctness in the limit and provides

guarantees for the real-life case of finite sampling.

The operator is very simple, fast, and easy to implement.

Moreover, it can be applied to points in any dimension,

though we have focused in the paper on the practical cases

of point sets in two dimensions and in three dimensions.

Last but not least, we present an additional benefit of

this operator—its ability to compute a continuous visibil-

ity score of points, rather than a binary score, as commonly

done. We show one concrete use of this score to directly

compute the view-dependent curvature of a point set, skip-

ping reconstruction. We demonstrate that, surprisingly, our

results are good even though we are not using the recon-

structed surfaces. With the growing popularity of scanning

devices and 3D point sets, we believe that many applica-

tions will follow.

Future direction: An interesting question that this paper

has not discussed is what a good kernel is. We expect it

to be application-specific. Moreover, we believe that for

applications where the shape of the empty region is known

(e.g. cellular communication), it may be possible to design

specific kernels.

Further analysis in terms of the value of γ and in terms

of noise could also be performed.

Last but not least, sufficient conditions were identified

in this work. But what are the necessary conditions? This

question is open and is highly intriguing.
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Visibility score (V S) V S from a different angle Curvature

(a) Hand
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(c) Michelangelo’s David

(d) Rocking horse
Figure 7. Results of calculating the point visibility score V S. The left column shows V S as colors over a surface, where dark blue

indicates highly-visible regions and red regions are invisible (V S = 0). The middle column shows the same results from another angle,

without re-calculating V S. The right column shows estimation for the curvature; it can be compared to our results in the left column.
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