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Abstract

We present an object detector coupled with pose estima-

tion directly in a single compact and simple model, where

the detector shares extracted image features with the pose

estimator. The output of the classification of each candidate

window consists of both object score and likelihood map of

poses. This extension introduces negligible overhead dur-

ing detection so that the detector is still capable of real

time operation. We evaluated the proposed approach on

the problem of vehicle detection. We used existing datasets

with viewpoint/pose annotation (WCVP, 3D objects, KITTI).

Besides that, we collected a new traffic surveillance dataset

COD20k which fills certain gaps of the existing datasets and

we make it public. The experimental results show that the

proposed approach is comparable with state-of-the-art ap-

proaches in terms of accuracy, but it is considerably faster –

easily operating in real time (Matlab with C++ code). The

source codes and the collected COD20k dataset are made

public along with the paper.

1. Introduction

Reliable detection of vehicles is a crucial part of traf-

fic monitoring systems. The cost of cameras, processing

power, and communication bandwidth are decreasing and

the traffic monitoring systems are not composed of dozens

of cameras anymore. Instead, the number of cameras in-

volved in traffic monitoring is rapidly increasing. There-

fore, each camera receives less and less expert human input

such as manual calibration and the systems are expected to

work invariably for various views on the scene.

Interestingly enough, Benenson et al. [2] recently

showed that in specific detection tasks (pedestrians, faces,

traffic signs), less is more and good old methods are capa-

ble of producing best results and beat sophisticated systems

with elaborated models. We were curious, if for real-time

detection+pose estimation task we need separated detectors
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Figure 1: Our algorithm estimates pose along with object

detection. Later stages of the soft cascade estimate the pose

by accumulating regression maps, without extracting any

information from the image.

and regressors. The questions we asked and try to answer

are Does omni-directional tree-based detector internal clus-

tering of objects depend on their viewpoint? Is this separa-

tion usable for pose estimation? As we show in this paper,

the answers to both questions are Yes and with special im-

purity function in the tree splits, the pose regression can be

improved without significant detector degradation (Fig. 1).

Methods for multi-view detection and pose estimation

can be divided into two main groups. The first group of

methods requires a 3D model, whether as a CAD model [18,

29, 25, 34, 37, 20, 26], point cloud [13], or in the form of a

wireframe [36]. Methods from the second group can solve
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the task using just 2D information [23, 19, 15, 12, 27, 26].

Many methods – both those using 2D and 3D information

– are part-based detectors. Algorithms with state-of-the-art

results are using Deformable Part Models [19, 26], however,

they are computationally very expensive (several seconds

per image). Other part based detectors use Random Forests

[37] or other techniques [18, 34]. Some methods treat pose

estimation as a continuous problem [27, 26], other authors

use several view-dependent detectors [20, 15, 29, 19, 28,

14] or 1-vs-all classification [12]. Some of these works (that

we compare with) will be described in more detail later in

the text.

In our work, we are following the recommendations

of Benenson [2] by sticking with the existing and well-

performing simple detector – Boosted soft cascade [31, 6]

and modify its training and testing scheme to provide pose

regression without compromising their speed performance.

We are constructing a single omnidirectional detector –

“one detector to see them all” – in contrast to the majority

of existing approaches which tend to train multiple detec-

tors/regressors for individual pose classes [20, 15, 29, 19,

28, 14] (this includes the recent work of He et al. [15] who

infer continuous pose, but use multiple regressors for dif-

ferent view classes). The weak classifiers in the cascade

are decision trees using channel features as in [6]. As these

trees are trained, we propose to collect statistics of view-

points (or other features to be estimated) in the leaves. After

a successful detection, the trained information is used in or-

der to estimate the object’s pose by summing pre-computed

data of a subset of the leaves. This approach allows that

in terms of extracting information from the image, the pose

estimation is completely costless. The speed of the detec-

tor (meant for real-time operation) is therefore not compro-

mised and the technology of the whole detection/estimation

system is very simple – and thus suitable for industrial and

embedded use.

Our method is in its nature similar to Cascaded Pose Re-

gression (CPR) [7, 4]. We also accumulate evidence pro-

vided by weak regressors. The important difference is that

we regress a likelihood map of poses, not the pose itself, and

we do not extract any new information from the image, as

we rely on the information extracted for the detector. CPR

has been tuned to regress poses of objects after their detec-

tion; we, on the other hand, focus on estimation of the full

3D orientation of objects during their detection.

The main contributions presented in this paper are the

following:

I) We are showing that an object detector inadvertently

works with information relevant to the viewpoint from

which the object is observed. Even an unmodified detector

can be used for pose regression. Besides, we are showing

that a slight modification of the training criteria (selection

of split functions in the decision tree) can considerably im-
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Figure 2: Our detector accumulates classification response

Ht for a sample x. Last TR trees, marked by blue color, ad-

ditionally accumulate pose estimation response P t. If the

sample is classified as positive, the object pose can be re-

trieved from P(x).

prove the pose estimation results, while keeping the detec-

tion performance. These observations lead to more efficient

vehicle pose estimation with object detection and may sti-

mulate further investigation of the information processed by

existing detectors.

II) We introduce a new dataset COD20k of cars observed

from various viewpoints (Section 3). Our new dataset co-

vers diverse viewpoints and contains 20,000 original car

instances with annotated 2D bounding box, viewpoint vec-

tor, and relative position on the projection plane.

III) We propose algorithmic modifications to the ACF de-

tector [6], which lead to considerably better detection per-

formance in the domain of vehicle detection. Our algo-

rithms are made public in the form of their Matlab source

code.

2. How Object Detectors Also Predict Pose

Our baseline detection model is a scanning window-

based soft cascade of boosted trees similar to Aggregated

Channel Features [6] (ACF). In principle, this solution is

based on the AdaBoost Cascade by Viola and Jones [30].

The detector sweeps over positions and scales of the input

image and classifies each window. Positive detections are

grouped by a non maxima suppression algorithm in order

to get final detections. We extend this model with boosted

multi-label regression in order to determine object pose dur-

ing detector evaluation, at virtually zero price.

Detector is a sequence of decision trees ti of depth d. The

total length of the detector is TD (Figure 2). Interior nodes

contain a binary split function routing samples to left or

right, and each leaf l contains classification response hi
l and

pose regression map pil . Regression maps are stored only

in the last TR trees and they contain all zeros for the trees

at the beginning of the detector. The detector also stores a

matrix V ∈ R
3×K , V = [V1, V2, . . . , VK ], where each Vi

is a unit column vector representing a viewpoint and corre-

sponding to one bin in the regression map. Viewpoints Vi

are chosen arbitrarily and depend on the task. For exam-

ple, if we want to predict one out of 64 view angles around
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Figure 3: Pose estimation on a sample begins with p0 (left)

and proceeds with accumulation of TR regression maps

pi(x) (center), resulting in predicted pose vector P(x).
True pose vector v is shown on the right side for compari-

son.

the object, K = 64 and viewpoint vectors Vi are uniformly

distributed across the azimuth.

Given a sample x, each tree in the detector responds with

ti(x) = (hi(x), pi(x)), where hi(x) = hi
l and pi(x) = pil

and l is the leaf where sample x is routed to. The whole

detector responds with a tuple D(x) = (H(x),P(x)) =
(HTD (x), PTD (x)) by accumulating partial responses from

all the trees (1).

Ht(x) =
∑t

i=1
hi(x)

P t(x) = p0 +
∑t

i=1
pi(x)

(1)

Evaluation of hi and pi is done simultaneously as the va-

lues are stored in leafs of a common tree ti. This means

that the model solves sample classification and object pose

estimation simultaneously.

Our detector is a soft-cascade and therefore each detec-

tor stage is assigned a threshold θi which terminates detec-

tor evaluation if Hi(x) < θi. This threshold can be cal-

culated during training or set up by using a validation set.

Early stages reject a vast majority of background samples

(non-objects) and for a sample to be recognized as the ob-

ject of interest, it must proceed through the whole cascade.

For this reason, the regression maps are stored only for later

stages of the cascade. Figure 6c shows how the number of

regression stages TR (always placed at the end of the cas-

cade) influences the pose estimation error. Otherwise, the

algorithm follows standards of scanning window detectors

[30, 6]: the scanning windows are scanning a pyramid rep-

resentation of the image with 8 steps per scale octave. For

each scale in the pyramid, it extracts channel features: pixel

intensity, gradient magnitude and 6 bins of gradient orien-

tations. Detailed analysis of feature channels pyramid can

be found in [35]. Candidate locations that passed the whole

cascade are processed by a non-maxima suppression algo-

rithm, keeping only the location with maximal responses.

The only computations added above the standard detec-

tor evaluation is the accumulation of P(x) during the final

stages of the detector. This is done sparsely due to soft-

cascade nature of the detector and thus the effect on com-

putation time is negligible.

Each item of the final pose response P(x) corresponds to

V1
vA

vB

vA

vB

Vi γ = 0.1
γ = 0.2
γ = 0.4

Figure 4: Examples of pose vectors v. Value of i-th item of

v corresponds to the similarity of the viewpoint vector v to

Vi, Equation (2).

a column in the matrix V. The predicted view is Vj where

j is the index of maximal item from P(x), or the values can

be interpolated and sub-pixel search for continuous pose es-

timation applied. Figure 3 shows the evolution of P t(x) for

a random sample.

Detector training starts with a set of labeled training

samples X = {(x, y, v)j}, where x ∈ R
M×N×C is a C-

channel image feature matrix, y ∈ {−1,+1} is class label,

and v ∈ R
3 is an object viewpoint represented as a unit vec-

tor v = [x, y, z]′ (a′ stands for transposed vector, we reserve

a
T for indexing). Viewpoints vj of samples are transformed

to pose vectors vj ∈ R
K , where each i-th item represents

the similarity between v and Vi. In our experiments, we use

Gaussian function (2) as the similarity measure, where V is

the matrix with viewpoints (see above), and γ is a param-

eter controlling the size of Gaussian smoothing, illustrated

in Figure 4.

vj = exp

(

−1

2

(
acos(v′j ·V)

γ

)2
)

(2)

We found out that the pose estimation error is not sensitive

to setting the value γ when set to reasonable values, see

Figure 6b. In our experiments, we use γ = 0.2. When view

vector v is not defined (e.g. negative training samples), the

similarity pose vector is set to v = 0.

Detector D is then a sequence of TD decision trees

trained with the Real AdaBoost algorithm [30]. During the

training, the dataset is bootstrapped from a large pool of

negative samples, low scoring samples are dropped and re-

placed by hard examples. Once all the stages are found,

each of them is assigned with an early termination thre-

shold calculated so that the detector produces a low num-

ber of false alarms while keeping a (pre-configured) high

detection rate.

Each tree is trained according to the Random Forest

framework [3]. Training of a tree t starts with the root

node which is assigned training samples Xn. Many random

splits which divide Xn to subsets XL
n and XR

n are gener-

ated. The split which minimizes the error measure (3) is

selected for the node. Child nodes are trained recursively
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Figure 5: Example of pose estimation of a sample xj . Left

column shows initialization value p0 and contributions of

leafs. Central column shows evolution of pseudo-residual

vj during training. And right column shows the true values

of pose vector vj (top), and evolution of response P (xj)
(bottom). See how the values of vi

j are minimized as the

predicted P gets closer to vj .

on the split training sets. The training stops when a maxi-

mal depth is reached or the number of training samples falls

below a threshold. Then, the prediction model in leaf nodes

is trained.

I(Xn) =
∑

i∈{L,R}

Xi
n

Xn

E(Xi
n) (3)

For detector training, we use classification criterion

Ec(X) = 2
√
W+W−, where W+ and W− are sums of

normalized sample weights with y = +1, y = −1, respec-

tively, in the set X . The weight of a sample is defined ac-

cording to AdaBoost as wj = exp(−yjH
t(xj)). Addition-

ally, we define a regression criterion

Er(X) =
∑

vj∈X

(vj − v̄)
2
, v̄ =

1

|X|
∑

vj∈X

vj , (4)

which is used for the last TR stages of the detector. This

minimizes the pose residual error of pose vectors v in split

nodes, enforcing better regression and pose estimation. We

demonstrate the effect of TR in Figure 6c. We also explored

the linear combination of Er and Ec, evaluated in Figure 7.

It shows that both Er and Ec give good results in terms

of regression. However, Er converges more rapidly and it

yields low errors with just 16 regressors.

Training leaf nodes. Each leaf l of tree ti contains a tu-

ple with detector response and pose regression map (hi
l, p

i
l).

The value of h is trained according to standard AdaBoost

formula h = 1

2
log W+

W−
from normalized sample weights

reaching the node.

Training of p is done by the Gradient Boosting Trees [10]

approach (Figure 5). Let Xp be a set of all positive training
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Figure 6: Setting of pose estimation parameters (default in

yellow) on COD20K dataset. We measured median error

of pose estimation (azimuth and elevation) for: (a) differ-

ent number of pose bins K, (b) gaussian smoothing γ, (c)

number of stages TR, and (d) depth of trees d. (e) and (f)

shows the linear complexity of pose estimation per sample.

Results on other datasets show similar trends.
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Figure 7: Median (left) and mean (right) errors of regres-

sion when using linear combination of Er and Ec as a split

selection criterion (λ is the mixing factor). λ = 0 corre-

sponds to pure Er and λ = 1 to Ec. For 128 regressors,

the errors are approximately equivalent with the mean error

slightly in favor of Er.

samples (i.e. with y = +1). We define the initialization

map (5) simply as the mean over all pose vectors in Xp.

p0 =
1

|Xp|
∑

vj∈Xp

vj . (5)

For each stage i, we keep pseudo-residual vectors v
i
j .

Initialization values are set to v
1
j = vj − p0. The pose

regression map in leaf l is trained from samples Xl reaching

the leaf as

pil = α
1

|Xl|
∑

vj∈Xl

v
i
j , (6)

where α is a constant learning rate (we use α = 0.5). Fi-

nally, pseudo-residuals are updated before the next stage

with

v
i+1

j = v
i
j − pil, vj ∈ Xl. (7)

This way, the later stages correct errors (captured by

pseudo-residual values) caused by prior stages.
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3. COD20k: New Omnidirectional Car Dataset

There is a number of datasets that were previously used

for training car detectors. The oldest ones are perhaps MIT

Cars [24] and UIUC [1]. These datasets contain a few hun-

dreds of low resolution cars captured from rear/front (MIT)

and side (UIUC) views. A popular dataset PASCAL VOC

[9] contains several thousand cars (and other object cate-

gories) captured from street level without 3D annotation,

which is available in PASCAL 3D+ [33]. Other available

car datasets are TME dataset [5], TU Graz [22], and EPFL

cross [16]. Datasets that contain viewpoint annotations are

WCVP [13], 3D objects [28], KITTI [11], and EPFL [23].

Most of these datasets contain only a small number of in-

stances for training scanning window detectors, or lack re-

liable viewpoint annotations.

We propose a new dataset COD20k1 containing total of

19,126 car instances in 9,530 training images, and 4,457

cars in 1,127 testing images. Cars are captured from di-

verse views (in highway surveillance scenario), see Fig-

ure 8. Each car instance is annotated with a 2D bounding

box and a viewpoint vector.

3.1. Dataset Collection and its Properties

We used a set of videos provided by [8]. Each video was

captured by a static camera and automatically calibrated to

get camera position and rotation relative to the road and

its focal length. From each video, we extracted images

40 video frames apart and generated annotations for mov-

ing vehicles (using background subtraction). Frames from

the beginning of videos are part of the training data, frames

from the end are part of testing data. All annotations were

manually filtered and corrected to get tight bounding boxes

for all cars. For each bounding box, we calculated the 3D

viewpoint vector (the difference vector between camera po-

sition and car position) using known camera calibration. We

also store the normalized car position in the image plane rel-

ative to the camera principal point.

Due to the surveillance character of our data, the sizes

of annotated cars are quite small (Figure 9a), and the view-

points are concentrated around rear/front views (Figures 9b,

9c). Mean width and height are 63 resp. 46 pixels, and me-

dian width and height are 52 resp. 38 pixels. In total, there

are 2,868 car instances whose width is greater than 100 pix-

els.

4. Experimental Results

We experimented on the COD20k, KITTI, WCVP, and

3D Objects datasets – see Figure 13 for examples of detec-

tions. Unless specified otherwise, the settings for experi-

ments were the following. The feature channels included

1Data and code can be downloaded from www.fit.vutbr.cz/research/

groups/graph/PoseEstimation

Figure 8: Distribution of viewpoints in the COD20k dataset,

and examples of cars captured from two distinct views. The

distribution of the vehicles viewpoints is not uniform, be-

cause of surveillance characteristics of the videos.
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Figure 9: Distribution of annotated sample sizes and view-

point directions in the dataset.

image intensity, gradient magnitude, 6 gradient orientation

channels (C = 8). The cascades are TD = 1024 stages

long, the depth of trees is d = 2, except for the ‘regres-

sion stages’, where d = 4. The experiments report results

for two detectors: Our A is only trained with the Ec crite-

rion, meaning that it is a more-or-less standard ACF detec-

tor, with the later stages equipped with the regression maps,

but otherwise trained normally for detection. Our B is an

improved detector with Er criterion used for the last TR

stages (TR = 128 in all experiments).

4.1. Results on the COD20k Dataset

For all experiments on this dataset we used K =
1024 with vector V distributed uniformly across azimuth

(32 bins) and elevation (32 bins). Detected objects were

matched to the ground truth using Pascal criteria. Pose es-

timation error was evaluated for all true positive detections

as the angular difference of the estimated viewpoint vector

from the ground truth vector.

We were curious about the answers to the following

questions: i) Can we add regression maps to an already

trained detector? ii) Does the regression criterion Er re-

ally improve pose estimation performance, and how does

it affect detection? iii) Is the ‘regression tail’ trained with

the Er criterion a mere pose estimator, or does it improve
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detection as well?

Figure 10 gives the answers to these questions. The

baseline detector (magenta) yields reasonable regression

performance, although it is a standard ACF detector with-

out any modifications, only equipped with regression maps

in the leaves. The answer to question i) is therefore yes, the

simple piggybacking is possible and useful. The measure-

ments also answer positively question ii) by showing that

the Er regression criterion improves pose estimation, while

sticking to Ec maximizes the detection performance, result-

ing in slightly worse pose estimation. Finally, the answer to

question iii) is positive for the proposed piggybacking: the

‘regression tail’ still improves the detection rate consider-

ably (yellow line clearly outperforms blue dashed line in

detection).

Recall
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Figure 10: Results on COD20k dataset. top: PRC of the

detectors with average precision, bottom: cumulative his-

togram of angular error. blue dashed: TD = 896, d = 2
detector without the ‘regression tail’ – short detector. ma-

genta: TD = 1024, d = 2 – standard full length detector,

with TR = 128 last stages with regression maps – baseline.

red: same as magenta; d = 4 for the last TR stages – Our A

detector. yellow: same as red; Er criterion for the last TR

stages – Our B detector.

4.2. Results on the WCVP Dataset

Wiezman Cars dataset [13] contains 1,530 images of 22

distinct cars, each taken from multiple (mostly eye-level)

viewpoints around the car. The data are separated to 3 fixed

folds, each with approximately 2/3 of the cars for training

and the rest for testing.

We trained the two detectors Our A and Our B with

K = 32, and with viewpoints V distributed uniformly

across the azimuth. We follow the evaluation from previ-

Error in azimuth [°]
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Our B

Glasner

Figure 11: Histogram of the angular errors in azimuth esti-

mation on WCVP dataset. Our detector exhibits more pre-

cise estimations compared to [13]. Dotted lines mark 5°,

10°, and 20° margins.

Method [13] [36] [20] [27] Our A Our B
Med. Error [°] 12.3 23.2 7.6/8.4 7 9.1 8.6

AP [%] - - - 79 87 87

Table 1: Median error in azimuth estimation and average

precision (AP) of detection on WCVP dataset. Methods

[13, 36, 20] used 3D models.

ous works [13, 36, 20, 27] and report the median error in

azimuth estimation (Table 1) and the histogram of errors

(Figure 11).

Our method is comparable to state of the art methods

[20, 27]. The average speed of detection and pose es-

timation was 83 ms on this dataset (single core, 3 GHz).

Movshovitz et al. [20] use a large set of 40 view-tuned

correlation filters trained from 3D CAD models. We beat

the other two methods. Glasner [13] create 3D point cloud

from a set of 2D images and uses it for training a 6D vot-

ing model (for position and viewpoint). Yoruk [36] created

a wireframe model from 2D blueprints and fit the model to

the input image so that the edges of the model match the

image. Redondo-Cabrera et al. [27] use probabilistic vo-

ting similar to Hough Forests in the position-pose space to

detect cars.

4.3. Results on the 3D Objects Dataset

In 3D Objects [28], there are 8 object categories, each

with 10 individual object instances under 8 viewing angles,

3 heights and 3 scales. The azimuth estimation is actually

an 8-class classification problem (in our notation K = 8).

We report results for the ‘car’ category which contains 480

images.

We follow the evaluation strategy of [18, 29] and use 4-

fold cross validation. In each fold, we randomly selected

7 instances for training and the rest for testing. We report

average precision (AP) of detection and Mean precision of

pose estimation (MPPE), Table 2. This table also compares

the processing speed of the discussed algorithms – row RT

stands for real-time. Most of the works do not report pro-

cessing speed, their assessment is therefore estimated from

similar works and the algorithm’s principle. The question
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2D [26] [25] [19] [12] [27] [15] Our A Our B

AP 100 – 96 88 89 98 95 95
MPPE 98 86 89 98 90 88 82 88

RT ✗ ✗ ✗ ✗ ✗? ✗? ✓ ✓

3D [18] [29] [13] [34] [36] [37] [26] [26]
AP 77 81 99 98 93 97 99 100

MPPE 70 81 85 93 73 97 98 98
RT ✗? ✗? ✗ ✗ ✗ ✗ ✗ ✗

Table 2: Results for ‘car’ category in 3D Objects dataset.

Values of AP and MPPE are given in %. RT stands for abil-

ity to process images in real time (within 1s). Our method

is comparable to other results and is fastest of them all.
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Figure 12: Confusion matrix of view angle estimation on

“car” category from 3D Objects dataset for detector Our B.

marks in this row indicate our uncertainty about the state-

ment. We also show the confusion matrix for viewpoint

classification, Figure 12.

The most accurate state-of-the-art work of Pepik

et al. [26] extends the Deformable Part Model with 3D in-

formation to capture the structure of detected objects. This

kind of model usually takes several seconds per image on

contemporary hardware.

To our knowledge, we propose the first reportedly real-

time solution – on 3D Objects we achieve 48 ms average

time per image (single thread, 3 GHz, i5) to the problem of

coupled detection and pose estimation for vehicles. At the

same time, our detection rates and pose estimation accu-

racy beats several of the reference works. Our solution also

does not rely on any outside knowledge (e.g. 3D model, 2D

blueprints) and is only trained on the given dataset. It should

be noted that the amount of samples in the dataset (480 in

total) is not perfectly sufficient for training a method such

as ours. This is one of the reasons for collecting the new

COD20k dataset which provides sufficient training data.

4.4. Results on the KITTI Dataset

The KITTI dataset [11] contains 7,481 training images

and 7,518 test images taken by an on-board camera from

a vehicle in urban environment. Images are high resolu-

AP [%] AOS [%] TIME [s] (Cores)
method easy moder. easy moder.

[6] 55.9 54.7 - - < 0.2 s (1)
[32] 87.5 75.8 86.9 74.6 40 s (8)
[21] 84.1 75.7 80.9 64.9 0.7 s (6)
[26] 74.9 64.7 72.3 61.8 8 s (1)
[17] 84.4 71.9 43.8 38.2 3 s (4)

Our B 61.5 52.9 58.6 50.7 < 1.0 s (1)

Table 3: AP and AOS (average orientation similarity) for

KITTI dataset. Our method is comparable to ACF detec-

tor (reported by other researches), and our pose estimation

beats the work of Li et al. [17].

tion 1242×375 pixels. Annotations include passenger cars,

vans, trucks, cyclists, and people, and it additionally spec-

ifies information about object occlusion, truncation, view-

point and 3D bounding box of objects. We trained only the

Our B version of the detector: K = 64, Er criterion, vec-

tors V distributed uniformly across azimuth.

Evaluation on KITTI requires precise detection of object

bounding box (overlap with ground truth > 0.7). We use

only one rigid model with fixed aspect ratio to detect cars

with arbitrary orientation, and for this reason we correct the

aspect ratio of our detections according to the estimated az-

imuth with a correction function trained on the training data.

Table 3 reports the results generated by the automated

testing procedure available online, and compares them to

alternatives (see KITTI web page for more results). It is not

a surprise that our method is comparable to ACF which was

reported by other researchers. At the same time, we beat

the work of Li et al. [17] in pose estimation performance.

We report detection time for moderate setting which require

the detection of objects as small as 25 pixels in height, and

therefore we need to scan a large number of candidate posi-

tions. The average processing time for the easy setting was

200 ms (single thread, i5, 3GHz).

5. Conclusions

We propose genuinely interleaved vehicle detection and

pose estimation. Our solution is simple – slightly modifying

the ACF detector – and very fast: the pose estimation over-

head is negligible. It is meant and suitable for traffic surveil-

lance systems operating in real time. Our algorithm seems

to be the first real-time solution of vehicle viewpoint/pose

estimation with results comparable to the state-of-the-art

works relying on complex external knowledge (3D CAD

models, specially rendered datasets, etc.), and are far from

being usable in surveillance (reported times up to 30s per

frame).

We are showing that a part of the detection cascade can

be used for both purposes: detection and pose estimation, at

the same time. Our experiments verify that the regression
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Figure 13: Examples of successful detections and pose estimations. In all images, ground truth is marked by blue rectangles,

and our detections by green ones. Row 1: COD20k. Pose estimation in both, azimuth and elevation. We show a visualization

of the predicted orthogonal basis. Row 2: 3D Objects. Row 2: WCVP dataset. Row 4: KITTI dataset, dashed line – original

detection with fixed aspect ratio, solid line – adjusted detection.

Figure 14: Examples of wrong detections or pose estimations. These cases include: missed detections due to wrongly

adjusted bounding box caused by bad viewpoint estimation; missed detections of objects outside image boundary; and bad

viewpoint caused by opposite view similarity.

part is not “run after detection” but contributes to detec-

tion performance considerably and a designer of the surveil-

lance system can arbitrarily control the trade-off between

these two factors and also the factor of speed (length of the

cascade, depth of the decision trees involved). In order to

support the research in omnidirectional vehicle detection,

we collected a dataset of 20k samples with annotated view-

point direction. This dataset, along with the source codes

of the detector and its training are made public for further

development and evaluation.
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