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Abstract

Pan-sharpening is the task of fusing spectral informa-

tion in low resolution multispectral images with spatial in-

formation in a corresponding high resolution panchromatic

image. In such approaches, there is a trade-off between

spectral and spatial quality, as well as computational ef-

ficiency. We present a method for pan-sharpening in which

a sparsity-promoting objective function preserves both spa-

tial and spectral content, and is efficient to optimize. Our

objective incorporates the ℓ1/2-norm in a way that can

leverage recent computationally efficient methods, and ℓ1
for which the alternating direction method of multipliers

can be used. Additionally, our objective penalizes image

gradients to enforce high resolution fidelity, and exploits

the Fourier domain for further computational efficiency. Vi-

sual quality metrics demonstrate that our proposed objec-

tive function can achieve higher spatial and spectral reso-

lution than several previous well-known methods with com-

petitive computational efficiency.

1. Introduction

Multispectral (MS) data provided by satellite optical sen-

sors are useful for many practical applications such as en-

vironmental monitoring, object positioning and classifica-

tion. Because of physical constraints, most remote sen-

sors measure a panchromatic (PAN) image (i.e., gray-scale

image) that is high-resolution, and several low resolution

multispectral (LRMS) images containing information about

RGB colors and the non-visible spectrum. Pan-sharpening

is the problem of fusing this low resolution spectral infor-

mation with the spatial structure in the PAN image to output

an approximation of the unmeasured high resolution multi-

spectral (HRMS) images [2]. The trade-offs encountered by

such methods are spectral versus structural preservation, as

well as computational efficiency.

Various pan-sharpening methods have been developed,

the most common being based on a projection-substitution

approach where the PAN image is assumed to be equivalent

to a linear combination of the HRMS images [18]. Many

of these methods are appealing for their straightforward im-

plementation and fast computation [23, 21, 12], but exhibit

spectral distortion as a trade-off [29].

To address the spectral distortion problem, methods

based on the concept of Amélioration de la Résolution Spa-

tiale par Injection de Structures (ARSIS) have been pro-

posed [22, 19, 20], in which multi-resolution tools such as

wavelets and Laplacian pyramids are used to extract de-

tails from the PAN image and inject them into the MS im-

ages. A suite of model-based fusion methods have also been

proposed to address the spectral distortion issue. These

methods treat the fusion problem as an image restora-

tion model, with several additional regularization schemes

[25, 4, 11, 7, 3]. Another model-based line of work has

considered dictionary learning [18, 9, 15], which requires

substantial computational resources.

Pan-sharpening methods often use the ℓ2-norm to en-

force spatial resolution, or switch to ℓ1 when sparsity is de-

sired. When used to penalize image gradients, it has been

shown that according to empirical image statistics, such

Gaussian (ℓ2) or Laplacian (ℓ1) assumptions are not as ap-

propriate as hyper-Laplacian assumptions [17], which cor-

respond to ℓp-norms with 0 < p < 1. Nevertheless, as with

a variety of signal processing applications, ℓ1 is often used

as the closest convex relaxation of the sparser non-convex

ℓp norms, with compressed sensing being a prominent ex-

ample. Indeed, in the compressed sensing problem it has

been shown that the ℓ1 convex relaxation often shares the

same solution with the desired ℓ0 norm [10].

In this paper we consider the hyper-Laplacian penalty

for the pan-sharpening problem as part of a larger objec-

tive function. We apply the ℓ1/2 penalty on the gradients of

the reconstruction error to enforce structural preservation.

Using a recently developed efficient learning algorithm for

ℓp penalties when p = 1/2 [17], we demonstrate that the

statistically more appropriate hyper-Laplacian penalty does

indeed translate to an improvement in performance for pan-

sharpening. In other words, though the solutions are only

locally optimal, they are consistently better than the global

optimal solutions afforded by a less statistically appropriate

convex ℓ1 penalty.
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Figure 1. Examples from 208 images used in our experiments.

We formulate our objective function to consider the fol-

lowing aspects:

1. Spectral preservation using the assumption that the

LRMS images are decimated from the HRMS images

by convolution with a blurring kernel.

2. Structural preservation by using an ℓ1/2-norm on the

gradient of the error between the PAN image and a lin-

ear combination of the HRMS reconstructions. Addi-

tionally, we use anisotropic total variation as a penalty

on the reconstructed HRMS images.

We define our objective function in Section 2. In Section 3,

we show how the alternating direction method of multipliers

(ADMM) [5, 13], Fourier transform, and closed form ℓ1/2
algorithm allow for efficient local optimization of our non-

convex problem. We then demonstrate the superior perfor-

mance of the ℓ1/2-norm in the context of pan-sharpening,

as well as the importance of the other components of our

objective function on a large set of MS images in Section 4.

2. Pan-sharpening with sparse gradients

Images obtained by remote sensors contain both a

high resolution panchromatic (PAN) image (i.e., black and

white) and low resolution multispectral (LRMS) images

consisting of B spectral bands (for example, red, green,

blue and a near infrared, in which case B = 4). Pan-

sharpening aims to obtain HRMS images by fusing the PAN

image with the LRMS images. This is generally an ill-posed

problem, and so further constraints are necessary on the de-

sired properties of the reconstructed HRMS images.

We view the LRMS images as decimated version of the

desired HRMS images with additive noise. Let the deci-

mated image of each spectral band be M×N in size and the
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Figure 2. Magnitude of (blue and red) anisotropic TV directional

coefficients and (black) isotropic TV coefficients in decreasing or-

der for the image in Figure 4.

desired high resolution version be, e.g., 4M × 4N , giving

a size reduction ratio of 16:1 (as in our experiments). For

notation, we vectorize these images, letting yb ∈ R
16MN

correspond to LRMS image at band b, xb ∈ R
16MN the

corresponding unknown HRMS image, and yP ∈ R
16MN

the measured PAN image. The objective function we define

for learning the set {xb} is of the general form

L = f ({xb}, {yb}, yP ) + λ

B∑

b=1

‖xb‖aTV . (1)

The function f({xb}, {yb}, yP ) is a data fidelity term that

we define in Section 2.1 with the goal of spectral and spatial

preservation and computational efficiency.

The anisotropic total variation term ‖xb‖aTV is often

used to encourage a low-noise reconstruction that doesn’t

penalize high frequency edge information; λ > 0 is the cor-

responding regularization parameter that controls the trade-

off with f . Using the vectorized notation, the anisotropic

TV is written

‖x‖aTV =
∑

i

‖Dix‖1 (2)

where Di is a 2×16MN matrix that has two nonzero entries

in each row corresponding to finite difference in the vertical

and horizontal directions, and the summation ranges over

the pixel indexes.

We use anisotropic TV instead of isotropic TV since

it tends to perform better [6]. Furthermore, the sparsity

with anisotropic TV is greater, which is better for focus-

ing on image edges [14]. Figure 2 presents a comparison

of the sparsity along the two dimensions of Dix (denoted

Dh
i x and Dh

i x) and the isotropic TV measure on one image

used in our experiments (shown in Figure 4). As is evi-

dent, anisotropic TV is significantly more sparse than the

isotropic TV, which leads to a reduction in the resolution of

the LRMS images necessary to achieve comparable perfor-

mance.

2.1. The data fidelity term

The function f in Equation (1) enforces the consistency

of the reconstructed xb to the measured data yb and yP . We
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Figure 3. Fitting curves to empirical image gradient data. (ma-

genta) The empirical gradient data, (red) fitting a Gaussian (ℓ2)

penalty, (green) a Laplacian (ℓ1) penalty and (blue) a hyper-

Laplacian (ℓp) penalty with p = 1/2. As is evident and motivated

in [17], the gradients of image data require a sparse penalty, but

one with a heavier tail than ℓ1.

break this into the sum of two terms, f = v1
2
f1 + v2

2
f2,

intended to preserve the spectral and spatial information in

yb and yP respectively.

2.1.1 Spectral preservation

We define the spectral penalty term to be

f1({xb}, {yb}) =
∑B

b=1
‖k ∗ xb − yb‖

2

2
. (3)

This requires the LRMS image yb be approximately a dec-

imated version of HRMS image xb via convolution with a

blurring kernel k. This preserves the spectral information

in the observed LRMS images. For k, [18] uses an averag-

ing kernel while [16, 24] estimate k on a per-satellite basis.

We use the first in our experiments, but note that both gave

comparable results.

2.1.2 Structural preservation

For the structure-preserving portion of f , we define

f2({xb}, yP ) =
∑

i ‖Gi(
∑B

b=1
ωbxb − yP )‖1/2. (4)

The weight vector ω represents the PAN image as an aver-

age of the HRMS images. The matrix Gi denotes a differ-

ential operator along the horizonal, vertical and two diago-

nal directions, which we will show has advantages over the

two-directional gradient. This term enforces structural con-

sistency between the PAN image and the linear combination

of HRMS reconstructions. The corresponding term in other

algorithms often use a squared error penalty, which can lead

to spectral distortion [2].

It has been observed that the gradient of real-world im-

ages is better fit by a heavy-tailed distribution such as a

hyper-Laplacian (which has density p(x) ∝ e−κ|x|p , 0 <
p < 1 ) [17]. To test this, we collected 208 PAN images

with known HRMS images and rescaled these images to 0-

255 (examples shown in Figure 1). For each, we fit various

distributions to the histogram of Gi(
∑

b ωbxb−yP ); specif-

ically a Gaussian (ℓ2), Laplacian (ℓ1) and hyper-Laplacian

with p = 1/2 (ℓ1/2). As shown in Figure 3 on three typical

examples, the hyper-Laplacian fits these residuals the best.

We therefore believe that the ℓ1/2-norm is more reasonable

than the ℓ2-norm [3] or ℓ1-norm [7] for the structural fidelity

term. We also compare their performance in Section 4.

3. Optimization

We want to minimize the following objective function

with respect to the HRMS images xb for each spectral band,

L = λ
2

∑B
b=1

∑

i ‖Dixb‖1 + (5)

v2
2

∑

i

∥
∥
∥Gi

(∑

b

ωbxb − yP

)∥
∥
∥
1/2

︸ ︷︷ ︸

structural preservation

+
v1
2

B∑

b=1

‖k ∗ xb − yb‖
2

2

︸ ︷︷ ︸

spectral preservation

.

The motivation for these terms was discussed in the pre-

vious section. We next discuss an algorithm for finding a

local mininum of this non-convex objective function. For

fast closed form updates, our strategy uses ADMM [5] sep-

arately on the ℓ1 and ℓ1/2 terms, which modifies this objec-

tive function by adding augmented Lagrangian terms.

3.1. Augmented Lagrangian form

We split both the structural fidelity terms and the

anisotropic TV coefficients for the ith pixel by defining

αi := Gi(
∑

bωbxb − yP ), βi,b := Dixb, (6)

respectively, and then relaxing the equality via an aug-

mented Lagrangian. Following an intermediate step, this

results in the following objective function,

L = v1
2

∑

b ‖k ∗ xb − yb‖
2

2
+ v2

2

∑

i ‖αi‖1/2 (7)

+η
2

∑

i ‖Gi(
∑

b ωbxb − yP )− αi + ei‖
2

2

+ρ
2

∑

i,b ‖Dixb − βi,b + ui,b‖
2

2
+ λ

2

∑

i,b ‖βi,b‖1.

+ const.

By the ADMM theory, optimizing this augmented objec-

tive using the algorithm in Section 3.2 will find a local op-

timal solution in which the equality constraints in Equation
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Algorithm 1 Outline of optimizing L in (7)

Iterate the following three sub-problems to convergence

Output HRMS images xb for each band

(P1) Sec. 3.2.1: Optimize each βi,b (total variation)

(P2) Sec. 3.2.2: Optimize each αi (hyper-Laplacian)

(P3) Sec. 3.2.3: Optimize each xb (reconstruction)

(6) are satisfied [5]. Optimizing Equation (7) reduces to it-

erating between three sub-problems that can be optimized

individually using the most recent solutions from the other

sub-problems. We sketch these three sub-problems in Al-

gorithm 1 and present their respective updates below.

3.2. Algorithm

3.2.1 Update for P1: Total variation

We solve for each βi for each pixel using the generalized

shrinkage operation, followed by an update of the Lagrange

multiplier [13],

βi,b = max{‖Dixb + ui,b‖2 − λ/ρ, 0} ·
Dixb + ui,b

‖Dixb + ui,b‖2

ui,b ← ui,b +Dixb − βi,b. (8)

Recall that βi,b corresponds to the 2-dimensional TV co-

efficients for pixel i in band b, with differences in one di-

rection vertically and horizontally. These coefficients have

been been split from Dixb using ADMM, but converge to

one another as the algorithm iterates [5].

3.2.2 Update for P2: Hyper-Laplacian

As detailed in [17], we can optimize the four-dimensional

αi element-wise in closed form by first solving for the roots

of the cubic polynomial. The general form of this polyno-

mial is

α3 − 2α2(v + e) + α(v + e)2 −
sign(v + e)

(4η/v2)2
= 0, (9)

where we let v := G(
∑

b ωbxb − yp). In this equation, α,

e and v are each indexed by subscripts i to indicate the ith
pixel, and also d = 1, . . . , 4 to indicate the direction of the

derivative in the corresponding rows of G; there are thus

four independent problems to solve, one for each dimen-

sion. For each problem, there are three roots and the best

one can be selected quickly by following the discussion in

[17]. After updating the dimensions of αi, we update the

Lagrange multiplier vector

ei ← ei +Gi(
∑

bωbxb − yP )− αi. (10)

Recall that αi is split from Gi(
∑

b ωbxb− yp) and from the

ADMM theory the two will converge to each other as the

algorithm iterates.

3.2.3 Update for P3: Reconstruction

In the final sub-problem, we reconstruct the HRMS image

xb for each spectral band by solving the corresponding least

squares problem efficiently in the Fourier domain. Below,

we define K to be the 16MN × 16MN matrix form of the

blurring kernel k constructed from its point spread function.

The matrices G, D and vectors α, βb, e and ub are also

defined by stacking their respective pixel-level components.

Differentiating the objective in (7) with respect to xb results

in the normal equations for the solution of xb,

(

v1K
TK + ηω2

bG
TG+ ρDTD

)

xb = v1K
T yb + (11)

ηωbG
T
(

G(
∑

i 6=b ωixi − yP ) + α− e
)

+ ρDT (βb − ub)

We need to solve for xb, but direct calculation is prohibited

by the size of the left matrices. However, because these

matrices are circulant we can solve for xb in the Fourier

domain [13]. We let θb = Fxb be the Fourier transform

of xb, replace xb with FT θb and take the Fourier transform

of each side of Equation (11). The circulant property of

KTK, GTG and DTD means they share the Fourier matrix

F as eigenvectors and have unique eigenvalues, Λ1, Λ2 and

Λ3 respectively. As a result, we can transform Equation

(11) into solving 16MN one-dimensional problems in the

Fourier domain for each band. Let ξb be the right-hand side

of Equation (11). Then

θi,b = (Fiξb)/(v1Λ1,i + ηw2

bΛ2,i + ρΛ3,i), (12)

where Fi is the ith Fourier basis function. We then invert

the 16MN -dimensional vector θb via the inverse Fourier

transform to obtain the reconstruction xb. The FFT can per-

form both of these computations very quickly.

4. Experiments

We perform several experiments with our proposed pan-

sharpening objective function and compare with several

current methods. We also demonstrate the value of each

part of our objective by comparing with several variations

on our proposed method. All experiments were performed

on a PC with two Intel CPUs (3.60GHz), 16GB RAM and

64-bit Windows-7 operating system, using Matlab R2012b

software. We used a 5 × 5 average blurring kernel for k
since we assume the scenario where we lack satellite statis-

tics. We consider problems with four spectral bands (RGB

and near IR), and set the weight parameter ωb = 0.25 for

each band.

4.1. Simulation

We first show results on experiments where we gener-

ate LRMS images from ground truth HRMS to evaluate the
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(a) LRMS (b) Pan (c) HRMS (d) Brovey (e) Wavelet (f) AIHS

(g) P+XS (h) GDF (i) BNDL (j) DGSF (k) Proposed

Figure 4. Comparisons of different methods on a QuickBird image (RGB shown, 256× 256)

(a) Brovey (b) Wavelet (c) AIHS (d) P+XS (e) GDF (f) BNDL (g) DGSF (h) Proposed

(i) Brovey (j) Wavelet (k) AIHS (l) P+XS (m) GDF (n) BNDL (o) DGSF (p) Proposed

Figure 5. The residual images of (top) the blue band and (bottom) the green band of Figure 4 (blue color indicates small differences and

red color large differences)

fusion results of our algorithm. In these experiments, we

manually degrade the high resolution PAN image (0.6m)

and MS images (2.4m) using a 3× 3 Gaussian low-pass fil-

ter and bicubic downsampling by four to yield a PAN image

with a resolution of 2.4m and MS images with resolution of

9.6m. We use the original 2.4m resolution MS images as

the HRMS images for reference as ground truth. We then

fuse the 9.6m LRMS images with the 2.4m PAN image and

compare the results with the ground truth.

A QuickBird image. For our first experiment, we use an

image from the QuickBird satellite. We compare the perfor-

mance with several classical methods: Brovey [12], Wavelet

[20], AIHS [21], P+XS [4], as well as some newly proposed

methods: Guidedfilter-based (GDF) [11], a Bayesian non-

parametric dictionary learning (BNDL) method [9] and Dy-

namic Gradient Sparsity (DGSF) [7]. To create a fair com-

parison, we tuned parameters of each approach to achieve

their own best results.

Figure 4 shows the fusion results and Figure 5 the residu-

als on the blue and green bands. We can see that Brovey suf-

fers color distortion although its edges are distinct. Wavelet

preserves spectral information well, though there are stair-

case effects and blurry edges. P+XS is more blurry than

other methods. GDF and DGSF show details clearly, but

their residuals appear worse.

In pan-sharpening spectral quality of the fused MS im-

ages is also very important, but is more difficult to judge vi-

sually. Therefore we quantitatively evaluate both the spatial

and spectral quality of our fusion results using the following

five standard quality metrics: relative dimensionless global

error in synthesis (ERGAS), spectral angle mapper (SAM)

[2], universal image quality index (QAVE) [26], relative av-

erage spectral error (RASE) [8] and correlation coefficient
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Table 1. Quality metrics of different methods on 208 satellite images.

Algorithm ERGAS SAM QAVE RASE CC RMSE FCC Q4

Brovey 19.60±7.57 7.00±1.63 0.57±0.09 50.1±12.1 0.93±0.02 0.137±0.040 0.97±0.01 0.63±0.09

Wavelet 7.71±1.52 8.70±2.06 0.66±0.11 31.0±7.0 0.92±0.03 0.078±0.013 0.92±0.02 0.72±0.06

AIHS 7.96±1.77 7.57±1.75 0.68±0.11 31.2±7.6 0.93±0.03 0.078±0.014 0.97±0.01 0.70±0.07

P+XS 8.18±2.01 10.61±3.08 0.65±0.12 30.4±6.7 0.93±0.03 0.077±0.015 0.96±0.01 0.73±0.07

GDF 7.06±1.43 8.64±2.46 0.69±0.11 28.8±7.1 0.93±0.02 0.072±0.013 0.97±0.01 0.75±0.08

BNDL 6.72±1.49 7.68±1.91 0.69±0.09 27.1±7.0 0.94±0.03 0.068±0.013 0.97±0.01 0.76±0.08

DGSF 6.72±1.39 7.27±1.87 0.72±0.11 26.9±6.6 0.94±0.02 0.067±0.013 0.96±0.02 0.77±0.08

Proposed 5.88±1.31 6.80±1.43 0.76±0.07 24.2±6.1 0.95±0.02 0.061±0.013 0.97±0.01 0.80±0.04

ideal value 0 0 1 0 1 0 1 1

(CC) [2]. We show these performance measures for this

QuickBird problem in Table 2. We highlight the best result

in bold and in the last row of the table indicate the target

value.

It can be seen that the proposed method (Prop) performs

very well compared with other methods. In addition, we

compare with several variations on our objective function:

Prop-1 uses
∑

b Gi(xb−yP ) instead of Gi(
∑

b ωbxb−yP )
in the structural fidelity term. Prop-ℓ1 and Prop-ℓ2 indicate

that we replace the ℓ1/2-norm with ℓ1 and ℓ2 respectively.

“Prop w/o G” indicates that Gi is replaced with the identity

matrix, meaning the penalty is directly on the reconstruction

error, not its gradient. We also consider replacing the Gi

with “G2i,” written as Prop-G2, in which we only consider

the horizontal and vertical directions of the gradient instead

of the four-directional gradient.

As is evident, the hyper-Laplacian penalty can improve

the pan-sharpened images compared with ℓ2 and ℓ1. While

ℓ1 is sparse as well, the ℓ1/2 penalty has heavy tails that bet-

ter characterizes empirical image statistics. Also evident in

these comparisons is that penalizing gradient information is

important, and considering gradients in more directions can

Table 2. Quality metrics corresponding to Figure 4

Algorithm ERGAS SAM QAVE RASE CC

Brovey 18.85 7.842 0.765 48.266 0.916

Wavelet 9.546 10.32 0.852 24.958 0.862

AIHS 7.531 7.969 0.903 20.111 0.898

P+XS 5.175 5.754 0.918 17.920 0.941

GDF 6.250 7.140 0.906 18.889 0.932

BNDL 5.568 6.254 0.930 15.902 0.941

DGSF 6.265 7.004 0.918 17.732 0.934

Prop 4.842 5.515 0.952 15.370 0.952

Prop-1 6.033 6.608 0.925 16.795 0.933

Prop-ℓ1 4.950 5.592 0.930 15.405 0.950

Prop-ℓ2 5.291 5.970 0.927 15.802 0.945

Prop w/o G 5.364 6.163 0.928 17.551 0.944

Prop-G2 5.008 5.682 0.930 15.430 0.950

ideal value 0 0 1 0 1

do better. We see an advantage of focusing on the high fre-

quency edge information in the PAN image. These results

on variations of our penalty are consistent with quantitative

evaluations on other images.

Large-scale evaluation. We also considered 208 satellite

images of sizes between 256 × 256 and 512 × 512, with

examples shown in Figure 1. These satellite datasets are

cropped from QuickBird, WorldView-2, WorldView-31 and

Pléiades2. They contain four bands (RGB and near IR) with

8-bit or 16-bit data format. The images capture many inter-

esting objects, such as urban roads, buildings, vegetation,

rivers, seaside, etc. We rescale these images to 0-1 before

processing. For evaluation, in addition to the metrics used

in Table 2, we use other well-known metrics: root mean

squared error (RMSE) [26], filtered correlation coefficients

(FCC) [28] and Q4 [27]. We tune the parameters for each

algorithm on a satellite-by-satellite basis, using the best val-

ues averaged across all images from a particular satellite.

We show the mean and standard deviation of each measure

across the 208 images in Table 1. Again we find that the

proposed method is competitive with the other methods.

4.2. Real data from IKONOS

We also experiment with real data acquired by the

IKONOS satellite3. We focus on four satellite images from

the Sichuan region of China. In this real-data setting there

are no HRMS images for reference, and so we use the down-

sampling/upsampling strategy described in [1] using bicu-

bic interpolation for quantitative evaluation.

We show quantitative performance measurements in Ta-

bles 3 to 6, where we compare with several methods:

Brovey [12], Wavelet [20], AIHS [21], P+XS [4], GDF [11],

BNDL [9], DGSF [7] and MBF [3]. We see that the pro-

posed method performs best on all experiments using the

measures ERGAS, RASE, CC. For two experiments, MBF

obtains the best result using the SAM and QAVE measures.

1http://www.digitalglobe.com/product-samples
2http://www.mapmart.com/Samples.aspx
3http://glcf.umd.edu/data/ikonos/
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Table 3. IKONOS China-Sichuan 58204-0000000.20001116

ERGAS SAM QAVE RASE CC

Brovey 11.25 5.271 0.749 32.82 0.874

Wavelet 3.945 6.084 0.846 16.76 0.891

AIHS 3.757 5.371 0.873 15.78 0.906

P+XS 5.729 8.487 0.830 20.53 0.881

GDF 3.970 6.005 0.852 17.05 0.898

BNDL 3.501 5.360 0.877 14.90 0.916

DGSF 3.689 5.631 0.867 15.84 0.906

MBF 3.737 4.119 0.901 14.76 0.904

Prop 3.425 5.093 0.883 14.51 0.917

Table 4. IKONOS China-Sichuan 58205-0000000.20001003

ERGAS SAM QAVE RASE CC

Brovey 3.850 3.737 0.910 15.49 0.785

Wavelet 3.512 4.952 0.903 13.67 0.835

AIHS 2.762 3.815 0.930 11.15 0.892

P+XS 4.100 5.229 0.897 17.46 0.797

GDF 2.946 4.234 0.919 15.57 0.888

BNDL 2.682 3.837 0.935 10.95 0.905

DGSF 3.025 4.145 0.931 12.39 0.882

MBF 2.737 3.421 0.934 10.86 0.912

Prop 2.464 3.381 0.938 10.36 0.922

Table 5. IKONOS China-Sichuan 58207-0000000.20000831

ERGAS SAM QAVE RASE CC

Brovey 4.221 4.049 0.886 19.57 0.836

Wavelet 3.635 5.134 0.879 14.12 0.852

AIHS 3.089 4.161 0.904 12.46 0.904

P+XS 3.421 4.322 0.900 14.58 0.880

GDF 3.218 4.509 0.899 12.92 0.886

BNDL 2.874 4.031 0.913 11.62 0.910

DGSF 3.006 4.141 0.913 11.77 0.901

MBF 3.242 4.288 0.888 12.39 0.888

Prop 2.838 3.833 0.914 11.42 0.912

Table 6. IKONOS China-Sichuan 58208-0000000.20001108

ERGAS SAM QAVE RASE CC

Brovey 9.130 5.536 0.727 28.50 0.895

Wavelet 4.473 6.601 0.787 18.75 0.899

AIHS 4.470 5.695 0.809 18.51 0.912

P+XS 7.090 11.69 0.724 29.33 0.881

GDF 4.422 6.404 0.783 18.99 0.904

BNDL 3.984 5.867 0.811 16.85 0.920

DGSF 4.010 5.958 0.804 16.94 0.919

MBF 4.814 5.173 0.819 18.43 0.885

Prop 3.909 5.682 0.809 16.36 0.921

ideal 0 0 1 0 1

(a) LRMS (b) PAN (c) Wavelet (d) AIHS

(e) Guided-filter (f) BNDL (g) MBF (h) Proposed

Figure 6. Pan-sharpening results for a zoomed-in (106×162) por-

tion of IKONOS China-Sichuan 58205-0000000.20001003.

For qualitative comparisons, we show visual results for

two satellite images in Figures 8 and 9. In Figure 6 we

show results on a zoomed-in region of a third satellite im-

age for further comparison. In these examples we see that

some algorithms trade sharp edges for spectral distortion,

while others better match color with the result of fuzziness

and blurred edges. These results were consistent with other

satellite images we considered.

4.3. Computational efficiency

In Figure 7 we compare the computational efficiency

with the other alorithms considered in Tables 3 to 6 using

MS images between 256 × 256 and 2048 × 2048 in size.

The runtimes are calculated as the time necessary for ap-

proximate convergence using the same stopping criteria for

all algorithms, meaning the number of iterations may vary

per algorithm (not significantly according to our observa-

tions). Not shown in this figure is the runtime for BNDL,

which takes several times longer than the other algorithms.

Also not shown are running times for the classical algo-

rithms Brovey, Wavelet, and AIHS, which are substantially

faster (between 0.1ms to 3s), which is an attractive feature

of these algorithms. When compared with more complex

methods, our algorithm has a competitive-to-better running

time. We observe that sub-problems P1 and P2 of our algo-

rithm can be easily parallelized to speed up the algorithm.
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Figure 7. Runtime comparison for different size of MS images.
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(a) LRMS (b) PAN (c) Brovey (d) Wavelet (e) AIHS

(f) Guided-filter (g) BNDL (h) MBF (i) DGSF (j) Proposed

Figure 8. Pan-sharpening results for IKONOS China-Sichuan 58208-0000000.20001108 (RGB shown, 512×512), along with a magnified

area of each image.

(a) LRMS (b) PAN (c) Brovey (d) Wavelet (e) AIHS

(f) Guided-filter (g) BNDL (h) MBF (i) DGSF (j) Proposed

Figure 9. Pan-sharpening results for IKONOS China-Sichuan 58204-0000000.20001116 (RGB shown, 512×512), along with a magnified

area of each image.

5. Conclusion

We have proposed a pan-sharpening method that incor-

porates the ℓ1/2 hyper-Laplacian penalty for image gradi-

ents. In particular, we showed how the statistically more

appropriate non-convex ℓ1/2 penalty can outperform convex

ℓ1 relaxations, despite having weaker convergence guaran-

tees. Using ADMM and the Fourier domain, we derived a

computationally competitive algorithm for optimization.
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