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Abstract

We propose a framework for the automatic creation of

time-lapse mosaics of a given scene. We achieve this by

leveraging the illumination variations captured in Internet

photo-collections. In order to depict and characterize the il-

lumination spectrum of a scene, our method relies on build-

ing discrete representations of the image appearance space

through connectivity graphs defined over a pairwise image

distance function. The smooth appearance transitions are

found as the shortest path in the similarity graph among im-

ages, and robust image alignment is achieved by leveraging

scene semantics, multi-view geometry, and image warping

techniques. The attained results present an insightful and

compact visualization of the scene illuminations captured

in crowd-sourced imagery.

1. Introduction

Internet photo-collections can provide a vast sample of

the space of possible viewpoint and appearance configu-

rations available for a given scene. This work addresses

the organization and characterization of this image space

by exploring the link between time-lapse photography and

crowd-sourced imagery. Time-lapse photography strives to

depict the evolution of a given scene as observed under

varying image capture conditions. While the aggregation of

a sequence of images into a video may be the most straight-

forward visualization for time-lapse photography, the inte-

gration of multiple images in the form of a mosaic provides

a descriptive 2D representation of the observed scene’s tem-

poral variability. We denote these time-lapse mosaics as il-

lumination mosaics and show an example in Fig. 1.

The problem of mosaic construction can be abstracted as

a three-stage process of image registration, alignment, and

aggregation. However, the representation of the appearance

dynamics introduces the qualitative challenge of producing

an aggregate mosaic that is both coherent with the original

scene content and descriptive of the fine-scale appearance

variations across time. The associated technical challenges

addressed in this work are 1) identify within an unorganized

Figure 1. Example time-lapse image of the Coliseum, the top im-

age is automatically generated by our method, and the bottom is

manually made by a photographer (courtesy of Richard Silver).

image set an image sequence depicting the desired content

appearance transition and 2) construct an illumination mo-

saic that accurately depicts the observed appearance vari-

ability while mitigating scene artifacts due to changes in

scene content and capture parameters.

We address these challenges by exploring the spectrum

of capture variability available in Internet photo-collections

and propose a novel framework to obtain illumination mo-

saics. We briefly summarize the functionality of our pro-

cessing pipeline. The input data to our framework are a

reference image depicting the desired image composition to

be used to generate the illumination mosaic and a crowd-

sourced image collection of the scene of interest. We ini-

tially use semantically-aware global image features charac-

terizing an imaged scene’s composition and ambient illu-

mination properties in order to determine the scope of the

variation to be represented in the mosaic. Then, a limited
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connected graph is built based on image similarities, from

which we find a smooth path between two nodes, defining

an ordered set of images to be used for mosaicing. Our sub-

sequent image alignment and stitching leverages 2D warp-

ing, segmentation, and color mappings to achieve smooth

image transition while mitigating scene aberrations. We

demonstrate our method on several landmark datasets, and

show both qualitative and quantitative results.

2. Related Work

A possible way to automate appearance-based mosaic

generation is to transfer the color of images taken at differ-

ent times of the day into a single image. Along these lines,

[25] and [24] propose to match color statistics between im-

ages, which could be used in style transfer. Akers et al. [4]

introduce a method to create illustrations from a set of im-

ages of an object taken from the same point of view under

variable lighting conditions. Chia et al. [9] were the first

to leverage the rich image content on the Internet to color a

grayscale image. However, this method can not be applied

to time-lapse images which contain dramatic appearance

change. Shih et al. [30] propose an automatic “time halluci-

nation” method to synthesize a plausible image at a different

time of day. Laffont et al. [17] further define 40 transient

attributes to characterize a scene’s appearance change, and

transfer these attributes to new images. While these color

transfer methods could generate illumination mosaics, they

rely on large datasets of time-lapse videos and we empiri-

cally found them to look artificial.

There exists a large body of research on modeling the

temporal order of images. Seitz et al. [21] introduce an

approach for synthesizing time-lapse videos of landmarks

from online photo collections, which aims to visualize long-

term temporal change of dynamic elements in the scenes.

While our method aims to visualize the appearance change

of scenes from night to day. Wang et al. [34] propose

low-dimensional manifolds to model the gradual appear-

ance change of materials. In order to find smooth transi-

tions between images of faces, Shlizerman et al. [15] build

a graph with faces as nodes and similarities as edges, and

solve for shortest paths on this graph. For natural scenes

like the appearance of the sky, Tao et al. [33] analyze se-

mantic attributes of sky images, train classifiers to catego-

rize them, and find smooth sequences of appearance change.

To find intermediate images in the sequence, they build an

image graph and connect images with nearest neighbors (in

terms of color distance). Instead of the sky, we focus on

generating the temporal change of more general scenes and

adopt local color transfer techniques to better portray the

color transition. Schindler et al. [26] propose a constraint-

satisfaction method for determining the temporal ordering

of images based on visibility reasoning of reconstructed 3D

points. They further present a framework [27] for estimat-

ing temporal variables in structure from motion problems

and obtaining the temporal order of images. Their methods

work for images taken over decades of time. Palermo et al.

[23] extract features that are temporally discriminative and

show outstanding results in temporal classification of his-

torical images. Kim et al. [16] propose a non-parametric

approach for modeling and analysis of the topical evolu-

tion for Internet images with time stamps. Jacobs et al.

[14] created a large dataset of over 500 static web-cameras

around the world and propose a method to analyze con-

sistent temporal variations in these scenes. Our proposed

method mines unorganized crowd-sourced data to identify

a suitable visual datum to construct illumination mosaics.

Given images taken in short time periods, Basha et al.

[6] recover the temporal order by extracting features from

dynamic elements in a scene, and comparing their relative

positions with static feature points. They further relax the

strong assumption that two images must be captured by the

same static camera by utilizing the temporal information

from successive images captured by the same moving cam-

era [7]. Several methods address the problem of non-rigid

shape and motion recovery from a set of still images when

temporal order is not used directly. Avidan and Shashua [5]

recover the temporal order of a 3D moving point by assum-

ing a fixed shape of the trajectory. In this paper, we aim to

find image sequences from night to day by modeling image

relationships with color features. Our method does not rely

on any motion cues or priors, but instead builds temporal

sequences exclusively from appearance transitions.

There has been tremendous progress in modeling un-

ordered Internet image collections [10, 1, 12, 28]. The

work of Snavely et al. [31, 32] enabled the spatially smooth

traversal from Internet images of landmark scenes. Lee et

al. [18] propose a system to “rephotograph” historical pho-

tographs. Xu et al. [35] use collections of images to in-

fer the motion cycle of animals. Hays et al. [11] propose

an image completion algorithm which fills in empty areas

by finding similar image regions in a large dataset. With a

different goal, we aim to visualize the temporal change of

scenes by leveraging appearance transfer techniques.

To create an illumination mosaic we compose the infor-

mation from multiple images into a single photo, which has

been discussed in [37, 29, 2]. Besides these previous work,

Agarwala et al. [3] adopt graphcut and gradient domain fu-

sion to choose good seams between images and reduce visi-

ble artifacts in a composite image. To stitch a set of images,

Levin et al. [19] introduce several formal cost functions for

the evaluation of the quality of stitching. Zhang et al. [38]

propose a hybrid alignment model that combines homog-

raphy and content-preserving warping to provide flexibility

for handling parallax. However, this method is not designed

to align image sequences and did not show results to align

images with very different illuminations.
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Figure 2. Framework of our method. Given an input image I , our method determines an appearance neighborhood NGIST (I) within a

photo collection. We identify two extremum elements of I− ∈ NGIST (I) and I+NGIST (I) to determine a path within an appearance

similarity graph, which corresponds to image sequence used for mosaic integration. We perform robust homography-based region warping

to aggregate a mosaic. Finally, we transfer color from the mosaic into our reference image.

3. Illumination Mosaic Generation

In order to depict the illumination spectrum of a scene,

our method relies on building discrete representations of

the image appearance space through connectivity graphs de-

fined over a pairwise image distance function. To generate

illumination mosaics, we want to select an image sequence

which 1) shares similar spatial composition, 2) features a

smooth color transition between the images, and 3) conveys

a large variety of scene appearances. We now detail our pro-

posed framework for identifying the appearance variability

in a photo collection, and subsequently using it to build illu-

mination mosaics. Fig. 2 shows an overview of our pipeline.

3.1. Data Collection and Pre­Processing

To obtain the image data for different landmarks, we first

perform a keyword-based query to the Flickr photo sharing

website. In order to remove unrelated images, we employ

the iconic selection pipeline proposed in [10]. We perform

GIST-based([22]) image clustering and discard images that

cannot establish a pairwise epipolar geometry to the cluster

center. We perform K-means clustering enforcing an ap-

proximate average cluster size of 50 images. Given that all

non-discarded images can be registered to the cluster cen-

ter, it is possible to estimate a local 3D model of the scene.

However, for efficiency purposes, we do not perform full

dataset geometric verification, but instead rely on pairwise

image registration to determine 2D image alignments.

3.2. Defining the Illumination Spectrum

The composition of our illumination mosaics requires us

to specify both the desired spatial composition of the im-

age output and the range of appearance variability to be de-

picted. We take as input (from the user) a reference image I
that will define the spatial layout/composition of our output

illumination mosaic and will be used to define subsequent

image alignment and warping operations. Next, we iden-

tify, within our registered image set, elements that define

the scope of our displayed appearance variation. We select

a local appearance neighborhood to the reference image,

which is comprised of the nearest K=300 images in terms

of the Euclidean distance of their corresponding GIST de-

scriptors. That is, we compute the GIST descriptor for the

input reference, and by leveraging the pre-computed GIST

descriptors for our registered dataset, we determine an im-

age set NGIST (I) of its K nearest neighbors. The motiva-

tion for initially focusing on a reduced local neighborhood

is to ensure spatial content similarity among images, which

will facilitate subsequent image alignment and warping.

In order to exploit the diversity of image capture char-

acteristics found in a crowd-sourced photo collection we

need to identify image measurements that are discrimina-

tive w.r.t. the variations we want to portray in our mosaics.

We focus on a specific type of global appearance variations:

the transitions between dark and bright ambiance. To enable

this characterization we leverage image statistics of disjoint

semantic elements within a scene to define an aggregate

scene descriptor. More specifically, we perform foreground

and sky segmentation on the input image and compute his-

togram statistics for each of the disjoint image segments.

Sky Segmentation. Empirically we found that using the

sky detector proposed in [13] to extract the sky region pro-

vides unreliable results for images captured at night. For

each image we estimate an homography-based warp to its

nearest GIST-neighbor. We then compute local NCC for

the two images, where local patches with NCC values larger

than 0.5 will be deemed to belong to foreground buildings,

and patches with NCC values less than 0.2 are labeled as

background. The intuition is that static structure will have

consistent NCC even in different illuminations while sky re-

gions and transient objects will not. Graphcut is adopted to

generate a more complete segmentation for the building and

sky (shown in Fig. 3).

Quantifying Image Intensity. For the pixels contained

in the sky segment we compute a 100-bin intensity his-

togram Hb of the blue color channel. We compute the in-
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Figure 3. Sky/building segmentation. (a) Original images, (b)

Foreground mask, (c) Background mask, (d) Sky segmentation.

tensity values (i.e. histograms bins) corresponding to the top

5 frequencies and select their median as our intensity mea-

sure for that image, given that image histogram will usually

have multiple peaks. We choose images I+ and I− having

the highest and lowest intensity values within NGIST (I) as

the two respective extremes of our illumination spectrum.

3.3. Image Sequence Generation

The goal of this step is to find an image sequence that de-

picts the gradual variation between the previously selected

pair of images, I− and I+, which define the scope of our

output illumination spectrum. We build this path by deter-

mining and concatenating an image sequence I− → I and

an image sequence I → I+, where all the aforementioned

images are elements of our registered camera set. Hence-

forth, we will consider the I− → I transition, but it is to be

understood that the same steps apply to the second half of

the image transition sequence.

Aggregated Image Appearance Descriptor. We com-

bine a global image GIST feature descriptor to capture the

image composition, a color histogram to represent the sky

color, and a histogram of the dark channel prior image to

choose photos that contain well-illuminated images. We re-

strict our color histogram to sky regions to account for land-

marks which may be arbitrarily illuminated at night. We

use all three color channels to enable more fine-grained dis-

crimination of ambient illumination among subsequent im-

ages. These three features are normalized and concatenated

to form a global image feature representation.

Image Similarity Graph. Based on our global image

descriptor we define a discrete representation of our ap-

pearance space based on image pairwise similarity. We in-

crementally build a graph where each image is treated as a

node, similar to [34], we use both k-rule and ǫ-rule to con-

struct a neighborhood graph. The edge weights connecting

two nodes are computed by L2 distance of image features.

To find a balance between path descriptiveness and com-

pactness, we iteratively augment the local image neighbor-

hoods around both I− and I+ until we attain a single con-

nected component from which to attain a minimum-length

path between the nodes corresponding to I− and I+. More-

over, at each iteration k(which starts from 1), each image in

the registered camera set is only connected to its k near-

est neighbors. Outliers in the graph are reduced using the

ǫ-rule, which removes edge connections that have weights

(i.e. descriptor distance) more than ǫ = 1.3dp, where dp is

the average edge distance in the graph. Once a k-connected

graph is defined at each iteration, we search for a connecting

path between I−, I and I, I+ by using Dijkstra’s method.

3.4. Homography­Based Image Stitching

Our scene warping is a two-stage process that leverages

pairwise homography transfers between elements of our im-

age sequence. First, we compute a homography warping

Hj between every image Ij in the generated sequence and

the input image I , which transfers the local surface appear-

ance characteristics under a local planarity approximation,

i.e. I
′

j = Hj(Ij). Second, we apply dense SIFT Flow [20]

warping to the homography-warped image to compensate

for fine-scale scene parallax not modeled by the local pla-

narity assumption, i.e. I
′′

j = S(Hj(Ij)).
Robust Homography Chains. If the homography ma-

trix Hba aligns Ib to Ia, according to the chain rule, the

homography matrix that aligns a third image Ic through Ib
to Ia is Hca = Hba ·Hcb. Likewise, if we have N images

and want to register the nth image to the first one, the ho-

mography matrix could be written as H1,N = ΠN
i=1Hi,i+1.

However, in our experiments we found computing

feature-based homographies directly between neighboring

images is unreliable, especially for images captured at

night. Since we only extract color features from the sky, the

colors on the building facades between neighboring images

can be very different (i.e. in Fig. 4). While simplifying im-

age alignment to a homography model provides a more in-

clusive geometry fitting framework (i.e. less constraints) we

observed that reliably building an homography chain across

the entire input sequence was still elusive. As mitigation we

explored the use of bridge images to attain pairwise homog-

raphy estimates through transitivity Fig. 5(c).

We measure the confidence for our homography estima-

tion based on the output of the pairwise RANSAC estima-

tion process. We measure the number of inlier matches mi,j

between images Ii and Ij and the image area ai,j of the con-

vex hull of the attained inlier set normalized by total image

size. Note that mi,j is symmetric while ai,j is not. Using

these values we define a pairwise homography confidence

score between images Ii and Ij as

Ci,j = mi,j · (ai,j + aj,i) (1)

and use it to search for an alternative intermediate bridge

image between every adjacent image pair in the sequence.

The motivation is to omit unreliable adjacent estimates
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Figure 4. Motivation for robust homography chains. (left) The reliability of direct pairwise homography estimation of an entire image

sequence to a single reference image is not uniform across the sequence. Moreover, neighboring images may exhibit drastic appear-

ance variation (especially at night), hindering direct homography chains. Green lines depict RANSAC inlier matches. (right) Schematic

representation of (1) direct pairwise estimation, (2) direct homography chains , and (3) our proposed bridge-based homography estimation.

through the transitivity of a third image. Given an image

Ii, the bridge image Ik is selected as the non-adjacent im-

age with highest confidence path to the adjacent image. The

bridge Ik image will be used to join two successive images

Ii and Ii+1 whenever the following condition is satisfied

Ci,i+1 < max
k 6=i

(ri,k · Ci,k + ri+1,k · Ck,i+1)/2 (2)

in which ri,k is the area ratio of image i and k, and this is

used to regularize cases when image k has higher resolu-

tion than image i. Similarly, we use a confidence threshold

to eliminate images in the sequence that do not attain reli-

able homography estimations, and reconnect the sequence

through the same bridge image search process as before.

Stitching & Refinement. Upon establishing a robust lo-

cal homography chain across the entire sequence {Ij}, we

warp all the images into the reference image I . Next, we

apply dense SIFT Flow warping [20] to the homography-

warped images to compensate for fine-scale scene parallax

not modeled by the local planarity assumption. Finally, we

form a mosaic by sequentially aggregating equal-sized ver-

tical stripes from each of the images in the sequence to form

a single, combined image. It is constructed such that the

first (leftmost) vertical stripe is obtained from the first image

in the sequence, the second stripe from the second image,

and so forth. In this manner, the mosaic depicts a single,

recognizable view of a scene, but is composed of stripes

taken from different images (see Fig. 5(b)). The length of

the output sequence is data-dependent as it is a function of

both the size and composition of the image set used to de-

termine our illumination spectrum. However, replacing Di-

jkstra shortest path search in our implementation with Yen’s

k-shortest path algorithm [36] would enable the user to set

sequence length a priori.

3.5. Image Blending

We note that the generated stitched mosaic M may have

strong color and structural artifacts among adjacent mosaic

segments, see Fig. 5(b). The reason for these artifacts in-

clude: 1) Inconsistent foreground objects, i.e. pedestrians,

cars, or other transient objects. These transient objects can-

not find correspondences in other images and will cause

registration artifacts. 2) Uneven resolutions for different

stripes. Our generated image sequence does not enforce

a common resolution for all images. When warping low-

resolution images to high-resolution images, up-sampling

will introduce blur artifacts. 3) Artifacts caused by dense

registration. Although SIFT Flow generally works well for

aligning static structures, sometimes it fails in texture-less

regions (such as windows and tower top). Also, if the ap-

pearance or structure of the foreground elements changes

dramatically, dense registration may introduce artifacts.

Color Transfer. In order to keep the fine-grained de-

tails of the mosaic, while at the same time conveying a

large range of scene appearance, we decide to transfer the

color from the image mosaic M to the reference image I .

Shih et al. [30] propose a locally linear model learned from

time-lapse video, allowing them to synthesize new color

data while retaining image details. Moreover, for the image

pair (M ,I) we want to estimate local transformations which

characterize the color variations between two images. The

locally linear model proposed by [30] is used to relate the

color of pixels in M to the color of pixels in I . We de-

note the patch centered on pixel pk in the match image by

vk(M), and vk(I) is the corresponding patch in the target

image. Both are represented as 3×N matrices in RGB color

space; using patches of N = 5×5 pixels. The local linear

transform applied to patch k is represented by a 3×3 matrix

Ak, and is estimated with a least-squares minimization:

argmin
Ak

‖vk(I)−Akvk(M)‖2F + γ‖Ak −G‖2F (3)

where ‖·‖F denotes the Frobenius norm. The second term

regularizes Ak with a global linear matrix G estimated on

the entire image (using a small weight γ=0.008 in all tests).

We obtain the optimal transform Ak in closed form:

Ak =
(

vk(I)vk(M)T + γG
) (

vk(M)vk(M)T + γI3
)−1

(4)

Since the mosaic and reference image are already

aligned, there is no need to compute a correspondence map
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(a) (b) (c) (d)

Figure 5. Mitigation of mosaicing artifacts. (a) Input reference image (b) Homography-based image stitching (red rectangles highlight

alignment problems). (c) SIFT-flow dense registration refinement partially resolves alignment issues, at the expense of small-scale structure

aberrations (highlighted green boxes) (d) Output image after transfering color from the mosaic to the reference image.

between them. We adopt the linear equation system pro-

posed in [17] to solve the color transfer problem. Fig. 5(d)

shows the color transfer results, compared to Fig. 5(b), and

the artifacts highlighted in green are gone, and there is no

detail loss from the reference image.

Local Stripe Reordering (optional). The image se-

quence is generated through global image appearance de-

scriptors. However, there can be local appearance varia-

tions in the images, resulting in color inconsistencies among

adjacent elements within the mosaic. Examples include

clouds, partial foreground occlusions, or reduced overlap

with the reference image. Addressing this contingency

within the image sequencing step of our mosaic generation

would entail an explosive growth of our image similarity

graph, as each stripe needs to be connected to every other

stripe in all other images within the appearance neighbor-

hood. Accordingly, our approach is to resolve this issue

through a post-processing step. We propose a method to lo-

cally reorder the stripes in the final mosaic to make the sky

transitions look more natural by only reordering the con-

tents of the sky regions. To this end, we leverage our exist-

ing sky segmentation and extract a sky-only intensity color

histogram for each stripe. We sort the stripes by the median

of their top 5 frequencies in the intensity histogram. We

then transfer color from each image in the new sequence

into the sky regions of the output mosaic. We repeat the

process until the sequence convergences.

4. Experiments

Data Acquisition. We downloaded 10 online datasets

from Flickr, and the statistics of our system’s data associa-

tions are presented in Table 1. We categorize images with

average intensity of their sky regions below 100 as night

images (intensity value range from 0 to 255).

Homography Chain Evaluation. To evaluate the ef-

p

Figure 6. Sky reordering. Top: mosaics before reordering, red

rectangles highlight the inconsistent stripes. Bottom: reordered

mosaics, the sky appearance inconsistencies are mitigated.

Name # Downloaded # Clustered Stripe

# (night / day) Reordering

Notre Dame Cathedral 60291 3615 / 5260 No

Berliner Dom 51892 2197 / 3986 Yes

Brandenburg Gate 63796 2671 / 5198 Yes

Mount Rushmore 53612 583 / 2423 Yes

Coliseum, Rome 49220 910 / 1027 Yes

Trevi Fountain 94370 1612 / 3689 Yes

Manarola 54535 1023 / 4058 Yes

Potala Palace 25039 450 / 1996 Yes

Tiananmen Square 70384 658 / 3142 Yes

St. Peter’s Cathedral 91060 2557 / 3297 Yes

Table 1. Composition of our downloaded image datasets. The

number of clustered images corresponds to images that were able

to register through geometric verification to their cluster center.

In most cases (˜90%), stripe reordering is applied to generate

smoother appearance transition (For Notre Dame dataset, stripe

reordering didn’t change its original sequence).

fectiveness of our bridge-based image stitching method, we

design a metric to quantitatively compare alternative stitch-

ing methods. We first compute an edge map for the refer-

ence image and all warped images used to form the output
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Dataset Align to next Bridge SIFT Flow
Align to next Bridge

+ SIFT Flow + SIFT Flow

Notre Dame 0.4179 0.4152 0.3509 0.4387 0.6152

Berliner Dom 0.3634 0.4539 0.3398 0.3812 0.5529

Trevi Fountain I 0.3967 0.4159 0.4123 0.6141 0.6503

Trevi Fountain II 0.4420 0.4292 0.3889 0.6020 0.5752

Forbidden City 0.3595 0.3969 0.3554 0.4513 0.4431

Mount Rushmore 0.4223 0.4563 0.2973 0.5257 0.5708

Brandenburg Gate 0.4095 0.5352 0.4130 0.4791 0.5875

Manarola 0.3415 0.4105 0.3306 0.4776 0.5429

Potala Palace 0.4251 0.5254 0.3875 0.5025 0.5683

Coliseum, Rome I 0.4085 0.4253 0.3169 0.6219 0.6873

Coliseum, Rome II 0.3468 0.4416 0.4152 0.5758 0.7048

Table 2. For each dataset, we create three sequences with different

reference images and compute our predefined values. For Trevi

Fountain I&II and Coliseum, Rome I&II, they differ in the viewing

angle. Bold-font numbers highlight the best matching score, eight

out of the ten datasets achieve the best results using our method.

For the other two datasets, we are very close to the best scores.

mosaic, using Canny edge detection [8]. Using these edge-

maps, we then compute the average per-pixel NCC values

between each stripe in the reference image and its corre-

sponding warped region in the mosaic using a 5×5 aggre-

gation window. To focus on the inter-stripe alignment ac-

curacy, we restrict our evaluation to edge pixels found in

the boundaries between mosaic stripe elements. We com-

pare our image stitching method (Bridge + SIFT Flow) with

three methods: (1) Align image to neighbor, (2) Align with

bridge, and (3) Align with SIFT Flow. From Table 2, we

can see that most datasets benefit from bridge-based image

stitching compared with the “Align to next” strategy. More-

over, many of the“Align to next” outputs suffer from incor-

rect homography estimates (due to highly different illumi-

nation conditions) which render severely distorted mosaics.

Note that using robust homography chains in conjunction

with dense SIFT Flow refinement provides enhanced accu-

racy when compared to either of them in isolation.

Color Transfer Results. We compare with three meth-

ods to create illumination mosaics: two previous works

[25](a), [30](b), and our method without bridge homog-

raphy connections(c). Method (a) adopts the same image

sequence used in our method as input, and transfers color

from all images to the reference image in the sequence us-

ing the approach proposed in [25]. Method (b) implements

the method in [30] using the same reference image and the

video datasets created by the original paper as input. We

randomly select frames from all videos, extract their GIST

and color features, compute the nearest neighbors w.r.t. the

input image, and use that video as the input time-lapse

source. We then manually select a temporal sequence from

the video and transfer the color with the pipeline proposed

in [30]. Method (c) also uses the same image sequence as

input. We warp the sequence using only SIFT Flow, and

transfer the color using the locally affine method proposed

in [30]. The comparative results in Fig. 7 illustrate both

the wide range of appearance variation achieved by our ap-

(a) (b) (c) (d) 

Figure 7. Comparative results for baseline color transfer methods.

Column (d) is generated by our color transfer method, refer to the

text for specification of baselines.

proach as well as the recovered fine-scale chromatic and

scene structure details. Moreover, from Fig. 7 we can see

that method (a) cannot generate a smooth color transition

sequence. Method (b) can generate a smooth color transi-

tion, however a lack of drastic color change makes it sur-

real. Better results may be obtained if we enlarge the time-

lapse video dataset and include more scenes. While method

(c) generates reasonable color transitions overall, it suffers

from severe local artifacts (i.e. the sky at night, blue re-

gions on the building, etc.). Our method (d) can both keep

the fine-grained details in the image and obtain smooth sky

color transitions.

Qualitative Results. The generality and robustness of

our approach is highlighted by applying our method to sev-

eral image collections as shown in Fig. 8. Challenging

appearance variations, such as drastic texture appearance

changes (i.e. Berliner Dom), are addressed by leveraging

the spatial composition similarity among images. Note that

while our method relies on local homography-based struc-

ture transfer, deviations from non-planar scene structure

(i.e. Mt. Rushmore) are mitigated by SIFT Flow refinement.

Quantitative Discussions. In the experiments, we ob-

serve a change in the color and smoothness in the color-

transferred image by tuning the regularization factor γ. To

make a convincing conclusion how γ influences the qual-

ity of the final images, we devise two metrics to quantita-

tively evaluate smoothness and color change. The first is

a smoothness ratio, where we compute a sum of the im-

age’s horizontal gradients near the stripe boundaries and de-

note it as Vs. For the original mosaic M , this value is the

largest, since no smoothing is applied. We then compute the

smoothness ratio for every image as V γi

s /V M
s , where V γi

s

is the smoothness of the γi-modified image, and V M
s is the

smoothness of the original mosaic. To describe a change in

the color, we measure color deviation as the color histogram

difference of the original mosaic and γi-modified image in

Euclidean space. As we can see in Fig. 10, when the value

of γ increases, the image is overall smoother, but it contains

higher color deviation (i.e. notice the top left corner of the

coliseum, where the red pattern fades away with increas-

ing γ). In Fig. 11 we show the plots for the smoothness
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Figure 8. Illumination mosaics for eight downloaded datasets.

Figure 9. Failed cases for our method. Artifacts appear mainly on

the domes and round facades which deviate from planar surfaces.

     

gamma  = 0.008 gamma  = 0.08
 

           

Figure 10. Color-transferred images with different γ, (left) γ =
0.008, and (right) γ = 0.08.

ratio and color deviation as γ increases. With increasing

γ, the smoothness ratio keeps decreasing, i.e. the transition
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Figure 11. The effects of γ on the final mosaic: (left) smoothness

ratio, and (right) color deviation.

is smoother, and the trend is to converge to a value that is

equal to V Ref
s /V M

s , where V Ref
s is the smoothness of the

input image. The color deviation will also converge if γ
goes to infinity, since the color transfer will be dominated

by global linear matrix G (as shown in Eq. 4). One interest-

ing thing to point out is when γ continues to decrease, the

color-transferred image will contain increasingly many arti-

facts as without the regularization term, Eq. 4 the estimation

will not be stable.

5. Conclusions

We propose a robust data-driven framework to automat-

ically generate illumination mosaics of landmark scenes

from Internet photo collections. Current limitations of our

method are as follows: First, the length of the generated

image sequence is uncontrolled, as it is mainly influenced

by the size and internal distribution of the image dataset.

Accordingly, results are sensitive to the image set homo-

geneity and redundancy w.r.t. the selected reference image,

i.e. more densely sampled viewpoints will tend to generate

better results. Since our method relies on a homography

chain to align the images, it works reliably on scenes with

mostly planar regions. For scenes with facades having mul-

tiple depths, if the misalignment can’t be mitigated by SIFT

Flow, artifacts will be produced (i.e. Fig. 9). Conversely,

this characteristic may be leveraged to automatically dis-

cover viewpoints within the photo collection from which to

generate the illumination mosaic. Second, since the color

transfer method models the color transformation as an lin-

ear transformation, the scope of realistically reproducible

appearance variation is intrinsically constrained. In the ex-

periments, larger γ value might introduce some blurriness

at the expense of a better transition.

Future work along these lines includes ascertaining a

more global characterization of the appearance space by

means of large-scale manifold learning techniques to in-

crease the generality of the transitions modeled by our ap-

proach. Moreover, the generalization of our framework in

order to model and represent the appearance variability de-

picted in video collections is yet another of our goals.
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