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Abstract

This paper addresses the problem of unsupervised learn-

ing of binary hash codes for efficient cross-modal retrieval.

Many unimodal hashing studies have proven that both simi-

larity preservation of data and maintenance of quantization

quality are essential for improving retrieval performance

with binary hash codes. However, most existing cross-

modal hashing methods mainly have focused on the former,

and the latter still remains almost untouched. We propose a

method to minimize the binary quantization errors, which is

tailored to cross-modal hashing. Our approach, named Al-

ternating Co-Quantization (ACQ), alternately seeks binary

quantizers for each modality space with the help of con-

nections to other modality data so that they give minimal

quantization errors while preserving data similarities. ACQ

can be coupled with various existing cross-modal dimension

reduction methods such as Canonical Correlation Analysis

(CCA) and substantially boosts their retrieval performance

in the Hamming space. Extensive experiments demonstrate

that ACQ can outperform several state-of-the-art methods,

even when it is combined with simple CCA.

1. Introduction

Similarity-preserving hashing is a powerful indexing

tool for efficient retrieval against massive databases. Es-

pecially, compact binary hashing has attracted much atten-

tion recently, because it can substantially reduce both query

time and storage costs by encoding high-dimensional data

into indexable compact binary codes [34, 33, 7]. Most re-

search efforts have been made on unimodal hashing, where

a query and database entries are both assumed to be in a

homogeneous feature space [34, 33, 7, 25, 12, 9, 30, 13].

Meanwhile, in recent real-world scenarios such as Web

or social media services, image is naturally surrounded

by various side information sources such as tags, descrip-

tions, and attributes [8, 14]. Moreover, some emerging

topics arising at the intersection of computer vision and

natural language processing such as automatic image de-

scription [17, 18] are based on matching between heteroge-

neous image-sentence data pairs. To enhance the efficiency

of retrieval over such multimodal data sources, some re-

cent studies have explored cross-modal hashing techniques

[2, 23, 32, 28, 37, 4, 38, 39].

The goal of cross-modal hashing is to learn hash func-

tions that give mappings from each of two (or more num-

ber of) different modality spaces to one common binary

Hamming space, while preserving both intra- and inter-

modal data similarities. Previous cross-modal hashing stud-

ies mainly focus on developing effective models to preserve

data similarities. Yet in unimodal hashing studies, it has

been proven that not only similarity preservation but also bi-

nary quantization quality is crucial to improve retrieval per-

formance with binary hash codes [7, 6, 9, 13, 19, 20, 35, 3].

Nevertheless, to the best of our knowledge, there is no

previous work that has focused on binary quantization for

cross-modal hashing.

In this paper, we propose an approach to unsupervised

learning of cross-modal binary hash codes, which aims at

minimizing the binary quantization errors. One straight-

forward approach may be to use CCA-ITQ [7] which can

be done by the following two-step procedure: first use

Canonical Correlation Analysis (CCA) to find a common

low-dimensional subspace where the inter-modal correla-

tion is maximized, and then do Iterative Quantization (ITQ)

to minimize the binary quantization errors by rotating the

subspace1. This two-step approach actually works well and

is even comparable to several state-of-the-art methods as

shown later in our experiments. However, one shortcoming

is that dimensions discarded in the CCA stage can never be

recovered in the ITQ stage, which may be disadvantageous

especially in cross-modal hashing scenarios – due to their

inconsistency between data distributions of different modal-

ities, good binary quantization may not always be achieved

in a subspace chosen by CCA. One simple toy example is

shown in Figure 1. Four data points are placed in each of

two 3D ambient feature spaces whose intrinsic dimensions

are 2 and 3, respectively (Figure 1(a,b)). The 2D embed-

ding result by CCA-ITQ shown in Figure 1(c) gives almost

perfect inter-modal matches. However, it fails to separate

four data pairs as one per each quadrant, which is the ideal

result in this setting. This is due to its suboptimal choice of

subspaces by CCA in binary quantization.

1This procedure is exactly CCA-ITQ originally presented in [7], [7]

uses this rather to learn binary hash codes in a supervised setting, though.
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(a) Modal A
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(c) CCA-ITQ
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(d) CCA-ACQ

Figure 1. A toy example. (a,b) Synthetic cross-modal data. Four

data points are almost squarely arranged in each of two 3D spaces

so that their intrinsic dimensions are 2 (in Modal A) and 3 (in

Modal B), respectively. Points of the same colors are assumed to

be relevant to each other. 2D embedding results by (c) CCA-ITQ

and (d) our CCA-ACQ. Best viewed in color.

Motivated by these observations, our approach presented

in this paper, named Alternating Co-Quantization (ACQ),

aims at learning similarity-preserving binary quantizers by

solving a joint optimization problem of subspace learning

and binary quantization. The ACQ algorithm alternately

updates the binary quantizers for each of multiple modal-

ity spaces, so as to minimize the distances between the

inter-modal data pairs, corresponding binary hash codes,

and vertices of the binary hypercube. The formulation of

ACQ presented in this paper is based on a general frame-

work of dimension reduction called Generalized Multiview

Analysis (GMA) [29]. Therefore, ACQ can be coupled with

many popular dimension reduction techniques which are in

a specific class of quadratically constrained quadratic pro-

gramming problems including CCA, Locality Preserving

Projection (LPP) [11], Neighborhood Preserving Embed-

ding (NPE) [10], and so on. Extensive experiments on three

benchmark datasets demonstrate that our ACQ substantially

boosts the retrieval quality of coupled base dimension re-

duction methods in the Hamming space and can outperform

CCA-ITQ and several state-of-the-art methods even if it is

with simple CCA.

Figure 1(d) shows the embedding result by our ACQ

coupled with CCA (tagged as CCA-ACQ) for the toy

dataset. As can be seen, our CCA-ACQ yields the ideal

result where each of four pairs is allocated to each quadrant

while maintaining reasonable inter-modal matches inside.

2. Related Work

We briefly review two relevant topics to this work, i.e.,

binary quantization and cross-modal hashing.

Binary Quantization. Problems of binary hash code learn-

ing often turn into difficult non-linear integer programming,

due to binary constraints. Hence, most of the existing meth-

ods first relax their problems by ignoring the binary con-

straints to find some real-value low-dimensional embedding

of data points, then take their sign to obtain binary hash

codes [34, 33]. However, the results are often suffered from

non-negligible binary quantization errors. Several methods

have been proposed to reduce the binary quantization er-

rors, which can be categorized into two major approaches:

multi-bit assignment and orthogonal quantization. Multi-

bit assignment aims at obtaining fine quantization results

by assigning multiple bits to each dimension of the sub-

space. Double-Bit Quantization (DBQ) [19] assigns two

bits to each dimension by using adaptively learned thresh-

olds. Some other methods [21, 35] allow to use more bits.

The representative method of orthogonal quantization is

ITQ [7]. Starting with some similarity-preserving dimen-

sion reduction (typically PCA), ITQ introduces a new ro-

tation matrix and iteratively updates it so that the projected

data points fit to the binary hypercube vertices. Many exten-

sions like Angular Quantization-based Binary Coding [6],

Isotropic Hashing [20], and K-means Hashing [9] have also

been proposed. Our ACQ is also inspired by ITQ. How-

ever, ACQ is tailored to the cross-modal hashing problem

and aims at learning quantizers for multiple modality spaces

simultaneously. Unlike existing methods, ACQ jointly op-

timizes similarity-preserving dimension reduction and bi-

nary quantization, which leads to significant performance

improvements as shown later in our experiments.

Cross-modal Hashing. Most existing cross-modal hash-

ing methods mainly focus on modeling intra- and inter-

modal data similarities. To preserve inter-modal data cor-

respondences, Cross-Modal Similarity Sensitive Hashing

(CMSSH) [2] learns a set of hash functions in a boosting

manner. Cross-View Hashing (CVH) [23] and Inter-Media

Hashing (IMH) [32] are cross-modal extensions of Spec-

tral Hashing [34] and aim at retaining both intra-modal data

affinities and inter-modal data correlations in a common

subspace. Predictable Dual-view Hashing (PDH) [28] re-

fines initial CCA projections by learning linear SVMs and

binary hash codes in a self-taught manner. Collective Ma-

trix Factorization Hashing (CMFH) [4] assumes that a set

of feature matrices of multiple modalities can be factor-

ized into modal-specific matrices and a single common ma-

trix, and learns modality-invariant hash codes so as to re-

cover the common matrix. Other related methods are Co-

Regularized Hashing [38] and Multimodal Latent Binary

Embedding [39]. Unlike these, our ACQ aims at minimiz-

ing binary quantization errors.

3. Alternating Co-Quantization

We present our ACQ approach in this section. For sim-

plicity, we hereafter assume that there are only two modal-

ities. Note that our framework can readily be extended to

cases of three or more modalities, as discussed later in Sec-

tion 3.3.

Suppose we have data matrices of two different modal-

ities, X = [x1,x2, . . . ,xn] and Y = [y1,y2, . . . ,yn],
where xi ∈ R

dx and yi ∈ R
dy , i = 1, . . . , n, and n is

the number of data points. We assume that xi and yi, ∀i,
are related to each other in some sense (e.g., an image and

an associated text). W.l.o.g., we assume that the mean vec-

tor over the data points in each modality space is 0. Given

such data, our goal is to obtain similarity-preserving binary
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quantizers qx and qy for these two modality spaces, which

give mappings from each of Rdx and R
dy to a common c-

dimensional Hamming space Hc. In this paper, we consider

the following specific form.

qx(x) = sgn(A⊤x), qy(y) = sgn(B⊤y) (1)

where sgn(·) is the element-wise sign function, and A =
[a1,a2, . . . ,ac] ∈ R

dx×c and B = [b1,b2, . . . ,bc] ∈
R

dy×c are parameters of the binary quantizers to be learned

from data.

Our ACQ learns A and B by solving a joint optimization

problem of similarity preservation and binary quantization.

The basic structure of the objective function is

J (A,B;X,Y )−Q(A,B;X,Y ) (2)

where J and Q are similarity preservation quality function

and binary quantization error function, respectively. We

first give the details of J in Section 3.1 and Q in Section

3.2. Then we propose the total problem of ACQ and the

algorithm to solve it in Section 3.3.

3.1. Similarity Preservation Quality

In order to find similarity-preserving compact binary

codes, many previous formulations are grounded in some

dimension reduction techniques (e.g., [23, 32, 28]). Simi-

larly, we design our function J based on a dimension reduc-

tion framework. Specifically, we follow the GMA frame-

work [29] which has the following form.

J (A,B;X,Y ) = tr(A⊤CxxA+B⊤CyyB + 2αA⊤CxyB)
(3)

where Cxx and Cyy are symmetric definite matrices that

give intra-modal correlations of X and Y , respectively, and

Cxy is an inter-modal correlation matrix between X and Y .

α > 0 is a balancing hyperparameter. This is rewritten as a

single matrix form as

J (A,B;X,Y ) = tr

(

[

A
B

]⊤ [
Cxx αCxy

αC⊤
xy Cyy

] [

A
B

]

)

.

(4)

By imposing some proper orthogonal constraints, e.g.,

A⊤XX⊤A+ γB⊤Y Y ⊤B = I (where γ = tr(XX⊤)
tr(Y Y ⊤)

), the

problem of maximizing J w.r.t. A and B turns into a stan-

dard generalized eigenproblem which can be easily solved

by using some eigensolver [29]. The solutions A and B
are obtained by taking c eigenvectors corresponding to the

top c largest eigenvalues, where their top dx rows and the

remaining dy rows are for A and B, respectively.

Depending on how the matrices Cxx, Cyy and Cxy are

defined, J becomes equivalent to various dimension reduc-

tion methods [29]. In this paper, we consider CCA and NPE

[10] as our base methods.

CCA. If we set Cxx = Cyy = 0 and Cxy = XY ⊤, then it

is equivalent to the CCA objective. Many previous methods

such as CVH [23], IMH [32], and PDH [28] are based on

CCA to preserve inter-modal data similarities.

NPE. To incorporate intra-modal data similarity which is

ignored in the CCA objective, we use NPE [10] as our sec-

ond base method. NPE preserves local geometric structures

of data in a subspace, which are essential for distance-based

nearest neighbor search [36, 13]. Although the original

NPE is only for unimodal dimension reduction, this can be

readily extended to the cross-modal case [29], just by set-

ting Cxx = −X(I −Wx)
⊤(I −Wx)X

⊤, Cyy = −Y (I −
Wy)

⊤(I − Wy)Y
⊤, and Cxy = XY ⊤. Wx = [wij ]

n
i,j=1

here can be obtained by solving

min
Wx

n
∑

i=1

‖xi −
∑

j∈Ni

wijxj‖
2
2, s.t.

∑

j∈Ni

wij = 1 (5)

where Ni is the index set of K nearest neighbors of xi [10],

wij = 0 if j /∈ Ni. Wy is also obtained by exactly the same

procedure.

3.2. Binary Quantization Error

We minimize the binary quantization errors as done

in [7]. Specifically, we aim at minimizing the distances

between projected data points A⊤X (resp. B⊤Y ) and

the corresponding binary hash codes sgn(A⊤X) (resp.

sgn(B⊤Y )). Formally, the total error can be given as

‖U −A⊤X‖2F + η‖V −B⊤Y ‖2F (6)

where U ∈ {±1}c×n and V ∈ {±1}c×n are the binary

hash codes for X and Y , respectively. η is a balancing hy-

perparameter. (6) can be expanded as

Q(A,B,U, V ;X,Y ) = −2tr(UX⊤A+ ηV Y ⊤B) + const.
(7)

under the constraints of A⊤XX⊤A = I and B⊤Y Y ⊤B =
I . So minimizing Q can be equivalent to maximizing the

correlations between the binary hash codes U (resp. V ) and

the projected data points A⊤X (resp. B⊤Y ).

3.3. Total Problem & Algorithm

Now we propose the total problem of ACQ. By putting

J (3) and Q (7) into together, the final formulation is

max
A,B,U,V

tr(A⊤CxxA+B⊤CyyB + 2αA⊤CxyB)

+ tr(2λUX⊤A+ 2ηV Y ⊤B) (8)

s.t. A⊤XX⊤A+ γB⊤Y Y ⊤B = I, (9)

where λ is a balancing hyperparameter. This total prob-

lem is non-convex as is. Fortunately, each sub-problem for

any one of the four matrices (A, B, U , and V ) can be con-
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vex with the other three fixed. Local optima thus can be

obtained in an alternating optimization. Initializing A and

B by some cross-modal dimension reduction method (such

as CCA and CCA-ITQ) and setting U = sgn(A⊤X) and

V = sgn(B⊤Y ), our algorithm alternately updates the four

matrices by repeating the following procedures (we found

that taking a few subiterations within each modality gives

reasonably stable results).

1. Update A (or B). Ignoring the terms including only

fixed variables and relaxing the constraints into the objec-

tive as a penalty term as done in [33], the problem can be

transformed as follows.

max
A

tr(A⊤CxxA+ 2(αB⊤C⊤
xy + λUX⊤)A) (10)

s.t. A⊤XX⊤A = I,

⇒

max
A

tr(A⊤CAA+ 2DAA) (11)

where CA = (Cxx − βXX⊤) and DA = (αB⊤C⊤
xy +

λUX⊤). β is a penalty constant. Since CA can always

be symmetric definite for any Cxx defined in accordance

with the GMA framework, this sub-problem is a standard

quadratic programming problem which can be efficiently

solved, for example, by using PCG method. Subsequently

each column of A is ℓ2-normalized. The update rule for B
is also obtained in the same way.

2. Update U (or V ). In this case, the objective turns into

the following simple form.

max
U∈{±1}c×n

tr(UX⊤A) (12)

where its solution is U = sgn(A⊤X). The update rule for

V is the same, i.e., V = sgn(B⊤Y ).

ACQ is inspired by ITQ, but the algorithms are differ-

ent. ITQ first applies some pre-fixed dimension reduction

projections to the data points and then quantizes the pro-

jected data by an additional rotation matrix. In contrast,

ACQ finds two separate binary quantizers for each of two

modality spaces. Notably, once dimension reduction pro-

jections are fixed, it is difficult to find separate quantizers

for each of two modality spaces. For instance, suppose we

have CCA projections P and Q (that maximize the CCA

objective tr(P⊤XY ⊤Q)) and consider to find two sepa-

rate quantizers Rx and Ry . In this case, the optimality

of the original CCA objective may no longer hold, since

tr(P⊤XY ⊤Q) 6= tr(RxP
⊤XY ⊤QR⊤

y ) for any Rx 6= Ry.

This fact is another motivation for us to consider the end-to-

end joint optimization of binary quantizers.

Convergence Analysis. Figure 2(a) shows a typical behav-

ior of the objective value (8) of our CCA-ACQ in the al-

ternating iterations. The values by CCA and CCA-ITQ are

shown in the figure as well. CCA-ACQ reasonably con-
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Figure 2. Convergence analysis. (a) Objective value vs. the num-

ber of iterations. (b) mean Average Precision (mAP) vs. the num-

ber of iterations. Higher values mean better. These results are

generated using 64-bit codes on Wiki dataset (details given later

in Section 4).

verges around 50 iterations and achieves much better objec-

tive values compared to CCA and CCA-ITQ. Figure 2(b)

shows the corresponding behaviors of retrieval performance

measured by mean Average Precision (mAP). Performance

of CCA-ACQ tends to be improved as the number of iter-

ations increases and is significantly better than CCA-ITQ

after only a few iterations. ACQ does not need a number

of iterations to achieve good performance. We typically use

around 10 iterations in our experiments.

Complexity Analysis. We analyze the computational

complexity of the CCA-ACQ algorithm. We use d =
max{dx, dy} for brevity. Time complexity for training is

O(nd2 + tcnd + tcd2) where t is the total number of iter-

ations. It is linear in n and quadratic in d. Empirically, it

takes 4.4 seconds when we train 64-bit codes on 10K data

points of 128D through 30 iterations using MATLAB on a

workstation with 2.6 GHz Intel Xeon CPU. Space complex-

ity for training is O(n(d+ c) + cd). Once training is done,

time and space complexities to generate a binary hash code

for a new data point are both O(cd) which is constant w.r.t.

n and linear in d.

Extension. Analogous to GMA [29], our formulation can

readily be extended to cases of three or more number of

modalities. Suppose we have M modality data matrices de-

noted by {Xm}, (m = 1, 2, . . . ,M). Then the total prob-

lem (8) can be extended as

max
{Am},{Um}

M
∑

l,m

tr(αl,mA⊤
l Cl,mAm) +

M
∑

m

tr(2λmUmX⊤
mAm)

(13)

s.t.

M
∑

m

γmA⊤
mXmX⊤

mAm = I, (14)

where Am and Um are the matrices of quantizer parameters

and the binary codes for Xm, respectively. Cl,m is a definite

correlation matrix between Xl and Xm. αl,m and λm are

balancing hyperparameters and γm = 1
tr(XmX⊤

m)
. Deriva-
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Table 1. Text retrieval performance by image query (I2T). mAP values for various code lengths.

Wiki a-Pascal COCO

# bits c = 16 24 32 48 64 16 24 32 48 64 16 24 32 48 64

CVH 0.179 0.166 0.158 0.151 0.146 0.360 0.329 0.319 0.292 0.280 0.484 0.476 0.471 0.450 0.435

CMSSH 0.187 0.189 0.183 0.188 0.187 0.312 0.300 0.288 0.285 0.286 0.472 0.464 0.467 0.462 0.453

IMH 0.194 0.176 0.166 0.156 0.147 0.403 0.358 0.355 0.352 0.323 0.466 0.458 0.449 0.431 0.416

PDH 0.262 0.270 0.293 0.274 0.282 0.396 0.407 0.402 0.410 0.414 0.440 0.454 0.456 0.454 0.467

CMFH 0.253 0.282 0.282 0.287 0.313 0.483 0.469 0.473 0.482 0.504 0.486 0.501 0.517 0.536 0.545

CCA-Sign 0.181 0.166 0.159 0.150 0.145 0.377 0.354 0.340 0.316 0.299 0.483 0.477 0.469 0.450 0.435

CCA-DBQ 0.242 0.221 0.204 0.186 0.176 0.447 0.434 0.406 0.356 0.323 0.492 0.502 0.517 0.513 0.514

CCA-ITQ 0.243 0.228 0.228 0.227 0.231 0.476 0.411 0.426 0.395 0.465 0.516 0.526 0.533 0.538 0.547

NPE-Sign 0.224 0.208 0.199 0.187 0.170 0.394 0.365 0.348 0.324 0.320 0.493 0.487 0.476 0.466 0.439

NPE-DBQ 0.288 0.267 0.256 0.236 0.221 0.448 0.436 0.408 0.363 0.333 0.489 0.510 0.523 0.521 0.519

NPE-ITQ 0.284 0.274 0.261 0.263 0.265 0.462 0.419 0.432 0.395 0.438 0.516 0.528 0.532 0.540 0.543

CCA-ACQ 0.307 0.325 0.336 0.337 0.339 0.516 0.508 0.511 0.499 0.507 0.531 0.536 0.544 0.552 0.554

NPE-ACQ 0.322 0.338 0.351 0.349 0.352 0.497 0.512 0.484 0.492 0.522 0.520 0.535 0.543 0.549 0.555

Table 2. Image retrieval performance by text query (T2I). mAP values for various code lengths.

Wiki a-Pascal COCO

# bits c = 16 24 32 48 64 16 24 32 48 64 16 24 32 48 64

CVH 0.170 0.161 0.153 0.147 0.143 0.340 0.317 0.315 0.304 0.289 0.480 0.472 0.467 0.446 0.432

CMSSH 0.177 0.176 0.172 0.179 0.181 0.293 0.296 0.290 0.286 0.288 0.465 0.461 0.454 0.454 0.446

IMH 0.182 0.166 0.161 0.151 0.144 0.291 0.318 0.328 0.355 0.354 0.454 0.450 0.442 0.424 0.410

PDH 0.242 0.247 0.271 0.249 0.265 0.364 0.367 0.362 0.371 0.370 0.439 0.450 0.453 0.453 0.467

CMFH 0.237 0.250 0.262 0.276 0.280 0.451 0.441 0.454 0.462 0.477 0.479 0.501 0.519 0.536 0.547

CCA-Sign 0.175 0.161 0.155 0.148 0.143 0.431 0.425 0.415 0.382 0.362 0.477 0.471 0.465 0.446 0.432

CCA-DBQ 0.223 0.206 0.194 0.178 0.170 0.447 0.434 0.406 0.356 0.323 0.493 0.503 0.515 0.511 0.510

CCA-ITQ 0.223 0.215 0.211 0.211 0.217 0.463 0.423 0.433 0.418 0.443 0.518 0.531 0.536 0.542 0.550

NPE-Sign 0.211 0.187 0.176 0.164 0.151 0.422 0.420 0.410 0.377 0.364 0.492 0.487 0.479 0.469 0.442

NPE-DBQ 0.271 0.252 0.244 0.230 0.218 0.448 0.436 0.408 0.363 0.333 0.489 0.512 0.521 0.518 0.516

NPE-ITQ 0.253 0.252 0.253 0.239 0.240 0.459 0.425 0.405 0.415 0.410 0.515 0.530 0.533 0.538 0.545

CCA-ACQ 0.295 0.290 0.298 0.295 0.303 0.474 0.463 0.475 0.472 0.472 0.520 0.543 0.543 0.556 0.562

NPE-ACQ 0.298 0.311 0.312 0.304 0.309 0.451 0.470 0.476 0.469 0.477 0.521 0.540 0.546 0.554 0.561

tion of alternating update rules for each of Am and Um, ∀m,

is straightforward.

4. Experiments

We experimentally analyze performance of our ACQ in

the two common tasks of cross-modal retrieval: one is text

retrieval by image query (I2T) and the other is image re-

trieval by text query (T2I). We use CCA and NPE for the

base methods of ACQ (see Section 3.1), which are denoted

as CCA-ACQ and NPE-ACQ, respectively. The hyperpa-

rameters are tuned by standard parallel grid-search on a

subset of training data. We compare our ACQ with three

existing quantization methods: Sign (just taking the sign of

CCA or NPE embedding), DBQ [19], and ITQ [7]. Fur-

thermore, we also evaluate five state-of-the-art cross-modal

hashing methods including CVH [23], CMSSH [2], IMH

[32], PDH [28], and CMFH [4] by using Matlab codes pro-

vided by each author group. Their hyperparameters are

carefully tuned for each experiment.

We follow the common evaluation protocol for cross-

modal hashing [4, 28, 32]. Retrieval is performed in the

Hamming ranking manner [7], where retrieved data points

are sorted in ascending order of their Hamming distances

from the query. As in [4, 28, 32], retrieval performance is

measured by mean Average Precision (mAP) values and the

retrieval is judged as successful if and only if the seman-

tic label of a retrieved data point is the same as that of the

query.

4.1. Datasets

The following three multimodal benchmark datasets are

used in our experiments.

Wiki2 [27]. This dataset contains 2, 866 articles collected

from Wikipedia Featured Articles. Each article consists of

a pair of an image and a text description which is catego-

rized into 10 semantic topic classes. Our image feature is

extracted by using the Caffe implementation3 of a Convolu-

tional Neural Network (CNN) called AlexNet [22]. Specifi-

cally, we first extract 4, 096D activation features from its fc6

layer, then reduce their dimension to 128D by PCA as done

in [1]. For text feature, we use 100D skip-gram word vec-

tors [26] learned by word2vec4 and compute a mean vec-

tor of the word vectors of the words appear in each text

description. Following its standard data split, we use 693
documents for testing and the other 2, 173 for training.

a-Pascal5 [5]. This dataset contains 12, 695 images of 20
categories of objects. We use multiple handcrafted image

2http://www.svcl.ucsd.edu/projects/crossmodal/
3http://caffe.berkeleyvision.org/
4https://code.google.com/p/word2vec/
5http://vision.cs.uiuc.edu/attributes/
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(a) I2T on Wiki @ 16 bits
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(b) I2T on Wiki @ 64 bits
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(c) T2I on Wiki @ 16 bits

10 50 100 200 300 400 500
0.1

0.2

0.3

0.4

Number of Top Retrieved Points

P
re

c
is

io
n

 

 
CVH

CMSSH

IMH

PDH

CMFH

CCA−ACQ

NPE−ACQ

(d) T2I on Wiki @ 64 bits
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(e) I2T on a-Pascal @ 16 bits
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(f) I2T on a-Pascal @ 64 bits
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(g) T2I on a-Pascal @ 16 bits
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(h) T2I on a-Pascal @ 64 bits
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(i) I2T on COCO @ 16 bits
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(j) I2T on COCO @ 64 bits
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(k) T2I on COCO @ 16 bits
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(l) T2I on COCO @ 64 bits

Figure 3. Precision values at various numbers of top retrieved data points. Results for 16-bit and 64-bit codes are shown.

features [5]: we first extract a long vector by concatenat-

ing the features of texture, HOG, edge, and color, and then

reduce their dimension to 128D by PCA. Each image is as-

sociated with a 64D binary attribute vector each of which

indicates a part or some semantic property of an object (e.g.,

leg, wing, and 2D-boxy). We use these binary attribute vec-

tors as our text features. In this dataset, we randomly sam-

ple 1, 000 images for query and use the rest to construct

training and database sets.

COCO6 [24]. Microsoft COCO v2014.1 is a large-scale

image dataset that contains 123, 558 images of 80 cate-

gories of objects. Each image is associated with five short

sentences describing its content. In our experiments, we

keep only the first sentence for each image. We use the same

features as Wiki, i.e., AlexNet activation features and skip-

gram word vectors for image and text features, respectively.

We randomly sample 1, 000 images for query and use the

rest to construct training and database sets. In this dataset,

6http://mscoco.org/

each image is allowed to have multiple labels, so we judge

the retrieval is successful if a query and a retrieved image

share at least one common label.

4.2. Results

For all the three datasets, mAP values for various code

lengths are reported in Table 1 (for the I2T task) and Table 2

(for the T2I task), and precision values at various numbers

of top retrieved data points are shown in Figure 3.

Results on Wiki. First, as can be seen in Tables 1 and 2,

we found that NPE-ACQ achieves the best mAP values in

all the cases, and the second best is by CCA-ACQ which

uses simple CCA as its base method. The maximum gains

of NPE-ACQ over the third best method, CMFH, reaches

22.8% on I2T and 24.4% on T2I. These results clearly

demonstrate its strong effectiveness of the proposed ACQ

for cross-modal hashing. Second, CCA-ITQ and CCA-

DBQ (resp. NPE-ITQ and NPE-DBQ) always improve

CCA-Sign (resp. NPE-Sign). CCA-ACQ and NPE-ACQ

further boost their performance. Interestingly, CCA/NPE-
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ITQ and CCA/NPE-DBQ are already better than several

baselines in some cases. These results suggest that main-

taining binary quantization quality is essential for cross-

modal hashing, as in the cases of unimodal hashing. Third,

CMFH and PDH tend to get better mAP values as the num-

ber of bits increases. Conversely, some methods such as

CVH, IMH, CCA-Sign, and NPE-Sign clearly decrease. As

discussed in [4, 28], this may be due to orthogonal eigende-

composition involved in these methods, which enforces to

pick uninformative low-variance dimensions. Notably, or-

thogonal quantization can mitigate this harmful effect by ro-

tating data distributions so as to be nearly isotropic [7, 15].

Thanks to this property, CCA-ACQ and NPE-ACQ can

yield much better mAP values for long codes. Finally, as

shown in Figure 3(a-d), CCA-ACQ and NPE-ACQ are al-

ways better than all the baselines in precision values for top

retrieved data points.

Results on a-Pascal. In mAP values shown in Tables 1

and 2, CCA-ACQ or NPE-ACQ is the best in all the cases,

which emphasizes the effectiveness of ACQ. Unlike Wiki,

behaviors of mAP values to the number of bits are not very

monotonous in most of the methods. This may be because

the text feature of this dataset is binary attribute whose dis-

tributions are difficult to be captured due to its high spar-

sity. CMFH, which learns hash codes so as to recover the

latent inter-modal relational matrix rather than data distri-

butions, yields relatively better performance on this dataset

and is comparable with NPE-ACQ for 64-bit codes on the

T2I task. In precision for top retrieved data points shown in

Figure 3(e-h), CCA-ACQ and NPE-ACQ are better than the

other state-of-the-art methods in most cases.

Results on COCO. Even for this larger-scale dataset, over-

all tendency is quite similar to the other two datasets; again,

CCA-ACQ or NPE-ACQ shows the best mAP values in all

the settings. These results further emphasize the importance

of binary quantization and its strong effectiveness of the

proposed ACQ approach.

Radius Search Performance. Another popular retrieval

procedure is radius search with hash lookup tables, which

retrieves data points lie in buckets within some small Ham-

ming distances from a query [7]. Table 3 shows the com-

parative results at Hamming radius within 2. All the meth-

ods yield reasonable performance for short codes. However,

CVH, CMSSH, and IMH fail to find data points as the num-

ber of bits increases. Meanwhile, CCA-ACQ, NPE-ACQ,

and PDH successfully retrieve data points for even 64-bit

codes, and CCA-ACQ and NPE-ACQ tend to get better per-

formance compared to PDH.

Image-to-Image Search Performance. Several studies in

the literature [32, 28] have proven that cross-modal hashing

can also improve unimodal search performance by leverag-

ing semantic information carried by text modality data. We

report comparative results on the task of image retrieval by

image query (I2I) in Table 4. As can be seen, CCA-ACQ

Table 3. Radius search performance by hash lookup within Ham-

ming radius 2. Precision values for various code lengths. ‘-’ means

unsuccessful retrieval, i.e., no item is found in the setting.

I2T on Wiki T2I on Wiki

# bits c = 16 32 64 16 32 64

CVH 0.335 - - 0.335 - -

CMSSH 0.265 0.000 - 0.241 - -

IMH 0.387 - - 0.387 - -

PDH 0.208 0.303 0.269 0.208 0.303 0.269

CMFH 0.335 - - 0.426 0.457 -

CCA-ACQ 0.379 0.602 0.689 0.446 0.640 0.670

NPE-ACQ 0.367 0.519 0.697 0.419 0.654 0.647

I2T on a-Pascal T2I on a-Pascal

# bits c = 16 32 64 16 32 64

CVH 0.546 0.400 - 0.564 0.500 -

CMSSH 0.460 0.000 - 0.519 - -

IMH 0.331 - - 0.257 0.027 -

PDH 0.309 0.390 0.511 0.314 0.403 0.516

CMFH 0.730 0.748 - 0.777 0.722 -

CCA-ACQ 0.765 0.895 0.993 0.768 0.869 0.909

NPE-ACQ 0.785 0.896 0.975 0.752 0.841 0.944

I2T on COCO T2I on COCO

# bits c = 16 32 64 16 32 64

CVH 0.736 0.928 - 0.734 0.933 -

CMSSH 0.627 0.763 - 0.635 0.774 -

IMH 0.709 0.791 - 0.696 0.925 -

PDH 0.456 0.438 0.504 0.462 0.439 0.506

CMFH 0.638 0.846 0.727 0.669 0.845 0.909

CCA-ACQ 0.701 0.903 0.996 0.715 0.924 0.992

NPE-ACQ 0.729 0.939 0.999 0.734 0.956 0.999

and NPE-ACQ are always better than the natural baseline,

PCA-ITQ [7], and achieve the best mAP values in all the

cases. As for the other methods, CMFH and PDH show

relatively better performance compared to the other exist-

ing methods. Note that CCA-ITQ and NPE-ITQ do al-

ready a good job and are competitive to CMFH or PDH in

many cases. These results suggest that binary quantization

is also crucial for improving unimodal search performance

by cross-modal hashing methods.

Parameter Sensitivity. We empirically analyze the sen-

sitivity of retrieval performance of CCA-ACQ to the three

hyperparameters α, λ, and η (see (8)) using Wiki (similar

tendencies are observed on the other datasets). The results

are shown in Figure 4. First, CCA-ACQ is better than CCA-

ITQ for wide ranges of these values. Hence precise tuning

may not always be necessary to achieve satisfactory perfor-

mance. Second, performance is rather sensitive to λ and

η which control the tradeoff between similarity preserva-

tion and binary quantization in each modality space. This is

also an evidence that joint optimization is crucial to improve

cross-modal hashing.

Image Description Performance. Lastly, we apply the

CCA-ACQ binary codes to the retrieval-based image de-

scription task on COCO. We follow the common evaluation

protocol for this task [18, 17]. 5K images and correspond-

ing 25K sentences are used for testing (query and database)

and the rest are used for training. We report (i) Recall@K

(R@K) which is the fraction of queries for which a correct
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Table 4. Image-to-Image (I2I) unimodal search performance. mAP values for various code lengths.

Wiki a-Pascal COCO

# bits c = 16 24 32 48 64 16 24 32 48 64 16 24 32 48 64

PCA-ITQ 0.173 0.166 0.179 0.168 0.164 0.282 0.284 0.283 0.282 0.283 0.437 0.448 0.449 0.454 0.456

CVH 0.152 0.144 0.142 0.139 0.137 0.315 0.309 0.312 0.312 0.308 0.443 0.433 0.424 0.408 0.397

CMSSH 0.168 0.165 0.159 0.165 0.168 0.310 0.309 0.304 0.303 0.295 0.441 0.433 0.437 0.439 0.436

IMH 0.164 0.159 0.153 0.146 0.143 0.298 0.286 0.279 0.272 0.267 0.426 0.418 0.411 0.397 0.388

PDH 0.199 0.203 0.219 0.203 0.215 0.324 0.329 0.328 0.329 0.328 0.436 0.444 0.449 0.447 0.451

CMFH 0.195 0.219 0.221 0.226 0.225 0.390 0.391 0.394 0.395 0.400 0.462 0.476 0.484 0.497 0.505

CCA-DBQ 0.186 0.174 0.166 0.155 0.152 0.351 0.338 0.327 0.313 0.302 0.465 0.466 0.471 0.462 0.456

CCA-ITQ 0.190 0.173 0.181 0.179 0.177 0.356 0.347 0.349 0.342 0.340 0.477 0.481 0.485 0.490 0.494

NPE-DBQ 0.206 0.204 0.202 0.198 0.191 0.343 0.340 0.331 0.321 0.312 0.460 0.470 0.474 0.465 0.460

NPE-ITQ 0.224 0.216 0.222 0.226 0.229 0.352 0.344 0.342 0.336 0.336 0.476 0.482 0.484 0.487 0.490

CCA-ACQ 0.225 0.221 0.232 0.230 0.234 0.395 0.411 0.412 0.417 0.422 0.483 0.500 0.504 0.515 0.520

NPE-ACQ 0.238 0.237 0.248 0.241 0.245 0.396 0.401 0.404 0.402 0.404 0.478 0.483 0.492 0.502 0.509
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Figure 4. Parameter sensitivity on Wiki. mAP values with various

parameter settings of (a) α, (b) λ, and (c) η. See (8) for details of

the parameters.

item is found among the top K results; and (ii) the median

rank (Med) of the first retrieved ground truth item. If there

are multiple items having an equal Hamming distance, we

assign their mean rank to all of them. In this evaluation, we

use 4, 096D CNN activation features extracted from the fc6

layer of VGGNet [31] and 300D skip-gram word vectors for

image and text representations, respectively. We found that

early stopping of training gives better performance for this

task, so we use a fewer number of iterations for training.

Table 5 shows the results. It is shown that CCA-ACQ

outperforms CCA-ITQ for this task. Not surprisingly, CCA-

ACQ is worse than the recent strong image description

methods [18, 17, 16]. This is because CCA-ACQ uses

compact binary codes, while these methods rely on much

higher-dimensional real-value vectors learned by powerful

neural network models of fine-tuned or extended versions

of Fisher kernels for sentence embedding. One advantage

of using compact binary codes is efficient retrieval, which

is especially beneficial to larger-scale applications.

5. Conclusions

We have proposed a novel approach to cross-modal hash-

ing, named Alternating Co-Quantization (ACQ). As the first

work that mainly considers binary quantization for cross-

modal hashing, we have brought several new insights to the

community. First, similar to the cases of unimodal hash-

ing, minimizing the binary quantization errors is important

to improve cross-modal hashing performance. In particular,

even simple CCA has already achieved highly comparable

Table 5. Image description performance on COCO.

Image Annotation

Method R@1 R@5 R@10 Med

CCA-ITQ 64 bits 2.3 10.9 18.5 52

CCA-ITQ 128 bits 3.5 15.9 25.2 34

CCA-ITQ 256 bits 4.1 16.7 25.9 39

CCA-ACQ 64 bits 2.6 12.9 21.5 43.5

CCA-ACQ 128 bits 4.4 18.4 28.4 32

CCA-ACQ 256 bits 5.2 19.6 30.1 30

CCA (real-value) 64D 6.5 19.8 30.2 29

CCA (real-value) 128D 8.5 24.5 35.9 22

CCA (real-value) 256D 7.9 24.4 35.8 22

BRNNv1 [16] 11.8 32.5 45.4 12.2

BRNN [17] 16.5 39.2 52.0 9

GMM+HGLMM [18] 17.3 39.0 50.2 10

Image Search

Method R@1 R@5 R@10 Med

CCA-ITQ 64 bits 2.1 10.6 18.7 45

CCA-ITQ 128 bits 3.5 13.9 22.8 41

CCA-ITQ 256 bits 3.7 13.5 21.5 79

CCA-ACQ 64 bits 2.2 10.9 18.8 45

CCA-ACQ 128 bits 3.6 14.3 23.4 36.5

CCA-ACQ 256 bits 4.1 15.4 24.1 39.5

CCA (real-value) 64D 5.6 17.2 26.5 32

CCA (real-value) 128D 6.4 19.6 29.9 28

CCA (real-value) 256D 5.7 19.0 28.9 33

BRNNv1 [16] 8.9 24.9 36.3 19.5

BRNN [17] 10.7 29.6 42.2 14

GMM+HGLMM [18] 10.8 28.3 40.1 17

performance with several state-of-the-art methods, when it

is coupled with ITQ. Second, we have shown that joint opti-

mization of similarity preservation and binary quantization

is crucial for improving cross-modal hashing quality. Our

ACQ has yielded much better retrieval performance com-

pared with ITQ, when they are combined with CCA or NPE.

Finally, we have empirically demonstrated that CCA-ACQ

and NPE-ACQ can outperform some recent state-of-the-art

cross-modal hashing methods.

One limitation of the current ACQ formulation is that,

it assumes the GMA framework [29] for its base methods,

hence it cannot be coupled with any dimension reduction

method outside of the form (3). Even though GMA covers

many dimension reduction methods, extending the formu-

lation so that can be combined with more various types of

base methods will be an interesting future direction.
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