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Abstract

We present a practical 3D reconstruction method to ob-

tain a high-quality dense depth map from narrow-baseline

image sequences captured by commercial digital cameras,

such as DSLRs or mobile phones. Depth estimation from

small motion has gained interest as a means of various pho-

tographic editing, but important limitations present them-

selves in the form of depth uncertainty due to a narrow

baseline and rolling shutter. To address these problems, we

introduce a novel 3D reconstruction method from narrow-

baseline image sequences that effectively handles the effects

of a rolling shutter that occur from most of commercial dig-

ital cameras. Additionally, we present a depth propagation

method to fill in the holes associated with the unknown pix-

els based on our novel geometric guidance model. Both

qualitative and quantitative experimental results show that

our new algorithm consistently generates better 3D depth

maps than those by the state-of-the-art method.

1. Introduction

With the widespread use of commercial cameras and

the continuous growth observed in computing power, con-

sumers are starting to expect more variety with the photo-

graphic applications on their mobile devices. Various fea-

tures, such as refocusing, 3D parallax and extended depth of

field, are a few examples of sought-after functions in such

devices [1, 2]. To meet these needs, estimating 3D informa-

tion is becoming an increasingly important technique, and

numerous research efforts have focused on computing ac-

curate 3D information at a low cost.

Light-field imaging and stereo imaging have been ex-

plored as possible solutions. Light-field imaging products

utilize a micro-lens array in front of its CCD sensor to cap-

ture aligned multi-view images in a single shot. The cap-

tured multi-view images are used to compute depth maps

and to produce refocused images. The problem with this

approach is that it requires highly specialized hardware

and it also suffers from a resolution trade-off, which sig-

nificantly reduces the resulting 3D spatial resolution e.g.

Refocusing point Refocusing point

(a) Yu and Gallup [33] (b) Our results

Figure 1. Comparison of the proposed method with the state-of-

the-art. Top : Depth maps. Middle : Synthetic defocused images

based on the depth maps. Bottom : 3D meshes.

Lytro [1] and Pelican [30]. Stereo imaging is an alternative

method that works by finding correspondences of the same

feature points between two rectified images of the same

scene [2, 34]. Although this method shows reliable depth

results, both cameras are required to be calibrated before-

hand and must maintain their calibrated state, which makes

it cumbersome and costly for many applications.

One research direction that has led to renewed interest

is the depth estimation of narrow-baseline image sequences

captured by off-the-shelf cameras, such as DSLRs or mo-

bile phone cameras [15, 33, 13]. The main advantage of

these approaches is that 3D information can be estimated

by an off-the-shelf camera without the need for additional

devices or camera modifications. However, these methods

use images with a narrow-baseline, a few mm, often failing

to generate reasonable depth maps if existing multi-view

stereo such as [8] were to be applied directly. Addition-

ally, we observe that the rolling shutter (RS) used in most

digital cameras causes severe geometric artifacts and results

in severe errors in 3D reconstruction. These artifacts com-

monly occur when the motion is at a higher frequency than
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the frame rate of the camera, like when the user’s hands are

shaking [7, 12].

In this paper, we propose an accurate 3D reconstruc-

tion method from narrow-baseline image sequences taken

by a digital camera. We call this approach Structure from

Small Motion (SfSM). Our major contributions are three-

fold. We first present a model for a RS which effectively

removes the geometrical distortions even under narrow-

baseline in Sec. 3.2. Secondly, we extract supportive fea-

tures and accurate initial camera poses to use as our bun-

dle adjustment inputs in Sec. 3.3. Finally, we propose a

new dense reconstruction method from the obtained sparse

3D point cloud in Sec. 4. To demonstrate the effectiveness

of our algorithm, we evaluate our results on both qualita-

tive and quantitative experiments in Sec. 5.2. To measure

the competitiveness, we draw comparisons with the results

from the state-of-the-art method [33] and depth from the

Microsoft Kinect2 [14] in Sec. 5.3. In terms of its useful-

ness, we show the user-friendliness of our work, providing

a realistic digital refocusing application in Sec. 5.4.

2. Related Work

Our algorithm is composed of two modules: the first

module estimates accurate 3D points from narrow-baseline

image sequences, and the second module computes a dense

3D depth map via linear propagation based on both color

and geometric cues. We refer the reader to [26, 11] for a

comprehensive review of 3D reconstruction with image se-

quences.

Depth from narrow baseline As is widely known, 3D re-

construction from a narrow baseline is a very challenging

task. The magnitude of the disparities are reduced to sub-

pixel levels, and the depth error grows quadratically with

respect to the decreasing baseline width [9]. In this con-

text, there are other ways to estimate 3D information from

the narrow-baseline instead of the conventional correspon-

dence matching in computer vision.

Kim et al. [16] capture a massive number of images

from a DSLR camera with intentional linear movement

and compute high-resolution depth maps by processing in-

dividual light rays instead of image patches. Morgan et

al. [20] present sub-pixel disparity estimation using phase-

correlation based stereo matching and demonstrate good

depth results using satellite image pairs. However, these

approaches work well under a controlled environment but

cannot handle moving objects in the scene.

A more general approach is to use video sequences as

presented in [33, 15]. Yu and Gallup [33] utilize ran-

dom depth points relative to a reference view and identi-

cal camera poses for the initialization of the bundle adjust-

ment. The bundle adjustment produces the camera poses

and sparse 3D points. Based on the output camera poses,

a plane sweeping algorithm is performed to reconstruct a

dense depth map. Joshi and Zitnick [15] compute per-pixel

optical flow to estimate camera projection matrices of im-

age sequences. Then, the computed projection matrices are

used to align the images, and a dense disparity map is com-

puted by rank-1 factorization.

While the studies in [33, 15] have a purpose similar to

our work in terms of depth from narrow-baseline image se-

quences, we observe that the performance depends on the

presence of the RS effect.

Rolling shutter Most off-the-shelf cameras are equipped

with a RS due to the manufacturing cost. However, the RS

causes distortions in the image when the camera is mov-

ing. This distortion limits the performances of 3D recon-

struction algorithms, such as Structure from Motion (SfM).

Many works in [7, 12, 17, 22] have recently studied how to

handle the RS effect. Forssen et al. [7] rectify the RS video

through a linear interpolation scheme for camera transla-

tions and a spherical linear interpolation (SLERP) [27] for

camera rotations. Hedborg et al. [12] formulate the RS bun-

dle adjustment for general SfM using the SLERP schemes.

While the RS bundle adjustment is effective in refining the

camera poses and 3D points in a wide-baseline condition,

it is inadequate for being applied to the bundle adjustment

for small motion due to the high order of the SLERP model.

Therefore, we formulate a new RS bundle adjustment with a

simple but effective interpolation scheme for small motion.

Depth propagation Depth propagation is an important task

that produces a dense depth map. Conventional depth prop-

agation assumes that pixels with similar color are of similar

depth to that of neighboring pixels [6]. Wang et al. [31]

propose a closed-form linear least square approximation to

propagate ground control points in stereo matching. Park et

al. [23] propose a combinatory model of different weighting

terms that represent segmentation, gradients and non-local

means for depth up-sampling. However, the assumption

is too strong because the geometric information is barely

correlated with color intensity, as mentioned in [3]. In our

framework, we propose a linear least square approximation

with a new geometric guidance term. The geometric guid-

ance term is computed using the normal information from

a set of initial 3D points and ultimately helps to obtain a

geometrically consistent depth map.

3. Structure from Small Motion (SfSM)

The main objective of the proposed method is to recon-

struct a dense 3D structure of the scene captured in image

sequences with small motion. To achieve this goal, it is

extremely important to recover the initial skeleton of the

3D structure as accurately as possible. In this section, we

explain the proposed SfSM method for accurate 3D recon-

struction of sparse features.
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3.1. Geometric Model for Small Motion

The geometric model of the proposed method is based on

the conventional perspective projection model [11] which

describes the relationship between a 3D point in the world

and its projection onto the image plane for a perspective

camera. According to this projection model, a 3D coordi-

nate of a world point X = [X,Y, Z, 1]⊺ and its correspond-

ing 2D coordinate in the image x = [u, v, 1]⊺ are described

as follows:

sx = KPX, where K =

⎡

⎣

fx α cx
0 fy cy
0 0 1

⎤

⎦ , (1)

where s is a scale factor, K is the intrinsic matrix of a cam-

era that contains focal lengths fx and fy , principal points cx
and cy , and skew factor α.

In SfSM, the camera pose is modified to adopt the small

angle approximation in rotation matrix representation [4].

Yu and Gallup [33] point out that this small angle approx-

imation is the key to estimating the camera poses and the

3D points without any prior pose or depth information. Un-

der small angular deviations, the camera extrinsic matrix for

SfSM can be simplified as

P = [R(r)| t], where R(r) =

⎡

⎣

1 -rz ry

rz 1 -rx

-ry rx 1

⎤

⎦ , (2)

where r = [rx, ry, rz]⊺ is the rotation vector and t =
[tx, ty, tz]⊺ is the translation vector of the camera. The

function R transforms the rotation vector r into the approx-

imated rotation matrix.

Since the geometric model is designed for small mo-

tion, it needs highly accurate camera poses and feature cor-

respondences. However, a RS camera captures each row

at different time instances, and each row belongs to dif-

ferent camera poses when the camera is moving. This

causes significant error in 3D reconstruction with small mo-

tion. Therefore, we propose a new camera model cover-

ing RS cameras with small motion in Sec. 3.2, as well as a

method to accurately extract features and correspondences

in Sec. 3.3.

3.2. Rolling Shutter Camera Model

To overcome the RS effect, several works [12, 22] have

focused on modeling the RS effect in the case of conven-

tional SfM. In their approaches, the rotation and translation

of each feature are assigned differently according to their

vertical position in the image by interpolating the rotation

and translation between two successive frames. To inter-

polate the changes of rotation and translation, usually the

SLERP [7, 27] method is used for rotation and a linear in-

terpolation is used for translation. The SLERP method is

designed to cover the discontinuous change of the rotation

vector caused by the periodic structure of the rotation ma-

trix. Accordingly, it contains a complex equation for being

applied in the bundle adjustment for small motion, which

can hardly be achieved with a high-order model.

To include the RS effect in our camera model without

increasing its order, we simplify the rotation interpolation

by reformulating its expression under a linear form. Though

the linear interpolation of the rotation vector is simple, it

is effective in modeling the continuously changing rotation

for small motion, where the rotation matrix is composed

not of periodic functions, but only of linear elements. The

rotation and translation vector for each feature between two

consecutive frames are modeled as

rij = ri +
akij
h

(ri+1 − ri)

tij = ti +
akij
h

(ti+1 − ti).

(3)

where rij and tij are the rotation and translation vectors for

the j-th feature on the i-th image respectively, and a is the

ratio of the readout time of the camera for one frame. h
denotes the total number of the rows in the image, and kij
stands for the row number of each feature. The readout time

of the camera can be calculated by using the method devel-

oped by Meignast et al. [18]. For the global shutter camera,

a is set to zero. The camera poses Pij for RS projection

model are formulated by Eq. (2) using the new rij and tij .

We use this camera model to build our bundle adjustment

function described in Sec. 3.4.

3.3. Feature Extraction

Since the baseline for SfSM is narrow, a small error

in feature correspondence results in significant artifacts on

the whole reconstruction. Thus, the accurate extraction of

features and correspondences is a crucial step in the pro-

posed method. For initial feature extraction, we utilize well-

known Harris corner [10] and Kanade-Lucas-Tomasi (KLT)

tracker [28] to extract sub-pixel corner features in the ref-

erence frame and track them through the sequence. This

scheme is feasible when the pixel changes in the subsequent

frames are small.

As the next step, we filter out the outliers since the fea-

tures can suffer from slipping on lines or blurry regions,

and even be shifted by moving objects or the RS effect.

For this process, we compute the essential matrix E us-

ing a 5-point algorithm based on the RANSAC [21], and

then we calculate the fundamental matrix as follows: F =
K−⊺EK−1 [11]. The fundamental matrix F describes the

relationship between two images which defined as

l2 = Fx1, l1 = F
⊺
x2, l

⊺
1x1 = 0, l

⊺
2x2 = 0 (4)

where x1 and x2 are the corresponding points in consecu-

tive frames, and l1 and l2 are their corresponding epipolar
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lines. In practice, the points are not exactly on the lines so

that the line-to-point distance is used to check the inliers.

For each pair of the reference frame and another, an essen-

tial matrix is estimated to contain the maximum number of

inlier features with the line-to-point distance under 1 pixel.

The final inlier set κ is only composed of points visible on

90 percent of the frames. Additionally, the extrinsic pa-

rameters, ri and ti are estimated by the decomposition of

essential matrices for all frames [11].

3.4. Bundle Adjustment

Bundle adjustment [29, 33] is a well-studied nonlinear

optimization method which iteratively refines 3D points and

camera parameters by minimizing the reprojection error.

We formulate a new bundle adjustment for our geometric

model with the proposed camera model from Sec. 3.2 and

the features from Sec. 3.3. The cost function C is defined

as the squared sum of all reprojection errors as follows:

C(r, t,X) =

NI
∑

i=1

NJ
∑

j=1

||xij − ϕ(KPijXj)||
2, (5)

where x, K, P, and X follow the previously introduced

geometric model in Eq. (1, 2), and r, t follow the proposed

camera model in Eq. (3). NI and NJ are the number of

images and features, and ϕ is a normalization function to

project a 3D point into the normalized coordinate of camera

as follows ϕ([X,Y, Z]⊺) = [X/Z, Y/Z, 1]⊺.

The bundle adjustment refines the camera parameters r,

t and the world coordinates X with a reliable initialization.

We set the initial camera parameters as the decomposition

of essential matrices from Sec. 3.3. We set the initial 3D

coordinates for all pixels as the multiplication of their nor-

malized image coordinates X̂j = [x̂j , ŷj , 1]
⊺ and a random

depth value ẑ. To estimate camera poses and the 3D points

that minimize the cost function in Eq. (5), the Levenberg-

Marquardt (LM) method [19] is used. For computational

efficiency, we compute the analytic Jacobian matrix for the

proposed SfSM bundle adjustment, which is different from

the Jacobian matrix for the conventional SfM. Since our

rotations and translations are linearly interpolated for two

consecutive frames, each residual is related to the extrinsic

parameters of two viewpoints. Thus, the Jacobian matrix

for the proposed method is computed as depicted in Fig. 2.

By the proposed bundle adjustment, accurate 3D recon-

struction of the feature points in the images can be success-

fully achieved for a RS camera performing small motion.

The 3D points obtained from this step are used in the sub-

sequent stage for dense reconstruction as the robust initial-

ization of the scene.
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(a) General Jacobian matrix (b) Proposed Jacobian matrix

Figure 2. Example Jacobian matrices with 8 points (16 parameters)

and 6 cameras.

4. Dense Reconstruction

The initial points obtained from Sec. 3 are geometrically

well reconstructed, but the points are not dense enough for

3D scene understanding because it highly depends upon the

scene characteristics and feature extraction. To overcome

this sparsity, we propose a depth propagation method for

dense reconstruction.

4.1. Objective Function

Our propagation can be formulated as minimizing an en-

ergy function for a depth D on every single pixel point. Our

energy function consists of three terms: a data term Ed(D),
a color smoothness term Ec(D) and a geometric guidance

term Eg(D) expressed as follows:

E(D) = Ed(D) + λcEc(D) + λgEg(D), (6)

where λc and λg are the relative weights to balance the

three terms. Since we formulate the three terms in quadratic

forms, the depth that minimizes E(D) is calculated from

∇E(D) = 0. (7)

The solution of Eq. (7) is efficiently obtained by solving a

linear problem in the form of Ax = b. The explanations of

the three terms follow with details.

Data term In Eq. (6), the data term indicates the initial

sparse points obtained from Sec. 3.4, which is designed as

Ed(D) =
∑

j

(

Dj − Zj

)2

, (8)

where Dj is the targeted depth of the pixel j where the ini-

tial sparse depth Zj is computed from Sec. 3.

Color smoothness term The color smoothness term is de-

fined as

Ec(D) =
∑

p

∑

q∈Wp

(

Dp −
wc

pq
∑

q w
c
pq

Dq

)2

, (9)

where p is a pixel on the reference image and q is the pixel

in the 3×3 window Wp centered at p. The weight term wc
pq
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Figure 3. Geometric guidance term.

is the color affinity which is defined as follows:

wc
pq = exp

(

∑

I∈lab

−
|Ip − Iq|

2max(σ2
p, ǫ))

)

, (10)

where σ2
p =

∑

q∈Wp

(I2p − I
2
q), (11)

where I is the color intensity vector of the reference image

in lab color space and ǫ is a maximum bound. This color

similarity constraint was presented in [31] and is based on

the assumption that each object consists of consistent color

variation in the scene. Although it demonstrates reliable

propagation results, it could not cover the continuous depth

changes on the slanted surface with sparse control points

while many real-world scenes have slanted objects with

complex color variations.

Geometric guidance term To overcome the limitations of

using only the color smoothness term, we include a geo-

metric guidance term, which provides a geometrical con-

straint between adjacent pixels to have similar surface nor-

mals. Assuming that the depth of the scene is piecewise

smooth, we define the geometric constraint Eg(D) using

the pre-calculated normal map described in Sec. 4.2 :

Eg(D) =
∑

p

∑

q∈Wp

wg
p

(

Dp −
np · X̂q

np · X̂p

Dq

)2

, (12)

where np = [nx
p , n

y
p, n

z
p]

⊺ is the normal vector of p and X̂p

is the normalized image coordinate of p. wg
p is a weight of

the consistency of the normal directions between neighbor-

ing pixels.

wg
p =

1

Ng

∑

q∈Wp

exp

(

−(1− np · nq)

γg

)

, (13)

where γg is a parameter which determines the steepness of

the exponential function, and Ng is the number of neighbor-

ing pixels in the window Wp. If the normal vectors of neigh-

boring pixels are barely correlated with the normal vector of

the center pixel, then the optimized depth D is less affected

by the geometric guidance term.

4.2. Normal map Estimation

To incorporate the geometric guidance term in the ob-

jective function Eq. (6), a pixel-wise normal map should be

(a) Reference image & 3D points (b) Normal map

Figure 4. Normal map estimation - Plant.

previously estimated as shown in Fig. 4. First, we determine

the normal vector for each sparse 3D point using local plane

fitting. The sparse normal vectors are used for the data term

of the normal propagation, and each normal component in

xyz is propagated by the color smoothness term in Eq. (9).

Since we observe that the normal vectors of adjacent pixels

with high color affinity tend to be similar [32], the color-

based propagation produces reliable dense normal map.

5. Experimental Results

Our method is evaluated under three different perspec-

tives. First of all, we demonstrate the effectiveness of each

module of our framework by quantitative and qualitative

evaluation in Sec. 5.2. Second, we compare our 3D recon-

struction results with those obtained from the conventional

state-of-the-art method [33] in Sec. 5.3. For a fair compari-

son, we use author-provided datasets1 taken with a Google

Nexus. Finally, our results are compared with the depth

maps from the Microsoft Kinect2 which is valid for being

used as ground truth [24].

5.1. Experiment Environment

We capture various indoor and outdoor scenes with a

Canon EOS 60D camera using the video capturing mode.

We obtain 100 frames for 3 seconds. While capturing each

image sequence, the camera is barely moved with only in-

advertent motion by the photographer.

The proposed algorithm required ten minutes for 10000

points over 100 images in MATLABTM. Among all com-

putation steps, the feature extraction is the most time-

consuming. However, we expect that parallelized comput-

ing using GPU makes the overall process more efficient. A

machine equipped with an Intel i7 3.40GHz CPU and 16GB

RAM was used for computation.

We set the parameters as follows: the steepness of geo-

metric guidance weight γg is fixed as 0.001 and the max-

imum bound ǫ as 0.001. The pre-calculated ratio of the

readout time a is set as 0.5, 0.7 and 0.3, respectively, for

the Canon EOS 60D, Google Nexus and Kinect2 RGB. The

resolution of all the images among the dataset is 1920 ×
1080.

1http://yf.io/p/tiny/
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Side view Side view

Top viewFrontal view Frontal view Top view

Side view Side view

(a) Reference images (b) SfSM without RS handling (c) SfSM with RS handling

Figure 5. SfSM result with/without RS handling - Grass (Top) & Building1 (Middle) & Wall (Bottom).

(a) (b) (c) (d)

Figure 6. Dense reconstruction result with/without geometric guidance - Building2. (a) Reference image. (b) Estimated normal map. (c)

3D mesh and depth without geometric guidance. (d) 3D mesh and depth map with geometric guidance.

5.2. Evaluation of the proposed method

In this subsection, we show the effectiveness of our RS

handling method. We set a = 0.5 for the RS-handled case

and a = 0 for the RS-unhandled case and compare the

results. The qualitative and quantitative results are shown

in Fig. 5 and Fig. 7, respectively. In Figure 5, we observe

that the RS effect is removed, so that perpendicular planes

are not distorted and are geometrically correct. Fig. 7 re-

ports the average reprojection errors between the two cases.

For all datasets, our RS handling method significantly re-

duces reprojection errors.

To verify the usefulness of our geometric guidance term

in Sec. 4, we compare the results with and without the term

as shown in Fig. 6. The result using only the color smooth-

ness term causes severe artifacts on the slanted plane with

multiple colors due to the lack of geometric information for

an unknown depth. On the other hand, the geometric guid-

ance term assists in preserving the slanted structures.

5.3. Comparison to state-of-the-art

To qualitatively evaluate our method, we first compare it

with the state-of-the-art method [33]. In Figure 8, results

0
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Without Rolling Shutter handling With Rolling Shutter handling

Figure 7. Average reprojection error for 8 datasets without RS han-

dling, and with RS handling (Unit : pixel).

from [33] show distorted variations on depth maps. This is

due to their disregard of the RS effect and plane-sweeping

algorithm [5] for dense reconstruction whose data term is

too noisy for narrow-baseline images. On the other hand,

our bundle adjustment and propagation produce accurate

depth maps which are continuously varying and geometri-

cally correct.

For quantitative evaluation, we also compare our method

with Kinect fusion [14] in a metric scale. The Kinect depth

is aligned from the mesh using ray tracing with the known

extrinsic matrix of the Kinect RGB to the depth sensor.
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(a) Reference images [33] (b) Depth maps [33] (c) Our depth maps (d) Our 3D meshes

Figure 8. Result comparison with [33] - Stone (Top), Trash (Bottom).

2.2m

0m

4.4m

0m

(a) Reference images (b) Kinect depth maps (c) Our depth maps (d) Depth difference maps

Figure 9. Result comparison with the depth from Kinect fusion - Pot (Top), Room (Bottom)

Table 1. The percentages of depth error from Kinect2.

Dataset Max. depth R10 R20

Pot 2.2m 94.14% 99.07%

Room 4.4m 85.50% 96.31%

Due to the scale ambiguity of our results, the scale of each

depth map is adjusted to the scale of the depth map from the

Kinect using the average depth value. As shown in Fig. 9,

the scale-adjusted depth maps from our method are simi-

lar enough to the depth maps from the Kinect fusion. For

more detailed analysis, we utilize a robustness measure fre-

quently used in a Middlebury stereo evaluation system [25].

Specifically, R10 and R20 respectively denote the percent-

age of pixels that have a distance error of less than 10% and

20% of the maximum depth value in the scene. Except for

the occluded regions, only 5.86% pixels of the Pot dataset

have over 22cm error compared to the depth from Kinect2,

which is a reasonable error.

5.4. Applications

One of the emerging applications in the computer vision

field is digital refocusing, changing a point or level of focus

after taking a photo [1, 30, 15, 33, 13, 2]. With a depth map,

we can add a synthetic blur by applying different amounts

Figure 10. Refocusing based on our depth maps in Fig. 11

of blur depending on the pixels’ depth as shown in Fig. 10.

For realistic digital refocusing, an accurate depth map is

necessary. To show a noticeable improvement of the appli-

cation, we synthetically render defocused images based on

depth maps from the proposed method and [33]. As shown

in Fig. 1, since the depth map from [33] is geometrically

inaccurate, the defocused image rendered using the depth

map does not look natural. On the other hand, the result

from our algorithm shows a distinctively more realistic re-

focusing effect.
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(a) Reference images (b) SfSM results (c) Depth maps (d) Our 3D meshes

Figure 11. Our final results - Road (First) & Bridge (Second) & Rocks (Third) & Tree (Fourth) & Faucet (Fifth) & Park (Sixth).

6. Discussion

Conclusion This paper has presented an accurate and dense

3D reconstruction method using only a narrow-baseline im-

age sequence captured from small motion. Three major

contributions have been introduced: efficient outlier feature

removal, a novel SfSM method with RS bundle adjustment

and a dense reconstruction algorithm with geometric guid-

ance constraint. By virtue of our RS handling procedure,

the proposed method is very practical and generic since

it can be applied to both global shutter and rolling shut-

ter cameras. Furthermore, to overcome the limitation of

point-based sparse reconstruction, an accurate depth prop-

agation method has been designed. Finally, a large variety

set of experiments have been conducted, highlighting the

high-quality depth maps and 3D meshes obtained with our

method. These results have been compared against the ex-

isting methods with different criterion, bringing to light the

strong improvements offered by our approach.

Limitation & Future work We have proposed a practical

system that has the potential to benefit a number of vision

applications. Because we have focused on the high-quality

depth only from small motion, the performance of the pro-

posed method is not guaranteed for datasets with large ro-

tations. As an important part of future work, we plan to

accurately reconstruct 3D regardless of the amount of rota-

tions. In addition, while our depth propagation shows re-

liable dense reconstruction results, there is still room for

mitigating the over-smoothing effect. Moreover, our depth

result is not represented in the metric scale since the esti-

mated camera poses are up to scale. For metric scale es-

timation, usage of a camera equipped with a gyro-sensor,

such as smartphone may be a good solution.
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