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Abstract

Object proposals have recently fueled the progress in

detection performance. These proposals aim to provide

category-agnostic localizations for all objects in an image.

One way to generate proposals is to perform parametric

min-cuts over seed locations. This paper demonstrates that

standard parametric-cut models are ineffective in obtaining

medium-sized objects, which we refer to as the middle child

problem. We propose a new energy minimization framework

incorporating geodesic distances between segments which

solves this problem. In addition, we introduce a new su-

perpixel merging algorithm which can generate a small set

of seeds that reliably cover a large number of objects of

all sizes. We call our method POISE— “Proposals for Ob-

jects from Improved Seeds and Energies.” POISE enables

parametric min-cuts to reach their full potential. On PAS-

CAL VOC it generates ∼2,640 segments with an average

overlap of 0.81, whereas the closest competing methods re-

quire more than 4,200 proposals to reach the same accu-

racy [24, 30]. We show detailed quantitative comparisons

against 5 state-of-the-art methods on PASCAL VOC and Mi-

crosoft COCO segmentation challenges.

1. Introduction

Figure-ground object proposal algorithms [5, 10, 24, 32,

4, 30] have recently become popular due to their success-

ful application in object detection and semantic segmenta-

tion [16]. These methods can find the location and, possibly,

the shape of an object, helping to improve recognition.

Malisiewicz and Efros [28] were the first to suggest gen-

erating a large pool of proposals for recognition. The first

widely-used method was CPMC [5], which generates pro-

posals by selecting a few seed regions as priors for object

support, and performing parametric min-cut (PMC) on the

MRF graph generated from each seed. More recently, al-

ternatives to CPMC have been developed. Some of them

‡ This work was conducted while the 2
nd author was at Georgia Tech.

generate segments from energy minimization via graph-

cuts [19, 9, 31, 24]. Other popular methods perform ag-

glomerative clustering [32, 4], or employ edge-based tech-

niques [23, 30] to generate proposals.

We believe that a discrete energy minimization approach

has the potential to produce better object segments than the

current CRF models, but only if the graphical model and its

parameters are carefully designed. This fits in well with the

long history of graphical models in obtaining elegant, yet

effective solutions to hard vision problems [20].

It has been observed empirically that PMC tends to pro-

duce segments which are either comparable in size to the

seed region or extend almost to the full image (see Fig. 1

for an example). In particular, segments which are in the

middle and often correspond to particularly salient object

candidates are frequently missing, and therefore do not get

the attention that they deserve. We refer to the generation

of these missing segments as the middle child problem. We

will demonstrate that this problem is an intrinsic property of

existing PMC formulations [5, 9, 19] and cannot be solved

simply by tuning parameters or exploring breakpoints ex-

haustively. The middle child problem is a significant barrier

to the use of PMC to generate effective object proposals.

We propose an algorithm to solve the middle child prob-

lem using PMCs. After obtaining a segment at a particular

parameter λ, we adjust the unary potentials according to the

geodesic distance of all superpixels in the image with re-

spect to the current segment. This facilitates the generation

of medium-sized segments by lowering their energy. The

approach is a modification of the PMC framework, thereby

maintaining the nesting property [22] of the segments pro-

duced. The resulting algorithm’s run-time is ∼3.5 seconds

when generating 1,000 proposals.1

We also introduce a new superpixel merging algorithm

for generating seeds. It utilizes an adaptive appearance

thresholding strategy to generate a hierarchy of superpixels

of varying sizes, so that more superpixels are generated in

regions that have more internal variation and less are gener-

1Multi-threaded run-time on Intel i7-3930K. Code available online.
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Figure 1: This example demonstrates the middle child problem. The seed is placed on the child’s jersey, as shown in (a). The probabilistic

boundary map suggests that it should be possible to produce a segment containing just the child in red. Each row shows parametric min-cuts

produced by a method from the displayed seed. The top row demonstrates that RIGOR [19] is incapable of finding this segment and the

bottom row shows our results. Unlike RIGOR, we are able to capture the middle child (red outlined).

ated in regions with uniform color. This approach generates

a small set of reliable seeds that cover objects of all sizes

and diverse appearances, and improves on previous algo-

rithms for small and less salient objects.

These improvements result in a state-of-art object pro-

posal algorithm. Our method requires many fewer propos-

als than its competitors to obtain the same accuracy. The

performance of our algorithm is validated on two segmen-

tation benchmarks: PASCAL VOC and MS COCO [27].

In §2 we review earlier proposal generation methods, and

their role in detection pipelines. §3 explains in detail the

causes and effects of the middle child problem. §4 gives

an efficient solution to the problem. Our superpixel seed

generation method is explained in §5. This is followed by

evaluation in §6, which quantitatively demonstrates the ef-

fects of each of our contributions. We conclude in §7.

2. Related Work

Convolutional neural networks (CNN) have been leading

the progress in object detection [16, 15, 17], and part of their

success can be attributed to their use of object proposals.

Before proposal methods, it was common for classifiers to

exhaustively test ∼ 106 sliding window locations [33, 12].

Object proposal methods [32, 5, 30] provide a more man-

ageable set of regions, which in most cases is < 5K. Given

a smaller set of regions, it becomes feasible to apply more

complex classifiers, increasing accuracy. Recent experi-

ments have also shown that using proposals can reduce false

positives in a class-specific object detector like DPM [2].

Proposal generation methods either produce bounding

boxes [36, 2, 6], or segments [9, 5, 32]. Recent work [16, 8]

argues for latter by demonstrating that segmentation-based

features significantly increase the mean accuracy on both

segmentation and detection challenges in Pascal VOC [11].

Their experiments indicate that both object shape and con-

text are useful for recognition.

Encouraging results for detection have recently spurred

new proposal methods. Selective Search [32] is one of

the more popular methods and is based on grouping. It

performs hierarchical merging of superpixels with differ-

ent metrics, producing a diverse set of proposals. Yan-

ulevskaya [35] and Bonev et al. [4] improve Selective

Search by guiding the hierarchical grouping process. In-

stead of grouping by various metrics, our method segments

objects by finding global minima of an energy function de-

fined on superpixels. This is similar to other methods per-

forming maximum a posteriori (MAP) inference by graph-

cuts for proposal generation [5, 19, 9, 31, 24].

Recently, there have been some attempts to produce pro-

posals by supervised learning. Krähenbühl and Koltun’s

LPO [24] generates regions from CRF models trained on

VOC. We demonstrate better performance than LPO with-

out training any models for proposal generation. Pinheiro et

al. [29] introduced a CNN trained on COCO to generate

segment proposals. POISE’s segment boundaries appear

to be qualitatively better than [29], which loses spatial ac-

curacy due to the pooling layers. We refer the reader to

Hosang et al. [18] for an excellent review of proposal meth-

ods. In §6 we evaluate several methods using the average

recall metric which was introduced in their work.

One main contribution of this paper is the use of geodesi-

cally guided PMC to solve the middle child problem. Kol-

mogorov et al. [22] review PMC applications in vision.

They demonstrate how PMCs can be used to solve some

geometric functionals. Lim et al. [26] deal with more gen-

eral constraints to produce accurate segments, when some

ground-truth statistics are available. [25] discusses gener-

ating more solutions by decomposing the image. Certainly

these methods could be useful for generating proposals, but

they typically produce a segment in the order of seconds.

Batra et al.’s work on Diverse M-Best [3] obtains highly

probable solutions beyond MAP by Lagrangian relaxation

in MRF models. This is related to our approach, since both

methods change unary costs after obtaining the first opti-

mal solution. On the other hand, exemplar-cut [34] changes

energies to push solutions toward exemplars. Both these

approaches [3, 34] adjust energies to direct solutions away
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or towards existing solutions/exemplars, whereas we adjust

the energy to encourage a more complete set of solutions.

3. The Middle Child Problem

This three part section defines and explains the middle

child problem in PMC for segmentations. We start by in-

troducing the PMC energy and the equivalent graph. In the

second part, we illustrate why the problem exists using a

simple model with 3 regions. We generalize this model in

the third section, and show that the problem remains. Our

example images are constructed from concentric regions

which mimics the compositional nature of objects.

Generating Proposals by PMC: Our algorithm uses

graph-cuts from multiple seeds to compute segments. For

each seed, a directed graph G = 〈V, E〉 is created with

nodes V and edges E . Using this graph, we construct and

minimize the Quadratic Pseudo-Boolean (QPB) function,

E(x) =
∑

i∈V

(
θ1i xi + θ0i xi

)
+

∑

(i,j)∈E

(
ψ11
ij xixj + ψ01

ij xixj

+ ψ10
ij xixj + ψ00

ij xixj
)
.

The solution is the boolean vector x = [x1, . . . , xn]. θ
ℓ
i is

the unary potential associated with variable vi when it takes

the binary label ℓ. The pairwise potential, ψ
ℓη
ij , is used when

variables vi and vj take binary labels ℓ and η respectively.

Since we use Potts energy, where ψ01
ij = ψ10

ij (which we

will denote as ψi∼j), we can simplify the function to

E(x) =
∑

i∈V

(

θ
1
i xi + θ

0
i xi

)

+
∑

(i,j)∈E

(ψi∼j |xi − xj |) . (1)

To generate object proposals, we convert this to the para-

metric pseudo-quadratic form, where θℓi = αℓi +λβ
ℓ
i , which

can be represented as the graph given in Fig. 2(a). We de-

note the resulting parametric energy as Eλ(x). The real-

valued PMC parameter λ belongs to a sequence λ0 < λ1 <

· · · < λL. The unary potentials are defined by the values

αℓi and βℓi . Given these parameters, the energy can be read-

ily minimized by max-flow/min-cut. Min-cut produces two

disjoint sets S and T , where node vi ∈ S iff xi = 1, and

vi ∈ T iff xi = 0. The cut is defined by the sum of edge

weights from S to T , which can be verified to equal the min-

imization of (1). We are interested in the monotonic case

for PMC, where β1
i < β0

i , which can be re-parameterized

to get non-decreasing source capacities and non-increasing

sink capacities with increasing λ [21]. The monotonic case

gives solutions with the nesting property, where if xi = 1
for λt, it is guaranteed that xi = 1 for λt+1 > λt [22, 14].

We use PMC to produce multiple segments from each

foreground seed at various image locations. For seed nodes,

vs, we enforce xs = 1 by setting α0
s
= ∞. All remaining

nodes are vi ∈ V\{vs}, each representing a superpixel. E is

the set of all superpixel pairs which share a boundary.

S

T

vi vj

α0
i

+ λβ0
i

α0
j

+ λβ0
j

α1
i

+ λβ1
i

α1
j

+ λβ1
j

ψi∼j

(a) QPB function set up for

graph-cut

v2
v1

vs

(b) Example image to illustrate

the middle child problem

Figure 2: (a) shows how a QPB function is represented as a graph,

where a min-cut would minimize the function. (b) is an example

image to demonstrate the middle child problem. In all graphs, S

and T are the special source and sink nodes used by min-cut.

Simple Model with 3 Regions: To demonstrate the mid-

dle child problem, consider the image in Fig. 2(b) with three

concentric regions. The center region, vs is the seed. Fol-

lowing the formulation in [22], we set θ0i = 0. We assume

that the unaries on all pixels are a constant, and set α1
i = C

and β1
i = −1, where C is some constant. Translating unar-

ies from a pixel to a superpixel graph incurs a constant mul-

tiplication factor of the size of the superpixel, zi. The re-

sulting unary potential is θ1i = (C − λ)zi. This mimics

a standard (uniform) graph used by CPMC [5], as well as

RIGOR [19]. Suppose, ψs∼1 and ψ1∼2 are the costs asso-

ciated to the outer boundaries of the blue and green regions

respectively. Let us assume zs < z1 < z2 and ψs∼1 < ψ1∼2

(longer boundaries typically have larger capacities).

We can compute the energy of each configuration of

the vector x. Since α0
s
= ∞, vs would always be in the

foreground. We check the remaining four configurations:

v2
x2 = 0 x2 = 1

v1
x1 = 0 E(x) = ψs∼1 E(x) = ψs∼1 + ψ1∼2 + (C − λ)z2

x1 = 1 E(x) = ψ1∼2 + (C − λ)z1 E(x) = (C − λ)(z1 + z2)

For simplicity, we will refer to the solution x1 = ℓ, x2 = η

as 〈ℓη〉, and 〈10〉 is the middle child solution. When λ ≥ 0,

notice that the 〈01〉 solution will have higher energy than

〈10〉 because z2 > z1. Furthermore, when λ = 0, we will

get the 〈00〉 solution, i.e. only vs is in the foreground, as

long as ψs∼1 < ψ1∼2 + Cz1 and ψs∼1 < (z1 + z2)C.

minEλ(x) = ψs∼1 in this case. When λ ≥ C, we will

obtain the solution 〈11〉, i.e. all the regions are in the

foreground, and minEλ(x) ≤ 0.

The key question is whether it is possible to obtain solu-

tion 〈10〉 from some real-valued λ? For this to be true, two

conditions must hold for some λ:

1. ψ1∼2+(C−λ)z1 < ψs∼1 2. ψ1∼2 < (C−λ)z2

These two conditions imply that E(x) for 〈10〉 should be
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less than the energies of the 〈00〉 and 〈11〉 solutions at some

λ. The first condition is discounted by our initial condition

ψ1∼2 > ψs∼1, and will only be true if C < λ. The second

condition can be true when λ < C, implying that we will

never obtain the middle segment. In practice, one might

obtain the segment in the middle if its boundaries have less

total capacity than the boundaries it encloses, i.e. ψ1∼2 <

ψs∼1. Since in a superpixel graph the image boundary/edge

strength is inversely proportional to the pairwise potential

ψi∼j , this condition requires that a medium sized segment

boundary must be stronger than its internal boundaries. This

is not true in presence of strong internal structure (e.g. a

striped shirt) in conjunction with weak object edges.

General PMC with n+ 1 Regions: We now demonstrate

that the middle child problem also exists for graphs of more

general form with n + 1 regions (the seed, vs contributes

the +1), as illustrated in Fig. 3. We would use capacities

from S and T as ei + λfi and gi − λhi respectively, as pre-

scribed in Gallo et al. [14]. Here, ei, fi, gi, hi are all func-

tions of vertex vi, returning non-negative values. Moreover,

gi ≥ λhi, ∀λ to disallow negative capacities on sink arcs.

We are interested in segments that form a single connected

component, growing outward from vs. The aim is to pro-

duce all segments 〈1 . . . 10 . . . 0〉, where the last 1 happens

at index t. This translates to the cut given in Fig. 3, which is

equivalent to the whole region inside the solid green bound-

ary belonging to vt. In this section ψt ≡ ψt∼t+1.

First, let us look at the energies of different solutions.

For 〈0 . . . 0〉, where only vs is in the foreground,

Eλ(x) = ψs∼1 +
n∑

i=1

(ei + λfi) . (2)

For 〈1 . . . 10 . . . 0〉, where the cut passes through ψt, and

t ∈ {1, . . . , n− 1} (as illustrated in Fig. 3),

Eλ(x) = ψt +

t∑

i=1

(gi − λhi)

︸ ︷︷ ︸

Unaries cut from T

+

n∑

i=t+1

(ei + λfi)

︸ ︷︷ ︸

Unaries cut from S

. (3)

Similarly, for 〈1 . . . 1〉, the full image solution is

Eλ(x) =

n∑

i=1

(gi − λhi) . (4)

To get a middle segment (a segment enclosed by the solid

green boundary), the following conditions need to hold:

1. Eq. 3 should be less than Eq. 2:

ψt +
∑

t

i=1 (gi − λhi) < ψs∼1 +
∑

t

i=1 (ei + λfi)

2. Eq. 3 should be less than energies of smaller segments,

where 1 ≤ k1 < t:

ψt +
∑

t

i=k1+1 (gi − λhi) < ψk1 +
∑

t

i=k1+1 (ei + λfi)

vn

vt

vs

S

T

vs vt−1 vt vt+1 vn

∞

et−1+λft−1

et+λft

et+1+λft+1

en+λfn

gt−1−λht−1 gt−λht
gt+1−λht+1

gn−λhn

ψ
t
−

1
∼
t

ψ
t
∼
t
+

1

Figure 3: Generalization of Fig. 2(b) to multiple middle regions

and unaries defined in Gallo et al. [14]. The image (left) and the

corresponding graph (right) are given. The black curve on the

graph shows the 〈1 . . . 10 . . . 0〉 cut, which is equivalent to the

segment inside the thick green boundary on the left.

3. Eq. 3 should be less than energies of larger segments,

where t < k2 ≤ n:

ψt +
∑

k2

i=t+1 (ei + λfi) < ψk2 +
∑

k2

i=t+1 (gi − λhi)

4. Eq. 3 should be less than Eq. 4:

ψt +
∑

n

i=t+1 (ei + λfi) <
∑

n

i=t+1 (gi − λhi)

We can think of vk1 as a variable between vs and vt. For

instance, this could be the variable associated with the or-

ange region surrounding vs in the Fig. 3 image. Similarly,

we can think of vk2 as the yellow region surrounding vt.

To make it easier to analyze these constraints, we introduce

some new variables. The first set of variables is for the sum
∑lu

i=lb
(ei − gi). The following illustration gives variable

symbols, each surrounded by two lines. Each variable is for

the sum, where lb and lu is defined by the labels on the sur-

rounding two lines. For instance, C =
∑k2

i=t+1 (ei − gi):

1 A k
1

k
1
+

1

B t

t
+

1

C k
2

k
2
+

1

D n

Since, both ei and gi are non-negative, all variables

A,B,C,D possibly could be negative. The next set

of four variables, M,N,P,Q are defined for the sum
∑lu

i=lb
(fi + hi). They are defined over the same limits,

e.g. N =
∑t

i=k1+1 (fi + hi). Note that these variables can

only have non-negative values. Furthermore, for simplicity,

we will use Ψ = ψt∼t+1.

After some simple algebra, and replacing variables, we

can convert the four constraints to:

1. Ψ−ψs∼1

M+N
− A+B

M+N
< λ 2.

Ψ−ψk1∼k1+1

N
− B

N
< λ

3. λ <
ψk2∼k2+1−Ψ

P
− C

P
4. λ < − Ψ

P+Q
− C+D

P+Q

Let us suppose we have no control over the pairwise poten-

tials, and we can only adjust unaries so that λ has a feasi-

ble non-negative value that satisfies these constraints. One

way to achieve this is to make the L.H.S. in the first two

conditions negative, and the R.H.S. in the last two condi-
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tions positive. Then, there would be some non-negative λ

which will satisfy these constraints. Following this strategy,

condition 1 requires A + B > Ψ − ψs∼1, and condition 2

requires B > Ψ − ψk1∼k1+1. Moreover, to have positive

R.H.S in conditions 3 and 4, we require C < ψk2∼k2+1 −Ψ
and C +D < −Ψ respectively.

There are certain conclusions one can draw from this

setup. Firstly, functions fi and hi have no influence over

the chances of obtaining the middle segments. On the con-

trary, ei and gi are essential in obtaining any middle seg-

ments. To increase the chances to have a feasible λ, we

need ei ≫ gi where 1 ≤ i ≤ t, and gi ≫ ei where

t + 1 ≤ i ≤ n. Of course, this cannot be simultaneously

true for all t ∈ {1, . . . , n − 1}, hence it needs to be ad-

justed for each individual t. This observation vouches for

the geodesics based solution we give in the next section.

4. Biasing PMC for Obtaining Medium Sized

Segment Proposals

In the previous section, we identified a problem with the

structure of standard graph-cut energies that results in miss-

ing medium-sized segments. We propose to solve this prob-

lem by biasing the solutions in a sequence of optimizations

to obtain segments which are close to the last cut. These op-

timizations are performed on a fixed set of PMC parameters

λ0 < λ1 < · · · < λL. The parameter λl is used in mini-

mizing Eλl(x) to produce xl = [x
(l)
1 , . . . , x

(l)
n ]. Given the

solution xl, we want to set the unaries in way that minimiz-

ing Eλl+1
(x) produces only a slightly larger segment xl+1.

This requires the energy of Eq. 4 to be larger than Eq. 3.

To enforce these constraints for obtaining segments xl+1

which are slightly larger than xl (the last parametric solu-

tion), we change our unaries to the following form:

αℓi + λl+1β
ℓ
i + fi(xl) (5)

This additional term fi(xl) guides the PMC to produce seg-

ments of all sizes. The function needs to be designed such

that it raises the source unaries, θ0i , for superpixels which

are spatially close to the last cut. Similarly we would like

to raise the sink unaries, θ1i , for superpixels which are fur-

ther away. Such a scheme would ensure that the energy of

solutions that are slightly larger than the last cut decreases

in comparison to segments which are much larger.

We find that the geodesic distance between superpixels

is a good metric to guide our PMC. To construct fi(xl),
we compute geodesics on an undirected graph with edge

weights given by image edge strength - so two superpixels

sharing a weak edge have a short geodesic distance. We pre-

compute the n × n all-pairs shortest paths gij . In perform-

ing PMCs, for each variable we can retrieve the minimum

shortest path to any superpixel in the last cut xl, i.e.

φi(xl) = min
j∈V : x

(l)
j

=1
gij (6)

(a) xl overlayed on φi(xl−1) (b) xl+1 overlayed on φi(xl)

Figure 4: This shows the geodesic distances φi(x∗), which is used

to bias unary potentials to produce medium sized segments. The

resulting cut is overlayed on each figure as a white boundary. Note

that all superpixels where x
(l)
i

= 1 (cut in (a)), the next computed

φi(xl) = 0 (color in (b)), since now it is inside the previous cut.

This is visualized in Fig. 4 for two consecutive cuts. We

finally compute fi(xl) = h(φi(xl)), where h(·) is a linear

function, allowing us to raise source unaries if φi(xl) < τ ,

and raise sink unaries if φi(xl) > τ . We empirically tune

the geodesic threshold, τ , on the VOC’12 training set.

In our experiments, we noticed that the raw geodesic dis-

tance can be adversely affected by leaks in object bound-

aries. Ideally, one would like to compute the K shortest

paths between any two superpixels, in order to avoid us-

ing erroneous boundaries. Since such a scheme would be

expensive to compute, we resort to dropping 50% of the

weakest edges in the superpixel graph before computing the

geodesic distances. Since dropping the weakest edges can

disconnect the graph, we avoid dropping edges in the graph

which belong to a maximal spanning tree.

In practice, medium sized segments lie typically between

400 to 4,000 pixels. Our experiments demonstrate (Fig. 7)

that our solution is superior to all others in this regime.

5. Segment Seeds from Merging Superpixels

Careful seed placement is important for good object pro-

posal performance. In order to capture the majority of ob-

jects with a small number of proposals, it is preferable to

place fewer seeds in regions with more uniform color and

more seeds in regions that have more internal variation. Pre-

viously, seeds have been placed on all superpixels [10], a

regular grid [5, 19], via diversified optimization [23], etc.

We propose seeding based on a hierarchical merging of

watershed superpixels. Since watershed superpixels already

combine areas with uniform color, it offers a nice starting

point for obtaining different spatial resolutions in differ-

ent areas. Our merging process is considerably faster than

many optimization approaches, as only very simple opera-

tions are involved. In principle, any merging algorithm can

be used, but we propose a new superpixel merging algo-

rithm. The new algorithm is similar with the widely used

Felzenszwalb-Huttenlocher (FH) algorithm [13], but with

an adaptive thresholding scheme to improve the regularity

of the superpixels in creating a hierarchy.
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Original Image SLIC Superpixels [1] FH Superpixels [13] Our Superpixels

Figure 5: Illustration of superpixel results. All algorithms produce 190 ± 1 superpixels (according to the default settings of FH [13]).

SLIC [1] regularization is 0.05 (higher regularization would lose more detail). Superpixels are colored by their mean color plus a small

random perturbation to reveal the differences among ones with similar colors. SLIC severely lacks detail by spending the budget evenly

across the image. The FH algorithm produces many superpixels on very small textures and some superpixels are highly irregular in shape.

Our merging method largely alleviated the problems of FH, and hence can represent more meaningful parts (e.g., the bottle cap, the mouth

of the person) while preserving boundaries more effectively.

A basic idea, similar to FH, is that when generating su-

perpixels of different sizes, smaller superpixels should be

merged together unless they have very distinctive appear-

ance. On the other hand, two large superpixels should not

be merged when they have a moderate difference in appear-

ance. We implement a novel adaptive thresholding scheme

for this purpose. At each iteration, a “desired superpixel

size” Sd is computed to set the adaptive threshold. Sd is ini-

tialized to S
Nd

, where S is the number of pixels in the image

and Nd is the user-specified desired number of superpixels.

In subsequent iterations, Sd is chosen to satisfy:

Sd(Nd −
∑

vi

I(|vi| > Sd)) = S −
∑

vi,|vi|>Sd

|vi| (7)

where |vi| represent the size of the superpixel vi. In other

words, Sd is equal to the average size of the remaining su-

perpixels, after removing superpixels with sizes larger than

Sd. This can be solved easily via an iterative procedure.

After obtaining the desired size, the adaptive threshold

Tik for superpixel vi at iteration k is set to

Tik = T0 + kTs exp

(

−σ
|vi|

Sd

)

, (8)

where T0 is an initial threshold and Ts is the step size. σ > 0
is the parameter governing the tradeoff between large and

small superpixels, so that Tik is higher for smaller super-

pixels. The algorithm is not sensitive to T0 and Ts which

can be chosen simply to be sufficiently small. However, a

larger Ts reduces computation time, hence is more desirable

if there is no adverse impact on performance.

After obtaining the adaptive threshold, the edge and

color distance between each connected superpixel pair are

computed, and the pair is merged if both distances are

smaller than the Tik of the smaller superpixel in the pair.

As the iteration advances, the threshold becomes larger

and more small superpixels are merged since their relative

penalty becomes larger after more iterations.

Within each iteration, we compute a merge graph M ,

with an edge on each superpixel pair that ought to be

merged. This merge graph is complemented by the conflict

graph C, which has an edge on each superpixel pair that are

incident to each other but should not be merged. We start

with the superpixel with the highest degree on M and pro-

ceed to iteratively merge all its neighbors without conflicts.

If there are conflicts, we choose the one with the highest

degree on M among the conflicting superpixels to merge.

Most merging schemes have a clean-up routine for re-

moving small superpixels. For our algorithm, every 5 itera-

tions we run one “small superpixel merging” process, which

is almost the same as normal merging, with the only differ-

ence being that the color difference from a large superpixel

to a small one is only computed within a small vicinity of

the latter. This is because the large superpixel might con-

tain very distinct colors because of merging, and the mean

color might have differed a lot from the smaller one. How-

ever if their colors are similar in the vicinity of the smaller

superpixel, then the two should be merged.

We then generate one seed at the center of each merged

superpixel, which has the capability of representing a com-

plete picture of the scene with a moderate number of seeds.

6. Experiments

We conduct experiments on the validation sets of PAS-

CAL VOC 2012 and Microsoft COCO [27]. Both have

pixel-level annotations for certain object classes. There

are 1, 449 images in VOC 2012, with 3, 427 ground-truth

objects in 20 categories. COCO has 40, 137 images and

288, 397 ground-truth objects, with 80 categories that are

currently available. Our algorithm is implemented in

MATLAB with many crucial functions written in C++. We

utilize StructEdges [7] for boundary detection and sticky su-

perpixels [7] as nodes in the graph. Pairwise terms are com-

puted from trained boosted regressors from RIGOR [19].

We report a number of metrics that have been widely

used in previous evaluations. Suppose we want to evaluate
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Figure 6: These graphs compare different object proposal methods based on recall against number of proposals at three IoU thresholds. For

each segment ground-truth we select the proposal with the highest segmentation IoU. We use this to compute recall, which is the fraction of

ground-truths having a corresponding proposal with an IoU score higher than the IoU threshold. [18] gives a similar comparison between

methods for bounding box IoU. Note, the y-scale of each graph is different.

a segment pool S = {S1, . . . , Sn} against m ground-truth

segments. First of all, each segment proposal Si ∈ S is eval-

uated w.r.t. each ground-truth using the IoU overlap score

IoU(Si, GTj) =
|Si ∩GTj |

|Si ∪GTj |
, (9)

The best object overlap within the pool S is computed as

IoU(S, GTj) = max
i

IoU(Si, GTj)

We report the average best overlap (ABO), which is

IoU(S, GTj) averaged over all of the ground-truth objects

in the dataset, as well as plotting recall under different IoU

levels against the number of segments in the pool |S|. In ad-

dition, we follow [18] in reporting the average recall under

all IoU levels in [0.5, 1]. It is claimed that such an average

recall measure correlates the best with downstream results

on object detection [18]. Finally, we report the mean best

covering over all images in the dataset:

Cov(S,GT
I) =

∑

j |GTj |IoU(S, GTj)
∑

j |GTj |

where GT
I denotes all ground-truth objects in the same

image. Covering measures the capability to extract larger

segments and explain the scene as a whole.

We compare against recent methods SS (Selective

Search) [32], SCG and MCG [30], GOP [23], RIGOR [19]

as well as the very recent LPO approach [24].

Method
Recall at

0.70 IoU

Avg. #

Proposals
ABO Cov

Average

Recall

∼69.0% recall at IoU threshold 0.70

GOP (learned) [23] 0.678 1,992 0.748 0.814 0.532

RIGOR [19] 0.682 1,715 0.752 0.840 0.557

SS (quality) [32] 0.681 2,482 0.757 0.828 0.549

LPO [24] 0.682 1,237 0.759 0.822 0.544

MCG [30] 0.692 1,291 0.768 0.835 0.570

POISE 0.696 979 0.768 0.842 0.569

Limit performance at IoU threshold 0.70

GOP (learned) [23] 0.722 7,609 0.769 0.829 0.566

RIGOR [19] 0.709 2,411 0.777 0.844 0.583

SS (quality) [32] 0.772 10,641 0.801 0.840 0.618

LPO [24] 0.776 4,233 0.805 0.859 0.626

MCG [30] 0.772 5,157 0.808 0.850 0.635

POISE 0.774 2,639 0.809 0.864 0.633

Table 1: Detailed PASCAL VOC results of different algorithms.

We consider two scenarios, the first is to generate ∼69.0% recall

at an IoU threshold of 0.70, the second is the limit performance

by allowing all the algorithms to generate the maximal amount of

proposals. Our method, known as POISE is able to obtain the same

performance with much fewer proposals than the competitors.

Table 1 shows detailed performance of different algo-

rithms under two settings: one where all algorithms gen-

erate about 69.0% recall at an IoU threshold of 0.70; and

the second where algorithms are allowed to generate max-

imal number of proposals. One can see that our method

generates much fewer proposals in any of the two scenar-

ios while having comparable performance to the best com-
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Figure 7: IoU comparison of various methods at different pixel

sizes for Pascal VOC ground-truths, at ∼1, 000 # proposals.

petitors. Fig. 6(a)-6(d) shows the plots of segment recall at

different overlap thresholds on the VOC dataset. Likewise,

Fig. 6(e)-6(h) shows the results on the COCO dataset. We

use linear instead of log scale [18, 30] to highlight that our

method needs far fewer proposals to reach high recall. It can

be seen that our method consistently outperforms the com-

petitors when the number of proposals is more than 700,

which is the range of settings most likely to be chosen users

of proposal algorithms. POISE is superior to most other su-

perpixel aggregation and edge-based approaches because it

seeks solutions from a global energy function which solves

the middle child problem.

Fig. 7 shows the IoU score broken down in terms of the

size of the ground-truth segment. It can be seen that our

method significantly outperforms all other approaches in

objects with the sizes from 400 to 4, 000 pixels. This shows

the effectiveness of our solution to the middle child prob-

lem, as well as the benefit of better seed placement. The

only regime in which we are slightly worse than RIGOR is

when the segment size grows to more than 60, 000 pixels,

which is approaching the size of the entire image for a typi-

cal PASCAL VOC image. Even at that ground-truth size we

still outperform all of the other competitors.

Ablation Study: Our paper has two contributions: a so-

lution to the middle child problem; and a superpixel seeds

generation method. In this section we will describe the re-

sults of an ablation study to identify the quantitative contri-

bution of each of these two components. We compare four

different variants of the algorithm: (1) “w/o midchild/new

seeds” where neither the middle child solution in §4 or the

new seeds in §5 are used; (2) “w/o new seeds, w/ midchild”

where we use the geodesics middle child solution in §4, but

not §5; (3) “w/o midchild, w/ new seeds” where we use

the new seeds in §5, but not §4; and (4) the POISE method

corresponding to the full algorithm in §4 and §5.
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Figure 8: This graph shows results of an ablation study focused

on average recall as in Fig. 6(d). We vary the number of seeds to

generate results at different numbers of proposals.

We generate results for all these variants individually

over the complete validation set for PASCAL VOC 2012.

The average recall results are plotted in Fig. 8. The gen-

eral trend observable from these results is that the improved

seeds (w/o midchild, w/ new seeds) help to move the graph

left by reducing the number of proposals to reach the same

recall. This is the result of requiring fewer number of seeds

to localize most objects in the scene. On the other hand,

the middle child solution (w/o new seeds, w/ midchild)

moves the graph upward, indicating that adjusting the unar-

ies by geodesics helps to obtain more accurate segmenta-

tions. Combining both improvements gives POISE the abil-

ity to increase recall while using fewer proposals.

7. Conclusion

In this paper we identify and solve the middle child prob-

lem— namely how to use parametric min-cuts to generate

medium-sized segments for object proposals. We demon-

strate that the problem arises from the intrinsic structure of

the standard energy landscape and cannot be solved through

parameter tuning. Our solution is an adaptive energy func-

tion which biases the min-cut solution in a sequence of pro-

posals so that the next segment is close to the previous one

from the standpoint of geodesic distance. In addition, we in-

troduce a novel method for generating proposal seeds which

is more effective than previous methods for small numbers

of seeds. The resulting method, known as POISE (for “Pro-

posals for Objects from Improved Seeds and Energies”), is

demonstrated to outperform all competing methods in gen-

erating high-quality segments with a small proposal pool on

the PASCAL VOC and Microsoft COCO datasets.
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