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Abstract

We present an automatic thumbnail generation technique

based on two essential considerations: how well they visu-

ally represent the original photograph, and how well the

foreground can be recognized after the cropping and down-

sizing steps of thumbnailing. These factors, while important

for the image indexing purpose of thumbnails, have largely

been ignored in previous methods, which instead are de-

signed to highlight salient content while disregarding the

effects of downsizing. We propose a set of image features

for modeling these two considerations of thumbnails, and

learn how to balance their relative effects on thumbnail gen-

eration through training on image pairs composed of pho-

tographs and their corresponding thumbnails created by an

expert photographer. Experiments show the effectiveness of

this approach on a variety of images, as well as its advan-

tages over related techniques.

1. Introduction

For efficient browsing of photo collections, a set of im-

ages is typically presented as an array of thumbnails, which

are reduced-size versions of the photographs. The reduc-

tion in size is usually quite significant to allow for many

thumbnails to be viewed at a time, and the thumbnails are

generally fixed to a uniform aspect ratio and size to facil-

itate orderly arrangement. Thumbnail creation involves a

combination of cropping and rescaling of the original image

as illustrated in Figure 1. Manually producing thumbnails

for large image collections can be both time-consuming and

tedious, as care is needed to ensure that each thumbnail

provides an effective visual representation of the original

photo. The practical significance of this problem has led to

much research on automatic thumbnail generation.

Previous work has focused primarily on the cropping

step of thumbnail generation. Many of them operate by

extracting a rectangular region that contains the most vi-

sually salient part of a photograph. These saliency-based

(a) (b) (c)

Figure 1. Image thumbnail generation. (a) Original images

(viewed at low resolution). (b) Cropping (red box) and rescaling to

produce thumbnails. (c) Thumbnails viewed at actual resolution.

methods [3, 9, 23, 27, 31, 33] are effective at highlighting

foreground content. Other methods based on aesthetic qual-

ity [25, 38] instead seek a crop that is visually pleasing ac-

cording to compositional assessment metrics. It has been

shown that aesthetics-based approaches often produce crop-

ping results that are preferred by users over saliency-based

crops [38].

Although these methods produce excellent results for

image cropping, they share critical shortcomings for the

task of thumbnail generation. One is that they do not con-

sider how well the resulting image represents the original.

Unlike a general image crop, a thumbnail serves a specific

purpose as an index that should provide the viewer an accu-

rate impression of what the original photo looks like. If the

thumbnails of a vacation photo album exclude most of the

background, different photographs would be more difficult

to distinguish from each other based on their thumbnails.

Another shortcoming is that previous methods do not ac-

count for the effects of rescaling. The utility of a thumbnail

can be heavily affected by the amount of rescaling, since

important subjects in an image may become difficult to rec-

ognize after too much reduction in size. A proper balance

of cropping and rescaling is essential for decreasing image

size in an effective way.

In this paper, we propose an image thumbnail method

253



(a) (b) (c)

Figure 2. Thumbnail considerations. (a) Original images (viewed

at low resolution). (b) Low-quality thumbnails. (c) Our thumb-

nails. The first row illustrates our first consideration, that a thumb-

nail should give an accurate visual representation of the original

image. Cutting out the mountains and sky in (b) results in a thumb-

nail that does not give a true impression of what the original image

looks like. The second row illustrates the second consideration,

that the foreground should be recognizable. Very little cropping

and much rescaling in (b) leads to a thumbnail in which it is hard

to identify the flowers in the foreground.

that is guided by two essential considerations on the utility

of thumbnails as an image index. The first is the visual rep-

resentativeness of the thumbnail with respect to the origi-

nal image. A more visually representative thumbnail should

better reflect the appearance of the actual photograph, thus

providing a more effective index. We model this with var-

ious appearance features that have been used for compar-

ing images. The second consideration is foreground recog-

nizability in the thumbnail. The usefulness of a thumbnail

diminishes as it becomes more difficult for the viewer to

recognize the foreground subject after cropping and rescal-

ing, as exemplified in Figure 2. To model this effect, we

adapt image features commonly used for content-based im-

age retrieval (CBIR) [29] and object recognition [19], as

they serve a similar purpose in identifying and distinguish-

ing elements.

These two factors are designed to balance each other.

If only visual representativeness is considered, then there

would be no cropping at all, since any cropping would

reduce representativeness. On the other hand, consider-

ing only foreground recognizability would result in a tight

crop around the foreground object. Neither of these factors

would be appropriate to use by itself. However, they are ef-

fective when employed together, since the competing aims

of the two terms can be balanced.

The relative influence of features used to model the two

factors is learned through training on a set of image pairs,

consisting of original photos and thumbnails created from

them by an expert photographer. By accounting for the two

factors, our technique produces thumbnails that are prefer-

able to those of related methods according to quantitative

comparisons and user studies.

2. Related Work

To display a photograph in limited space, prior works

typically highlight the image areas of greatest saliency [14]

while removing parts of the photo that would command

less attention. In [35], a group of pictures is arranged into

a collage of overlapping images, with the overlaps used

to occlude regions of low saliency. Another way to re-

move less salient image content is through image retarget-

ing [4, 26, 36, 28], which downsizes images through oper-

ations such as seam carving, local image warping, and re-

arranging spatial structure. Such operations, however, can

introduce artifacts and image distortions that significantly

reduce the appeal of results.

Image distortions can be avoided by restricting image

manipulations to only cropping and rescaling, the two stan-

dard operations in thumbnail generation. For cropping,

most algorithms are also driven by saliency, computed

through a visual attention model [14], density of interest

points [2], gaze distributions [27], correlations to images

with manually annotated saliency [23], or scale and object

aware saliency [33]. Based on a saliency map, these meth-

ods compute a crop window that encloses regions of high

saliency [3, 9, 23, 27, 31, 33]. Saliency-driven techniques

are effective at preserving foreground content, but tend to

discard much contextual background information that is

needed for image indexing. The work in [16] proposes a

learning based thumbnail cropping method that combines

saliency features and a spatial prior, but does not preserve

visual representativeness well since the position and size of

crops are analyzed statistically without considering image

content. The recent work in [13] proposes the concept of

context-aware saliency, which may assign high saliency val-

ues to background areas surrounding the foreground. Incor-

porating context-aware saliency into these cropping works

would address the visual representativeness issue only to

some degree, and it would not deal with foreground recog-

nizability at all.

Several methods utilize aesthetics metrics instead of

saliency values to guide image cropping and/or rearrange

objects in images [18]. Aesthetics metrics are designed

to assess the visual quality of a photograph based on low-

level [22] and/or high-level [15, 21] image composition fea-

tures. Based on such metrics, classifiers have been used to

evaluate the aesthetic quality of crops [25]. In [38], the re-

lationship between images before and after cropping is also

taken into account. As with the cropping methods based on

saliency, these works based on aesthetics do not consider

how well the result visually represents the original image or

the effect of rescaling the cropping result to thumbnail size.

Methods that specifically aim to generate thumbnails or

render photos on small displays largely treat rescaling as

an afterthought or do not explicitly discuss the rescaling

step [23]. In [9, 33], crops are computed without rescal-
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ing in mind, and the crop result is simply rescaled to the

target size. By contrast, our work seeks to balance cropping

and rescaling in a manner that preserves visual representa-

tiveness and foreground recognizability.

3. Approach

In this section, we present our thumbnail approach based

on our two major considerations. Details on training set

selection, the extracted image features, the training proce-

dure, and thumbnail generation are described. Algorithmic

overviews of the training and thumbnail generation methods

are provided in Algorithm 1 and Algorithm 2, respectively.

In both algorithms, we extract various features based on im-

age or region properties. The features are then employed

within a support vector machine (SVM) used for evaluating

thumbnails within a thumbnail generation procedure.

Algorithm 1: Training(Images, Crops)

1 for i = 1 to Images.size do

2 Im← Images(i)

3 GoodCrop← Crops(i)

4 Sa← DetectSaliency(Im)

5 Fg← ExtractForeground(Im,Sa)

6 Segs← SegmentImage(Im)

7 CropSet← SampleCrops(Im.size, GoodCrop)

8 for j = 1 to CropSet.size do

9 Tn← Tn +1

10 TF(Tn).x =

CalcThumbFeature(CropSet(j),Segs,Fg,Sa)

11 TF(Tn).y = (CropSet(j) == GoodCrop)

12 end

13 end

14 ThumbModel← SVM Train(TF)

15 return ThumbModel

Algorithm 2: Thumbnail Generation(Im)

1 Sa← DetectSaliency(Im)

2 Fg← ExtractForeground(Im,Sa)

3 Segs← SegmentImage(Im)

4 CropSet← SampleCrops(Im.size, Im.BoundingBox)

5 for j = 1 to CropSet.size do

6 TF← CalcThumbFeature(CropSet(j),Segs,Fg,Sa)

7 ThumbScore(j)← SVM Predict(ThumbModel,TF)

8 end

9 Find index j with maximum ThumbScore(j)

10 return CropSet(j)

3.1. Training set

We build the training set using 600 photos selected from

the MIRFLICKR-25000 dataset [1]. The photos span a di-

verse range of categories including landscape, sunset, night,

painting, architecture, plant, animal, man-made objects and

other complex scenes. The photos also vary in texture com-

plexity, intensity distribution, and sharpness. Each image

is manually cropped and scaled by an expert photographer

into a thumbnail of size 160×120.

3.2. Image features

We utilize several image features to model the proper-

ties of expertly-created thumbnails in relation to their origi-

nal images. These features are specifically selected to mea-

sure how well the thumbnail visually represents the original

photo and how easily the foreground in the thumbnail can

be recognized.

3.2.1 Visual representativeness

Our features for visual representativeness model in various

respects how similar of a visual impression the thumbnail

gives to the actual photograph. This notion of visual rep-

resentativeness differs from that in works like bidirectional

similarity [28] that measure the summarization quality of

an output image rather than aiming to convey the actual

undistorted appearance of the original image, which helps

the user to identify a photo based on its thumbnail. Some

of the features are computed with respect to foreground or

salient regions, while others are derived from the image as

a whole. These representational features are calculated be-

tween the cropped image and the original, as they intend

to model the change in image content that results from the

cropping of the thumbnail process.

Color Similarity The first feature reflects how repre-

sentative the crop is in terms of color properties. To model

this at a finer scale, we compute color similarity at the level

of regions instead of globally over the image. If a crop has

removed a region or enough of a region to alter its color

properties, then the crop is less representative of the origi-

nal image. We describe the color properties of a region Ω
by the three central color moments vc(Ω) of its RGB distri-

bution [32]. The color similarity between a region Ωa in the

crop and its corresponding region Ωb in the original image

is then expressed as the normalized inner product between

their color moment vectors:

fcs(Ωa,Ωb) =
vc(Ωa) · vc(Ωb)

||vc(Ωa)|| · ||vc(Ωb)||
. (1)

We aggregate this value over all the regions in the original

image, which is segmented using the graph-based technique

in [12]. The color similarity feature for a crop is thus calcu-

lated as

Ecs(C) =
1∑n

i=1 Si

n∑

i=1

[Si ∗ fcs(C ∩ Ωi,Ωi)] (2)
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where C denotes the area within the crop, and Si is a weight

computed as the proportion of saliency [7] in region Ωi

with respect to the whole image. The saliency weight puts

greater emphasis on salient regions, whose color properties

are more critical to preserve. Note that if a region is re-

moved completely by the crop, then fcs is equal to zero. A

higher value of Ecs indicates greater color similarity.

Texture Similarity In addition to color, the similarity

of texture between a crop and the original image is also in-

cluded as a representational feature. We calculate a texture

vector vt(Ω) of each region using the HOG descriptor [10],

and compute the texture similarity between a region Ωa in

the crop and its corresponding region Ωb in the original im-

age as

fts(Ωa,Ωb) =
vt(Ωa) · vt(Ωb)

||vt(Ωa)|| · ||vt(Ωb)||
. (3)

This quantity is aggregated over all the regions in the same

manner as for color similarity in Equation 2 to yield the

texture similarity feature Ets.

Saliency Ratio A thumbnail is more representative

if it contains more of the salient content of the origi-

nal photo. We model this feature by taking the ratio

of summed saliency within the cropping window to the

summed saliency over the whole photograph.

Edge Ratio Edges are an important low-level shape

representation of images [24], so we additionally account

for edge preservation in the cropped image. We detect edges

in the original photo using the Canny edge detector [5], and

formulate an edge ratio feature as the number of edge pixels

within the crop box divided by the total number of edge

pixels over the entire photograph.

Contrast Ratios The general visual impression of a

photo depends greatly on how much its appearance features

vary. The contrast in these appearance properties addition-

ally affects visual elements such as how much the fore-

ground stands out in an image. To measure how closely

the cropped image adheres to the contrasts of the original

photo, we compute the standard deviation of saliency, in-

tensity, and edge strength [24] in the crop and the original

image, and then take their ratios. Edge strength is computed

perpendicularly to edges detected with the Canny edge de-

tector [5]. An example of these contrast ratios is shown

in Figure 3, where a more visually representative thumb-

nail has standard deviations of saliency, intensity and edge

strength that are closer to those of the original image.

Foreground Shift Another factor that influences the

perception of an image is the position of the foreground,

which is a major consideration in photographic composition

as seen from the common application of the rule of thirds.

A significant shift in foreground position between the crop

and photograph may weaken the thumbnail’s visual repre-

sentation quality, so we record this feature as the distance

0

1

2

3

Saliency Intensity Edge

Contrast Ratios

SOAT Ours

(a) (b) (c)

Figure 3. Contrast ratio comparison. (a) Original Image. (b)

Thumbnail generated by SOAT, a state-of-the-art saliency-based

cropping method [33]. (c) Our thumbnail. From the bar chart, it

can be seen that the thumbnail in (c) has contrast ratios closer to

one, indicating that its contrast properties are more similar to those

of the original image.

between their foreground centers after mapping the photo

and crop to a [0,1] × [0,1] square. The foreground is ex-

tracted using the method of [7] incorporated with a human

face detector [37].

3.2.2 Foreground recognizability

The thumbnail with the greatest visual representativeness is

the one generated without cropping the photograph at all.

However, an uncropped image would require a maximum

amount of rescaling to reach thumbnail size, which may

lead to foreground regions becoming less recognizable in

the thumbnail. To account for this issue, we incorporate

features that reflect how easily the foreground in a thumb-

nail can be recognized.

To model foreground recognizability in thumbnails with

respect to the original image, we take advantage of features

used in content-based image retrieval (CBIR) [29] and ob-

ject recognition [19], which aim to identify images or ob-

jects similar to a given target. In our case, the target is

the foreground in the photograph, and we model how well

it can be recognized in the thumbnail based on its simi-

larity in terms of CBIR and recognition features. Since

these features are particularly intended to measure the effect

of rescaling on foreground recognizability, feature compar-

isons are done between the foreground in the thumbnail and

the foreground in the cropped image.

In CBIR, images are abstracted into feature vectors con-

taining descriptors for color, texture, shape and/or high-

level semantics [11]. The similarity between images is

then determined according to distances between their fea-

ture vectors. Since a thumbnail is directly scaled from the

original crop, its color properties remain the same. Here,

we assess recognizability via shape and texture features, to-
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gether with features for object recognition and a measure

derived from human face detection.

Shape Preservation Ratio A shape representation

commonly employed in CBIR is edge information packed

into a vector, such as a polar raster edge sampling signa-

ture [24]. We utilize the Canny edge detector [5] to detect

edges in both the cropped image and the thumbnail. In-

stead of retrieval from a large dataset, our concern is on

how much the shape features in the original image are re-

tained in the thumbnail. So rather than packing the edges,

we compute what proportion of edge pixels in the cropped

image are also detected as edges at the corresponding pixels

in the thumbnail. This ratio of preserved edges is used as a

shape preservation feature.

Directional Texture Similarity In CBIR, texture is

often represented in terms of six properties: coarseness,

contrast, directionality, linelikeness, regularity, and rough-

ness [34, 6]. Among the first three properties, coarseness

and contrast are not closely related to recognizability of

a rescaled object. Moreover, linelikeness, regularity and

roughness are highly correlated with the former three prop-

erties. The remaining property, texture directionality [17],

may change after rescaling a crop into a thumbnail. So the

similarity of this property between the cropped image and

the thumbnail is used as a recognizability feature. Texture

directionality is determined by gradients computed after fil-

tering the foreground region with the Sobel operator [30].

The gradients are then expressed as a vector after quantiza-

tion into six bins of 30◦ width from 0◦ to 180◦. We measure

similarity as the normalized dot product of the two vectors,

similar to Equations 1 and 3.

SIFT Descriptor Similarity SIFT descriptors [20] are

a popular feature for object recognition. A standard use

of SIFT descriptors for recognition is to first extract SIFT

points and their corresponding descriptors from an object

and a reference, then match pairs of SIFT points between

them based on minimum descriptor distance. The object

is recognized as the reference if most pairs of SIFT points

are consistent with respect to a transformation model [19].

In our case, the transformation model is a known change

in scale. Based on this, we measure ease of recognition

based on similarity of SIFT descriptors for corresponding

SIFT points with respect to the transformation. If a SIFT

point computed in the cropped image does not have a corre-

sponding SIFT point computed in the thumbnail, it is failed

to be recognized. Otherwise, the similarity is measured by

the normalized inner product of the corresponding SIFT de-

scriptors, each a 128-dimensional vector. The similarity for

the foreground regions in a crop and thumbnail is computed

by aggregating the similarity of SIFT descriptors weighted

by SIFT point saliency:

Es(a, b) =

∑
q∈SIFT (b) sq ·M(q, Ca,b(q))∑

q∈SIFT (b) sq
(4)

0

0.5

1

1.5

2

SIFT Texture Shape Face

Foreground Recognizability Feature Values

SOAT Ours

(a) (b) (c)

Figure 4. Foreground recognizability comparison. (a) Original im-

age (displayed at low resolution). (b) Result from SOAT. (c) Our

thumbnail. SIFT refers to SIFT Feature Similarity. Texture indi-

cates Directional Texture Similarity. Shape refers to Shape Preser-

vation Ratio, and Face indicates Face Preservation Ratio. The val-

ues of foreground recognizability features decrease with greater

rescaling.

where Es(a, b) denotes SIFT descriptor similarity between

cropped image b and the thumbnail a rescaled from it. sq
is the saliency value of pixel q. SIFT (Ω) represents the

set of SIFT points detected in the domain Ω. Ca,b(q) is the

point in SIFT (a) which has the minimum coordinate dis-

tance from the corresponding pixel of q in a. If the minimal

distance is larger than a certain threshold (5 in our imple-

mentation), the corresponding SIFT point is considered not

to be found after the rescaling, in which case M(p, Ca,b(q))
is set to zero. Otherwise, M(p, q) is set to the normalized

product of p and q’s SIFT descriptors.

Face Preservation Ratio Faces are often the most im-

portant component in an image and deserve special treat-

ment. One way to handle faces in the foreground region

is to determine whether they are recognized as having the

same identity after rescaling to the thumbnail. We instead

use a simpler measure based on confidence values from a

face detector [37]. The sums of confidence values are com-

puted for the faces detected separately in the thumbnail and

in the original crop, and then their ratio is taken as the face

preservation feature. If there is no face detected in the orig-

inal crop, the ratio is set to one. As detector confidence

decreases with greater thumbnail rescaling, the value of this

feature is reduced as well.

Area Ratio Finally, we include a feature that repre-

sents the degree of rescaling as the ratio of area in the

thumbnail and the cropped image.

Figure 4 illustrates the effect of rescaling on our fore-

ground recognizability features. Greater rescaling generally

leads to both less recognizability and lower feature values.
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3.3. Training and Thumbnail Generation

To balance the various features for thumbnail generation,

we learn an SVM model from positive and negative thumb-

nail examples for the photographs in our training set (Sec-

tion 3.1). The SVM model that we employ is a kernel SVM

with radial basis functions, which is capable of learning the

influence of all the proposed features. For each photo, we

consider the thumbnail created by the expert photographer

as a positive sample, and generate negative examples for

it by sampling crop coordinates that are different from it.

The negative examples are generated by first sampling at

30-pixel intervals the coordinates of the upper-left crop cor-

ner and the x-coordinate of the lower-right crop corner. The

y-coordinate of the lower right crop corner is then deter-

mined according to the thumbnail aspect ratio (4:3 in our

work). Among these samples, we keep only those that are

different enough from the positive sample according to

C = {(x1, y1, x2, y2)|
1√
2πσ

e−
||t−tg||2

2σ2 < τ} (5)

as done in [38]. Here, t = (x1, y1, x2, y2)
T and tg =

(xg
1, y

g
1 , x

g
2, y

g
2)

T are the cropping coordinates of the neg-

ative and positive examples, with the first two coordinates

for the upper-left corner, and the last two for the lower-right

corner. The threshold τ controls the minimum degree of

offset, and σ is a Gaussian parameter. After cropping, the

negative sample is rescaled to the targeted thumbnail size.

After SVM training, our method predicts a good thumb-

nail for a given image by first generating a set of candi-

dates. The candidate set is produced by exhaustively sam-

pling crop windows of the target aspect ratio at 10-pixel

intervals for the upper-left corner and x-coordinate of the

lower-right corner, then rescaling them to thumbnail size.

The candidates are each evaluated by the SVM to obtain an

energy. The thumbnail with maximum energy is taken as

our result. With our unoptimized implementation, the com-

putation time is about 60 seconds for an 800×600 image on

a 3.4GHz Intel Core i7-2600 CPU.

4. Evaluation

For evaluation of our thumbnail generation method, we

present some results on various scenes, report a cross-

validation experiment using thumbnails from an expert pho-

tographer as ground truth, and compare to related tech-

niques in a user study.

4.1. Results

Several examples of our thumbnail results are displayed

together with the original images in Figure 5. Our method

seeks a tradeoff between visual representativeness with re-

spect to the original image and ease of foreground recog-

nition. In some cases such as (a), (b) and (c), a significant

(a) (b) (c)

(d) (e) (f)

Figure 5. Image thumbnail results. For each example, the upper

image is the original photograph displayed at low resolution, and

the lower image is the thumbnail. Our method aims to strike a

balance between how well the thumbnail visually represents the

original photo and how easily the foreground can be recognized.

amount of cropping is applied in order to facilitate recog-

nition of the foreground. In other cases such as (d), rel-

atively little cropping is employed since a result obtained

mainly from rescaling is deemed to yield good represen-

tativeness and foreground recognizability. For many other

images such as (e) and (f), a more intermediate mixture of

cropping and rescaling is applied in providing a balance be-

tween the two thumbnail considerations, with the placement

of crop windows determined in a manner that aims to pre-

serve the visual impression of the original image.

4.2. Features

Our method utilizes 13-dimensional feature vectors

whose elements were described in 3.2. To examine whether

each feature element contributes to the overall performance,

we conducted experiments comparing performance with

and without each individual element in the feature vector.

The tests were run using 200 images different from those

used for SVM training. Thumbnails of these images were

created by our expert photographer and taken as 200 pos-

itive examples with a label 1. Additionally, 6024 negative

examples with a label 0 were generated using the method in

Sec. 3.3. Over this set of test examples, T , we compute the

following energy with and without each of the features:

EF = Σt∈T |l̂t(F )− lt| (6)

where t is a thumbnail example in the test data T , l̂t(F ) is
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Foreground Shift

Shape
Directional Texture

SIFT
Face
A rea

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

"Importance" of different features

Figure 6. Importance indicator of different features. The values

are normalized by their sum.

offset scale hr br
Saliency-based 47.7 1.30 71.3% 47.3%

Aesthetics-based 47.5 1.46 96.3% 132.9%

Direct-downsizing 50.8 1.51 95.5% 150.8%

Ours 41.9 1.29 90.0% 85.5%

Table 1. Cross-validation comparisons.

the SVM-predicted label of test example t using features F ,

and lt is the actual label of t.
The degree of each feature’s importance is reflected by

the difference in EF with and without each feature f :

Importancef = EF − EF−{f} (7)

These values are exhibited in Figure 6. It can be seen that

each of the features contributes to the overall performance,

and that the saliency and texture features have a relatively

larger impact.

4.3. Cross-Validation

For a quantitative evaluation of our method, we con-

ducted a cross-validation experiment using the 200 test

images with thumbnails from Sec. 4.2. The expertly-

produced thumbnails are treated as ground truth in this

cross-validation. We also compare to three other tech-

niques. One is a saliency-based approach [33] that incor-

porates scale and objectness information by searching for

the crop window that maximizes scale-dependent saliency.

The second technique computes crop windows using the

aesthetics-based method of [38], which accounts for rela-

tionships between the original and cropped image. Solu-

tions from these two methods are constrained to the target

aspect ratio and are rescaled to thumbnail size. The third

comparison method directly downsizes the original photo-

graph by finding the largest and most central crop window

of the target aspect ratio and then rescaling it to the thumb-

nail size.

We utilize two difference measures between thumbnail

results and ground truth. The first is the offset, computed as

the distance between the centers of their two correspond-

ing crops in the original photograph. The second is the

ratio of their rescaling factors, calculated as max( sr
sg
,
sg
sr

)

where sr and sg denote the rescaling factor for a thumb-

nail result and the ground truth, respectively. We addi-

tionally examine two other metrics that have been used for

image comparison, namely hit ratio and background ra-

tio [8]. The hit ratio measures how much of the ground

truth area is captured by the thumbnail result, and is com-

puted as hr = |GroundTruth∩Result|
|GroundTruth| . The background ratio

represents how much area outside the ground truth thumb-

nail is included in the thumbnail result. It is calculated as

br = |Result|−|Result∩GroundTruth|
|GroundTruth| . A higher hit ratio and

lower background ratio jointly indicate a result closer to the

ground truth.

The average values for these evaluation metrics over

the 200 images are listed in Table 1. The results of our

method give the closest match to ground truth in terms of

offset and rescaling factor. The aesthetics-based and direct-

downsizing methods have a high hit ratio and high back-

ground ratio, since they tend to crop relatively little from

the photograph. The direct-downsizing method only crops

enough to satisfy the target aspect ratio, while we observe

that the aesthetics-based method often crops conservatively.

The saliency-based method instead tends to crop the origi-

nal image substantially, which leads to a low hit ratio and

low background ratio. By contrast, the amount of cropping

in our method varies in a manner that balances recogniz-

ability and representativeness. It is found in this experiment

to have a hit ratio that is high and a foreground ratio that is

relatively low.

We note that though the images for this evaluation are

different from those used for SVM training, they were cre-

ated by the same expert photographer. This might give our

method an advantage over the other techniques, since if

there are any idiosyncracies in the photographer’s thumb-

nail generation method, they may be captured in our SVM.

Also, the images for this evaluation and those used for SVM

training are from the same dataset, MIRFLICKR-25000 [1].

For an unbiased evaluation, we also conducted a user study

that includes other datasets.

4.4. User Study

In the user study, each participant was presented a se-

quence of ten images randomly selected from a combined

dataset with the 200 images from Sec. 4.2 and 490 images

from the dataset of [33]. With each image they were also

shown the four thumbnails from the compared techniques

in a random order. They were instructed to select the “most

useful” thumbnail for each given image. A total of 411

people participated in this study, most of whom completed

all ten selections, and each image received either 5 or 6

votes. The results are exhibited in Figure 7. Among the
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(a) (b) (c) (d) (e)

Figure 8. Thumbnails generated by different methods. First row: original images shown at low resolution. Second row: thumbnails from

the saliency-based method (SOAT) [33]. Third row: thumbnails from the aesthetics-based method [38]. Fourth row: thumbnails from our

method. The original images of (b)(d)(e) are from our dataset, while (a)(c) are from the dataset of [33].

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0%

SOAT

Aesthetic-based

Direct-downsizing

Ours

User Study

Best thumbnails - overall Best thumbnails - SOAT's dataset Best thumbnails - our dataset

Votes - overall Votes - SOAT's dataset Votes - our dataset

Figure 7. User study results. The bars with solid fill indicate the

percentage of images for which a method was voted the best. The

bars with pattern fill represent the percentage of overall votes that

were cast for each method.

four methods, ours received the most overall votes (44.4%,

with 46.0% among the images from our dataset and 43.7%

among the images from [33]). Our method also collected

the most votes on 377.3 of the images (54.7% overall, with

54.3% for our dataset, and 54.9% for the dataset in [33]).

There were 77 images for which two or more methods tied

for the most votes. In each of these cases, the n methods

each received credit for 1/n image.

In Figure 8, we show some examples of thumbnails gen-

erated by different methods. It can be seen that the saliency-

based method (SOAT) discards less salient parts of im-

ages, but may also remove important contextual informa-

tion, making the thumbnails less suitable as an image index.

SOAT may also be affected by salient background regions.

The aesthetics-based method tends to produce thumbnails

that visually represent the original image well. However,

its limited cropping leads to considerable rescaling to reach

thumbnail size, and this sometimes results in foregrounds

more difficult to see. Our method generally exhibits a good

tradeoff between representativeness and recognizability by

determining a proper size and location of the crop window.

The full set of 690 photos with thumbnails generated by the

different methods is provided as supplemental material.

5. Conclusion

We presented a method for thumbnail generation that is

guided by two major considerations for a useful image in-

dex. Thumbnail features were proposed to model these con-

siderations, and their relative importance in thumbnail eval-

uation is learned with an SVM model trained on pairs of

photos and expertly-created thumbnails. By learning from

examples, our method can effectively position the crop win-

dow and balance the competing goals of visual representa-

tiveness and foreground recognizability.

Our method relies on techniques for saliency and fore-

ground estimation. Errors in either of these will degrade the

quality of our results, as well as those of other thumbnail

methods. In some cases, such as photographs with multiple

foreground regions that are small and separated, it would

be difficult for our method to generate a thumbnail without

significant sacrifices in representativeness and/or recogniz-

ability. Such photos would also be a challenge for photog-

raphers to handle.
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