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Abstract

Performance characterization of stereo methods is

mandatory to decide which algorithm is useful for which ap-

plication. Prevalent benchmarks mainly use the root mean

squared error (RMS) with respect to ground truth disparity

maps to quantify algorithm performance.

We show that the RMS is of limited expressiveness for

algorithm selection and introduce the HCI Stereo Metrics.

These metrics assess stereo results by harnessing three se-

mantic cues: depth discontinuities, planar surfaces, and

fine geometric structures. For each cue, we extract the rele-

vant set of pixels from existing ground truth. We then apply

our evaluation functions to quantify characteristics such as

edge fattening and surface smoothness.

We demonstrate that our approach supports practition-

ers in selecting the most suitable algorithm for their ap-

plication. Using the new Middlebury dataset, we show

that rankings based on our metrics reveal specific algo-

rithm strengths and weaknesses which are not quantified by

existing metrics. We finally show how stacked bar charts

and radar charts visually support multidimensional perfor-

mance evaluation. An interactive stereo benchmark based

on the proposed metrics and visualizations is available at:

http://hci.iwr.uni-heidelberg.de/stereometrics

1. Introduction

Disparity maps computed from stereo image pairs often

serve as crucial input for higher level vision tasks such as

object detection, 3D reconstruction, and image based ren-

dering, which are in turn used in applications such as driver

assistance [31] and computer assisted surgery [24].

Fueled by the renowned Middlebury benchmark [34],

stereo matching algorithms have made tremendous progress

in the past decade. Since then, stereo benchmarks have

become increasingly challenging, diverse and realistic

with datasets such as the new Middlebury dataset [33],
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Figure 1: The same three algorithms A1-A3 rank differ-

ently, depending on which of our proposed performance

metrics is used. For example, A1 is “the best algorithm”

according to the widely used RMS measure. Yet, A1 yields

the lowest performance at depth discontinuities. The col-

umn rankings show that our metrics allow for a more ex-

pressive and semantically intuitive assessment of stereo re-

sults with respect to depth discontinuities, planar surfaces,

and fine structures. (Black denotes occluded regions.)

KITTI [10], HeiSt [20] and the new SINTEL stereo data [5].

Top ranking algorithms on these benchmarks have long left

behind purely pixel-based approaches. Instead, they hy-

pothesize on local geometry, including segment-wise plane

fitting [16], explicit support for slanted and curved sur-

faces [2, 39] as well as integrating sophisticated shape priors

and object recognition [3, 4, 12]. Even though this evolution
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towards higher-level reasoning started more than ten years

ago, performance evaluation in the stereo community still

mainly works with purely pixelwise comparison of disparity

differences. The two prevalent metrics are 1) RMS, which

denotes the root mean squared pixelwise disparity differ-

ence to a given ground truth disparity (GT) and 2) BadPix,

the fraction of pixels whose disparity error exceeds a certain

threshold, commonly set to 1 or 2 pixels.

Given this situation, our goal is to let stereo evaluation

catch up with the progress of the stereo algorithms it is sup-

posed to assess. Yet, introducing novel metrics for stereo

evaluation is only justified if these metrics foster new valu-

able insights and complement the established metrics RMS

and BadPix. On the one hand, the established metrics al-

ready fulfill many requirements for good performance met-

rics as they are widely applicable, easy to compute, inde-

pendent of image dimensions, and commonly accepted. On

the other hand, metrics which average over all image pix-

els cannot account for the fact that input pixels for stereo

applications are neither spatially independent nor equally

important or equally challenging.

In the Middlebury Stereo Evaluation v.31, Scharstein and

Hirschmüller address this issue by using binary masks for

occluded pixels and linear image weights for the overall

ranking. We build upon this idea and further flesh out the

information given in existing GT disparity maps. We auto-

matically extract GT pixel subsets of geometric structures

at semantically meaningful image regions such as planar

surfaces. These subsets can be extracted from different

GT datasets and applied to dense depth maps generated by

stereo or other reconstruction methods.

Our contribution is threefold:

1. We propose the HCI Stereo Metrics, a novel set of

nine semantically intuitive metrics which characterize

stereo performance at depth discontinuities, planar sur-

faces, and fine structures (Section 3).

2. We re-evaluate recent Middlebury submissions, re-

veal previously unquantified algorithm properties, and

demonstrate how metric combinations and multidi-

mensional visualizations can be used to optimize for

application-specific requirements (Section 4).

3. We provide source code for our evaluation framework

and publish an interactive benchmarking website2.

2. Related Work

The state-of-the-art performance evaluation method for

stereo algorithms clearly consists of comparing RMS scores

achieved on the Middlebury [33, 34] and KITTI [10]

datasets with the published scores on the respective bench-

mark websites. Both benchmarks provide scores computed

1http://vision.middlebury.edu/stereo/eval3
2http://hci.iwr.uni-heidelberg.de/stereometrics

on full, non-occluded and occluded pixel subsets. Middle-

bury v.2 additionally provides scores for pixel subsets at

depth discontinuities.

Looking from a broader perspective, performance eval-

uation for correspondence problems tends to be either very

theoretical or very application-specific [8, 19].

On the theoretical side, Barnard and Fischler defined

a comprehensive set of characteristics ranging from ac-

curacy and reliability to domain sensitivity and computa-

tional complexity [1]. Maimone and Shafer analyzed which

performance characteristics can be assessed on test setups

ranging from empirical uncontrolled environments over en-

gineered test data to pure mathematical analysis [25]. Har-

alick suggested sound statistical performance characteriza-

tion with random perturbations of the algorithm input [13].

Despite their mathematical universality, most of these eval-

uation methods are hardly feasible for stereo evaluation in

current research and real-world scenarios because they of-

ten require exact and comprehensive models of the algo-

rithms, problem domains, and input data.

On the application-oriented side, a variety of evaluation

methods has been proposed, such as for pedestrian or lane

detection in driver assistance scenarios [9, 17, 27, 31].

Maier-Hein et al. proposed evaluation metrics for stereo

accuracy, robustness, point density and computation time in

laparoscopic surgery [23, 24]. Further specialized evalua-

tion methods were proposed with regard to immersive vi-

sualization for tele-presence [29], video surveillance sys-

tems [37], and imaging parameter dependence on Mars mis-

sions [18]. Those methods accomplish their specific pur-

pose very well but the problem-specific insights are often

not easily transferable to other domains.

Our goal is to find a good trade-off between those two

areas of research. We aim at developing theoretically sound

general purpose metrics which are nonetheless easily appli-

cable to existing benchmark datasets and parameterizable to

suit the specific needs of different applications.

In the stereo community, Kostková et al. reasoned that

performance evaluation should take the algorithm purpose

into account and showed that evaluation must not be lim-

ited to basic pixel averaging [21]. Instead, they discriminate

matching errors such as the false negative rate and occlu-

sion boundary inaccuracy. Furthermore, we borrow ideas

from the segmentation and object detection communities to

include higher level reasoning about the image structure:

Margolin et al. proposed evaluation metrics for foreground

maps which incorporate the fact that pixels are neither spa-

tially independent nor equally important [26]. Özdemir et

al. developed performance metrics for object detection eval-

uation which are sensitive to boundary and fragmentation

errors [30]. Yasnoff et al. state that good metrics for scene

segmentation should incorporate error categories for differ-

ent picture elements and have adjustable costs [38].
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3. Novel Metrics for Stereo Evaluation

In this Section, we introduce theoretical principles for

the quantitative evaluation of stereo performance at depth

discontinuities, planar surfaces, and fine structures. For

each of these geometric entities, we first motivate their

relevance for stereo applications, then briefly explain how

we obtain the respective ground truth subsets, and finally

propose distinct metrics to formally quantify stereo perfor-

mance. For each proposed metric, 0 denotes a perfect result

and higher values indicate lower performance. The methods

to obtain the relevant pixel subsets are only briefly outlined

in this Section. Further details are given in the supplemental

material.

3.1. Depth Discontinuities

Depth discontinuities are defined as image regions where

the disparity differences between adjacent pixels exceed

a certain threshold. Sharp and accurate disparity edges

are important for applications such as object detection and

tracking [15]. Yet, depth discontinuity areas are challeng-

ing and error-prone due to occlusion effects and either the

smoothness terms of global stereo algorithms or the local

support windows of local algorithms.

We propose metrics to quantify three phenomena at

depth discontinuities: foreground fattening, foreground

thinning, and fuzziness. Figure 2 depicts schematic illus-

trations of these phenomena together with actual disparity

maps and visualizations of our metrics.

To quantify the described characteristics, we define

Ω ⊂ N
2 as the set of pixels of a given image. We then

define Md ⊂ Ω as the subset of pixels which are located at

high gradients of the ground truth disparity map Dgt. By

linearly following local gradient directions on both sides of

c) fuzziness a) fattening b) thinning 
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Figure 2: Stereo algorithms yield very different perfor-

mance at depth discontinuities (middle row). With our met-

rics (bottom row), we quantify the degree of a) edge fatten-

ing, b) thinning and c) fuzziness using geometric clues ex-

tracted from GT disparity maps. The GT disparity and pixel

subsets used for the evaluation are illustrated in Figure 3.

a) GT disparity of 

    Middl. Playroom 

c) ��: BG disparities  

    propagated into FG  

b) pixel subsets at  

    disparity edges  

Figure 3: To quantify edge thinning and fattening, we auto-

matically extract ground truth subsets (b) for depth discon-

tinuities (white), nearby foreground objects (blue), and the

adjacent background (orange). We further create extrapo-

lated disparity maps where nearby background disparities

are propagated into the foreground (c) and vice versa.

the discontinuity and applying median filtering, we obtain

the pixel subsets Mf and Mb (shown in Figure 3.b). They

denote the foreground and background areas on either side

of the discontinuity. We further introduce the extrapolated

disparity maps Df and Db. For Db, those disparities of

Mb which are closest to the discontinuity are propagated

into Mf along the local gradient directions (see Figure 3.c).

D1. Foreground Fattening. We quantify foreground

fattening by defining Mfat as the subset of pixels, whose

estimated disparity Da(~x) is closer to the extrapolated fore-

ground Df (~x) than to the actual background Dgt(~x), i.e.:

Mfat = {~x ∈ Mb : |Da(~x)−Dgt(~x)| > |Da(~x)−Df (~x)|}
(1)

The degree of foreground fattening Dfat ∈ [0, 1] is then

defined as the cardinality of Mfat normalized by the total

number of considered pixels:

Dfat = |Mfat| / |Mb| (2)

D2. Foreground Thinning. Similarly, we quantify fore-

ground thinning by defining the subset of pixels whose es-

timated disparity Da(~x) is closer to the extrapolated back-

ground Db(~x) than to the actual foreground Dgt(~x), i.e.:

Mthin = {~x ∈ Mf : |Da(~x)−Dgt(~x)| > |Da(~x)−Db(~x)|}
(3)

The normalized Dthin ∈ [0, 1] is then defined as:

Dthin = |Mthin| / |Mf | (4)

D3. Fuzziness. Algorithm results with sharp edges yield

strong disparity gradients close to depth discontinuities and

smaller gradients at more distant pixels. Thus, we com-

pute G = ‖∇Dgt‖ − ‖∇Da‖, the differences of absolute

disparity gradient magnitudes between the GT and the algo-

rithm disparity map. We penalize the differences weighted

by their distance to the depth discontinuity. We use the com-

mon distance metric dist(~x,M) = min~xi∈M ‖~x− ~xi‖ to
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find the closest element in the set of edge area pixels

Me = Md ∪Mf ∪Mb. Furthermore, we define:

f(~x) =

(
|G(~x)|·dist(~x,Md), if G(~x) < 0

G(~x) · dist(~x,Ω \Me), otherwise
(5)

which penalizes overly strong gradients by their distance to

discontinuities and overly soft gradients by their closeness.

Finally, we quantify the fuzziness of discontinuities as:

Dfuz =
1

|Me|

X

~x∈Me

f(~x) (6)

3.2. Planar Surfaces

Reconstructed planar surfaces are used with very dif-

ferent requirements among stereo applications like image-

based rendering or driver assistance. While some applica-

tions care about the correct principal orientation, others re-

quire the exact distance or prefer smooth but slightly tilted

planes over more accurate yet uneven planes with artifacts.

A common strategy among many stereo algorithms is to

fit local planes or splines to some sort of superpixels [16,

35, 39]. Their parametrization often is a trade-off between

locally accurate fits with jumps between the superpixels or

smoother yet less accurate results.

We propose three metrics to quantify the described char-

acteristics of planar surfaces: bumpiness, offset, and lo-

cal misorientation (compare Figure 4). To quantify the

proposed characteristics, we use RANSAC to robustly fit

planes to connected regions of homogeneous gradient direc-

tions in Dgt. With P = {p0, ..., pm}, we denote the set of

m fitted planes in disparity space, defined in point-normal

form pi = (~ni, Pi). The set of pixels whose disparity values

belong to the fitted planes is denoted as Mp.

P1: Bumpiness. Disparity maps at planar surfaces

should ideally have homogeneous gradients and hence a

constant second derivative. To quantify bumpiness, we

therefore compute the second derivative of the algorithm re-

sult Da using the Laplacian ∆ and denote the metric as:

Pbump =
1

|Mp|

X

~x∈Mp

|∆Da(~x)| (7)

Pbump is 0 if all gradients of the estimated disparity map

are smooth and bigger than 1 for strong bumpiness.

P2: Offset. To quantify the offset, we consider all ele-

ments in Mp and compute the Euclidean distance d( ~X, p)

of each 3D point ~X = (x, y,Da(x, y)) to its corresponding

plane p = (~n, P ):

Poff =
1

|Mp|

X

pi∈P

X

~x∈Mpi

d( ~X, pi) (8)
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Figure 4: Reconstructing planar surfaces such that they are

smooth as well as correctly located and oriented is chal-

lenging for stereo algorithms. Our metrics quantify that the

stereo result on the Middlebury v.3 Playtable displayed in b)

has locally smooth areas which suffer from inaccurate ori-

entation leading to locally increasing offsets from the true

plane. In c) the local orientation is only slightly off for some

patches but their relative offset to the plane leads to signifi-

cant jumps between them.

P3: Local Misorientation. To quantify the misorienta-

tion in Da, we estimate the local surface orientation at each

element in Mp by fitting a plane to its 5× 5 neighborhood

using standard least squares. With ~na(~x) denoting the es-

timated unit surface normal of Da at ~x, we compute the

average angle difference to the GT unit normal ~ni as:

Porient =
1

|Mp|

X

pi∈P

X

~x∈Mpi

^ (~na(~x), ~ni) (9)

Values for Porient range from 0◦ for perfect normals to 90◦

for surfaces which are orthogonal to the GT plane.

3.3. Fine Structures

Reconstructing depth at fine, elongated structures of

small horizontal extent is challenging for stereo algorithms.

In the trade-off between minimizing artifacts and preserving

fine structures, the latter are often sacrificed for smooth dis-

parities at larger objects. But reconstructing fine structures

is essential for obstacle detection in autonomous navigation

and medical instrument detection in laparoscopic surgery.

Metrics averaging over the entire image are very tolerant

against such errors, as the structures make up just a small

fraction of the image. We propose three metrics to quantify

algorithm performance at fine structures: porosity, fragmen-

tation, and detail fattening (see Figure 5).

To quantify algorithm performance at fine structures, we

define the subset Ms denoting all pixels which belong to

vertical fine structures. We obtain this subset by shifting

positive and negative gradients of Dgt towards each other

and by keeping regions with high overlap. Since many

stereo applications primarily care about the detection of
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