This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Structural Kernel Learning for Large Scale Multiclass Object Co-Detection

Zeeshan Hayder!'2, Xuming He?"
! Australian National University & *NICTA *

{zeeshan.hayder, xuming.he}@anu.edu.au

Abstract

Exploiting contextual relationships across images has
recently proven key to improve object detection. The re-
sulting object co-detection algorithms, however, fail to ex-
ploit the correlations between multiple classes and, for
scalability reasons are limited to modeling object instance
similarity with relatively low-dimensional hand-crafted fea-
tures. Here, we address the problem of multiclass object co-
detection for large scale datasets. To this end, we formulate
co-detection as the joint multiclass labeling of object can-
didates obtained in a class-independent manner. To exploit
the correlations between objects, we build a fully-connected
CRF on the candidates, which explicitly incorporates both
geometric layout relations across object classes and simi-
larity relations across multiple images. We then introduce a
structural boosting algorithm that lets us exploit rich, high-
dimensional deep network features to learn object similarity
within our fully-connected CRF. Our experiments on PAS-
CAL VOC 2007 and 2012 evidence the benefits of our ap-
proach over object detection with RCNN, single-image CRF
methods and state-of-the-art co-detection algorithms.

1. Introduction

Exploring contextual relations is one of the key factors to
improve object detection under challenging viewing condi-
tions and to scale up recognition to large numbers of object
classes. Object co-detection, which jointly detects object
instances in a set of related images, constitutes an important
step towards utilizing large-scale context beyond individual
images [3]. Recent efforts have achieved promising results
on challenging detection benchmarks by learning instance
similarity within object classes [13, 23, 12].

Despite this progress, most existing object co-detection
methods focus on single-class object detection and treat the
multiclass scenario as a set of unrelated tasks. As such, they
are unable to capture the correlations between co-occurring
object categories, or exploit their spatial and semantic rela-
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(c) Multi-class Object Co-Detection

Figure 1. Conventional single-class object co-detection vs. our
multi-class object co-detection approach.

tions. In addition, due to their approach to learning instance
similarities, these techniques are confined to employing rel-
atively low-dimensional hand-crafted object features, such
as color or LBP histograms. Unfortunately, such simple
feature descriptors lack the necessary representation power
to capture rich characteristics and similarities between in-
stances of multiple object categories.

In this paper, as illustrated in Fig. 1, we tackle the multi-
class object co-detection problem at large scale. To this end,
we take a hypothesize-and-classify approach and introduce
a joint labeling framework that addresses the limitations of
the single-class co-detection. Given a large set of class-
independent object candidates, we formulate multiclass ob-
ject co-detection as the task of assigning each object candi-
date to either one of the target classes, or background. To
exploit the correlation between objects, we explicitly incor-
porate two types of object relations: geometric layout rela-
tions between object classes within an image; and similarity
relations between object instances across multiple images.
To capture complex relationships between objects, we make
use of learned CNN features, and introduce a principled ap-
proach to learning similarities with such high-dimensional
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descriptors.

More specifically, we generate class-independent object
candidates based on an objectness measure [26] that does
not require any pre-trained detectors, and build a fully-
connected Conditional Random Field (CRF) on these can-
didates. The unary potentials of this CRF are then obtained
via a deep convolutional neural network trained to gener-
ate class confidence scores [9]. Furthermore, we make use
of two types of edge potentials: one that encodes the class-
dependent spatial relations between two object instances in
an image [5], and one that encourages a similarity-based
label smoothness between two object instances across the
entire set of candidates.

An important focus of this work is the design of an object
similarity measure, and more precisely, the study of how
high-dimensional deep learning features, that have proven
highly discriminative, can be effectively employed to model
the similarity of object instances in our pairwise potential.
Indeed, while inference in fully-connected CRFs can be per-
formed efficiently by making use of Gaussian kernels in
the pairwise potentials, this strategy scales poorly with the
dimensionality of the features used in the kernels. To ad-
dress this issue, we adopt a structural boosting approach to
learning our pairwise potentials. Our learning strategy in-
crementally adds low-dimensional Gaussian kernels to the
CRF model so as to optimize the overall labeling perfor-
mance. We develop two structural boosting algorithms that
encode different measures of such performance: one based
on a max-margin criterion with Hamming loss, and one that
minimizes the KL-divergence between the marginals of the
CRF and the overlap ratios of the object candidates with the
ground-truth. The resulting pairwise potential, in the form
of a weighted sum of low-dimensional Gaussian kernels, al-
lows us to perform inference efficiently, which is critical for
multiclass object co-detection.

We evaluate our method on two large-scale object de-
tection datasets: PASCAL VOC 2007 and PASCAL VOC
2012. Our experiments demonstrate that our approach out-
performs state-of-the-art methods on several standard met-
rics. This evidences the importance of learning rich similar-
ity measures to account for the contextual relations across
object classes and instances.

2. Related work

Putting objects into context has been widely studied to
improve the robustness of detectors by exploiting the co-
occurrence of objects and scene properties within an im-
age [15, 8]. In particular, object-object relations have been
integrated into several multiclass object detection systems.
For example, Desai et al. [5] propose to jointly detect mul-
tiple object classes by defining a CRF on top of DPMs, in
which the relative geometric relationships among 20 classes
are captured. Choi et al. [4] build a tree-structured model to

encode both the co-occurrence statistics and relative spatial
locations of multiple object classes. While these methods
have shown the benefits of object context, they focus on
modeling the context from a single image. Our approach
incorporates contextual information from all the images.

Object co-detection was first introduced in [3] to ex-
ploit the collective power of a set of images in object de-
tection. Bao et al. [3] take an energy minimization ap-
proach that integrates potential object correspondences at
object and part level, and exhaustively searches for matched
object instances in a set of object candidates. While they
consider general settings for both 2D and 3D object mod-
els at category and instance levels, their method only han-
dles pairs of images. Recent work [12, 23, 13] extend ob-
ject co-detection to the multi-image setting, ranging from
a few frames (e.g., [23]) to the large-scale PASCAL VOC
dataset [12]. One key aspect of object co-detection is the
modeling of object similarity across images. Guo et al. [12]
introduce a robust approach to co-detection that builds a
shared low-rank representation of the object instances in
multiple feature spaces, such as SIFT and LBP histogram.
Shi et al. [23] incrementally learn a Gaussian Process clas-
sifier to measure instance similarity. In [13], we propose
to learn a category-level similarity function based on color
and LBP histograms. These similarity learning approaches,
however, scale poorly to the dimensionality of the fea-
tures, and are thus mostly limited to using relatively low-
dimensional hand-crafted features. Instead, here, we design
a learning framework that lets us make use of a rich rep-
resentation of objects from different classes from a deep
neural network. More importantly, while all existing co-
detection methods consider a single object class at a time,
we also model the object relations across multiple classes.

Our work is inspired by the fully-connected CRF model
and its learning algorithm [16, 17, 28, 29]. The fully-
connected CREF restricts the functional form of the weights
in its pairwise potential to a weighted mixture of Gaus-
sian kernels, which allows efficient inference based on fast
Gaussian convolution [2]. In practice, the efficiency crit-
ically depends on the dimensionality of the input feature
space and deteriorates quickly with higher dimensional fea-
tures. Our work develops a structural boosting approach
based on functional gradient descent [19, 21], in which we
incrementally learn a set of weighted Gaussian kernels de-
fined on low-dimensional feature spaces. In [13], we also
learn a mixture of weighted kernels for a fully connected
CRF. However, in that work, learning is treated as a separate
regression problem without considering the CRF frame-
work. Furthermore, our previous learning strategy does not
scale up to large-scale multiclass object co-detection. Note
that, here, our goal is not to build a kernel-based similar-
ity classifier as in [11, 27, 23], since this would not yield a
mixture of Gaussian kernels adapted to our fully-connected
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CRF framework.

Built on the recent success of deep learning in object
recognition [18, 9], our approach exploits the output of
the RCNN [9] as unary potentials. Note, however, that
other context-free object detectors or deep network classi-
fiers [25, 24, 20, 22] could also be adopted in our frame-
work, and may further improve the performance. Fi-
nally, [30] also proposes to incorporate context information
within a deep network based detection framework. How-
ever, the resulting method focuses only on exploiting the
context around an object hypothesis, and thus does not ex-
ploit the collective information contained in a set of images.

3. Large-scale object co-detection

Given a set of images, we aim to jointly detect object in-
stances of multiple classes in all the images. To this end,
we employ a two-stage strategy: We first generate a set of
object hypotheses in each image, and then formulate co-
detection as the problem of jointly labeling the hypotheses
from all the images as either one of the target object classes
or background. To address the labeling task, we build a
fully-connected Conditional Random Field (CRF) that cap-
tures the spatial relationships of the objects within each im-
age and the object similarity across all images. Our object
similarity measure exploits high-dimensional features from
which we learn a compact pairwise potential that allows ef-
ficient inference with a large number of images and of ob-
ject hypotheses. We introduce our CRF model in the re-
mainder of this section, and discuss our structural boosting
approach to learning its pairwise potential in Section 4.

3.1. Object hypotheses generation

For each image I,,, in a given image set Z, we generate a
set of object hypotheses X' based on a class-independent
objectness measure [6, 1]. Specifically, we adopt the Selec-
tive Search method [26] to extract /V,,, object hypotheses in
I, represented by a set of bounding boxes, with a high-
recall rate. We then apply a fine-tuned RCNN model [9] to
prune down the number of hypotheses based on the SVM
score. Finally, following [9], we train a regression model
to adjust the position of each remaining bounding box. We
denote by X = U,,X™ = {Xy,---,Xy} the set of all
hypotheses, where X; represents the bounding box param-
eters of the i-th object hypothesis, and N = > = N,,. We
then extract an object feature descriptor f; € R¥ for each
bounding box. In particular, we make use of the f7-layer
features of the fine-tuned RCNN mentioned above.

3.2. CRF for multiclass object co-detection

Given the set of object hypotheses X, our goal is to
classify each object candidate into either one of the fore-
ground object classes C or background (). We introduce a
label variable y; € {C U {0}} for each object candidate

X;. Our method jointly predicts the labels of all the object
candidates, denoted by Y = {y1, - ,yn}, to exploit the
dependencies among them. To this end, we build a fully-
connected Conditional Random Field (CRF) on the object
label variables ). Each node in the CRF corresponds to the
label of one object candidate, and any two candidates are
connected by an edge.

Formally, we define a joint distribution over the label
variables ) given the observed candidates X as P()|X) =
ﬁ exp (—E(Y, X)), with Z(-) the partition function.
The corresponding energy function F(-) is defined as

N N
B, X) =32 oyl Xe) + 22 32 ¥(yi.y;1X, X5), (D)
i=1 i=17>1
where ¢ and v are the unary and pairwise potential func-
tions, respectively. We describe each potential function be-
low.

3.3. Unary potential

The unary potentials ¢(y; = ¢|X;) encodes the cost of
assigning the candidate X; to the object class c. To this end,
we train a CNN model on normalized bounding boxes with
|C| + 1 categories and take the output of the f7-layer as fea-
ture vectors for all the bounding boxes, and then train a set
of linear SVM classifiers for |C| + 1 classes. The classifier
for the background class is trained in an inverted fashion
by performing hard-negative mining. In other words, this
classifier treats all the ground-truth bounding boxes from
the first |C| classes as positive examples, and we make use
of the negative of its output score as a score for the back-
ground class. Viewing the scores of all classifiers as log
probabilities, we then define our unary term as

[C]+1

Pu(yil Xi) = — Z (sic)L(y,=c) (@)
c=1
where s;. represents the score of class ¢ for each sample
bounding-box .

3.4. Pairwise potential

The pairwise potential ) (-) captures the relationship be-
tween pairs of object hypotheses, and measures the cost of
the different possible label assignments for each pair. We
incorporate two types of relationship in the pairwise term:
(i) the spatial, or geometric, relationships between different
object classes within each image; (ii) the similarity between
any two object candidates in the image set. We denote these
two pairwise potentials as ¢4 (-) and 1, (-), respectively.

For 14, we follow the definition of spatial relations
of [5], which groups the relative locations of two object hy-
potheses into D canonical relations. The pairwise potential
is defined as

Yo (yi, ¥ 1 X4, Xj5) = W;Fi,yjd(xu X;), ©)
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where w,, ,, . are weights for all possible (i.e., D) geomet-
ric configurations of labels y; and y;. The binary vector
d(X;,X;) encodes the geometric relation of X; and X
(i.e., 1 for the correct relation, O for the other ones). Note
that d = 0 when X; and X; are from different images.

The pairwise potential 1) is a data-dependent Potts
model, encouraging similar hypotheses to share the same
object label. We restrict the data-dependent term to take the
form of a weighted mixture of Gaussian kernels defined on
image features. This can be written as

1/)8(yi7 y]|XZ7 X]) = E?:l ’LUth(fh f]7 Ut):u(yh y]) (4)

where each K is a Gaussian kernel with variance o7 de-
fined on the object features f; and f;, and 4 is a label com-
patibility function, which we define as a Potts model, i.e.,
15 (Ui 95) = Ly, 2,

In essence, the mixture of Gaussian kernels encodes the
appearance similarity between two object candidates. Such
a representation was employed by [16] to design an effi-
cient inference algorithm for semantic labeling in a fully-
connected CRF. The computational efficiency of this algo-
rithm, however, critically depends on the dimensionality
of the object features f;, f;. In this work, we seek to ex-
ploit the powerful high-dimensional features extracted by
CNNs. Directly employing these features in each kernel
would make inference impractically slow. To overcome this
issue, we propose to make use of one-dimensional Gaussian
kernels of the form

(fz{it - fgl'it)Q
Ki(fi,£5,00. k) = exp | —————— (5)

0%

where f/** extracts the #;-th dimension of the feature vec-
tor. While each kernel can now be efficiently evaluated,
with the kind of CNN features that we would like to uti-
lize, considering all feature dimensions would yield several
thousands of kernels. This would therefore still make infer-
ence intractable. We address this issue in Section 4, where
we introduce an approach to learning the kernels that are
important for our task.

3.5. Efficient inference for co-detection

Efficient inference in our fully-connected CRF remains
challenging since each image contains a large number of
object candidates and the spatial pairwise potential 1, does
not have a form that allows us to use the efficient algorithm
of [16]. We therefore design a two-step cascaded inference
procedure to obtain the marginal posterior probabilities of
each object candidate.

We first start with a model that does not contain the po-
tential 1 defined on the dense connections. The resulting
model thus decomposes into M individual CRFs, one for

!General compatibility functions can also be used in our model.

each image. We make use of the max-margin procedure
of [5] to learn the parameters of this model (i.e., a single set
of parameters that will be used for all M images). At infer-
ence, we apply the greedy forward search algorithm of [5]
and compute the marginals of each object node, which we
denote by ¢4 (y:|X;).

We then integrate the marginals from the first step with
our fully-connected pairwise potential 15, which yields a
CRF with energy function

N N N
EY,X) = ;¢g(yi|Xi) + 30 20 U (v, v X, X5). (6)

i=1j>i

The marginals of each object candidate can then be ob-
tained efficiently using the approximate mean-field infer-
ence method of [16], which relies on fast Gaussian filtering.
As mentioned above, however, inference is efficient only as
long as the number of Gaussian kernels remains relatively
small. This problem will be addressed in the next section.

4. Kernel learning for fully-connected CRF's

In this section, we introduce an approach to learning
the kernels that define the pairwise potential of our fully-
connected CRF. We also learn a transformation of unary
scores because unary scores are not scaled across different
classes. As briefly discussed in Section 3, the efficiency of
our inference strategy depends on the compactness of our
pairwise potential 15, or, more precisely, since we employ
one-dimensional Gaussian kernels, on the number of ker-
nel functions in ¥s. Unfortunately, the feature descriptors
that have proven the most discriminative in practice, such
as CNN features, are typically very high dimensional. Em-
ploying one kernel per feature would then not be practical.
Here, we propose to overcome this issue by learning the
kernels that are relevant to our goals. To this end, we intro-
duce a structural boosting approach that allows us to select
a small subset of distinctive object features and learn their
corresponding kernel functions. In the remainder of this
section, we first discuss our structural boosting framework
and then describe the two different loss functions to learn
our pairwise potentials.

4.1. Structural boosting for fully-connected CRFs

We now present our structural boosting framework. This
framework follows the general functional gradient descent
approach introduced in [19]. In this general context, how-
ever, we design two novel algorithms specialized to the
problem of kernel learning in fully-connected CRFs, with
emphasis on the task of multi-class object co-detection.

Let (X,)) be a training set containing pairs of object
bounding boxes X; with corresponding ground-truth label
§;. Furthermore, let R[1)|X,))] denote an empirical loss
function defined with respect to the pairwise potential 1),
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and the training examples. Our approach exploits the fact
that, as shown in Eq. 4, our pairwise potential )5 has an
additive form, i.e., ¥(-) ~ >, wihe(-). Each hy € H can
thus be thought of as a weak learner belonging to a family
‘H. In our case, H is defined as a family of pairwise potential
functions indexed by (o, k), such that each weak learner has

the form
ZZKf £5,0,8)u(yi ), (D

i=1 j>1

where K (-) is a one dimensional kernel as shown in Eq. 5.

Our structural boosting algorithm then works as follows.
At each step ¢, we first compute the negative functional gra-
dient —V s R[1),| X, V] with respect to 1), and evaluate it at
the previous pairwise potential estimate ¢{~!, and find its
maximum projection onto the weak learner space 4. This
can be expressed as computing

hy = argmax(—VR[ys|X. V]| ,  ,h). (8)
heH Vs

Given the best weak learner h}, we then use line-search to
determine the corresponding weight as

w} = argmin R[(p)\ ™ + w b | X, V). )

weER

To maximize the projection of the functional gradient in
Eq. 8, we discretize the parameter space of Gaussian ker-
nel widths and enumerate all combinations of discrete width
and feature dimension in f. The resulting optimal kernel at
step t is denoted by Ky(., ., 0¢, k¢ ). Due to the approximate
nature of our inference procedure, the functional gradient
is also approximate for the boosting process. We stop the
structural boosting process when the change in accuracy on
a validation set is less than a certain threshold between the
current boosting iteration and previous boosting iteration.

Below, we introduce two special cases of the general
algorithm described above: One based on a max-margin
learning approach, and one based on a direct loss minimiza-
tion strategy. In each case, we first discuss the correspond-
ing empirical loss functions R. We will derive the func-
tional gradient projection for max-margin learning, propose
a numerical approximation for the direct loss minimization.
The steps of our approach are outlined in Algorithm 1.

The time complexity of the learning algorithm is
O(KSNT?), where N is the total number of candidate
boxes in the pool, and T, K, S are defined in Algorithm 1.
The space complexity is O(NT'). At test time, the time
complexity and the space complexity are O(NT).

4.2. Max-margin structural boosting

Let us first consider the case of max-margin learning. In
this scenario, the empirical loss R can be expressed as

R 2, = max (~E(2.9) + £, D)) + E®,), (10)

where AE(«'? , ) is the energy function defined in Eq. 6, and
L(Y, ) is the Hamming loss between a label configuration

Y and the ground-truth V.ie., LY, 5)) = Zfil 1y, 2y,)-
The negative functional (sub-)gradient of this loss func-
tion with respect to 15 can be written as

V[ R[hs|X, V] = V;E(X,V*) —
= 5);:);* — 5)7:51

V E(X,Y) (11)

where ¢ is the Kronecker delta function, and )* is the label
configuration that determines the value of the first term in
Eq. 10. In other words,

V= arg;}nax{—E()?,y) + LV, ))}, (12)

and can thus be estimated approximately using loss aug-
mented inference in our CRF. We usc the same mean field
algorithm with loss augmented unary terms to find the
marginal posterior probability and labels )V*.

The optimal weak learner can then be computed by max-
imizing the projection of the functional gradient as in Eq. 8§,
which can be written as

hi = argmax(—VfRW)sVe?)}]»m (13)

—argmaXZZK (£, £5,0,6) (u(yiuy) — (i, 45)) -

=1 j>1

In each boosting step, we compute the projection using the
same fast Gaussian convolution as for inference, and enu-
merate all the (o, k) pairs.

4.3. Direct-loss structural boosting

Typically, detection algorithms are evaluated using the
mean average-precision error, and thus do not only care
about the predicted label for each object, but rather about
some notion of score obtained for each class. Therefore, the
max-margin framework described above might not be opti-
mizing the best loss. To overcome this issue, we introduce
a direct-loss minimization approach.

More precisely, instead of predicting a unique class label
for each object hypothesis, we aim to estimate the overlap
between the proposed object bounding box and the ground-
truth annotations of each class. In the following, we refer
to this overlap as the target overlap distribution. Here, we
propose to directly minimize the KL divergence between
the target overlap distribution and the marginal probabil-
ity from our fully-connected CRF. Let us denote the target
overlap distribution of object hypothesis X, as p; and the
corresponding marginal output of the CRF as q;. We then
define the empirical loss R as

N [Cl+1

ws|X y Z Z pz

i=1 k=1

)log (pi(k)/qi(k)) (14)
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Algorithm 1 Structural Kernel Learning Algorithm
Initialization:
Training data: D = (X,))
Unary potentials: ¢g
CNN FC7 feature dimension: K
No. of Iterations: T
Loss Function: £
f=0o=w=10
Iteration:
1: fort=1... Tdo
2:  Build Dense CRF Graph using Unary ¢g and (¢t — 1)
Structural Gaussian kernels f

33 fork=1..Kdo
4: Select a range of S o values
5: fors=1..Sdo
6: Generate weak learner h; using feature index k
and variance o®
7: Efficient Mean-field inference
8: Compute Loss using Eq. 10 or Eq. 14
9: end for
10:  end for

11:  Select best structural kernel h; using variance o; and
feature index f;
122 o=[oJo;]
3 f=[EUS
14:  Line Search for kernel weight w*, w = [w | w*]
150 s ¢ [1hs Ul
16: end for
Output:
Learned boosted structural kernel features: f
Kernel widths: o
Kernel weights: w

where q; (k) is a function of 1, which is recursively defined
by the mean field update equation

q;(k) oc exp <_‘P(1(k|Xi) - Z1/)s(k=yj|X1-,Xj)qi(yj)) . (15)

J#1 Y5

Computing the functional gradient and its maximum projec-
tion is expensive due to the recursion in Eq. 15. We there-
fore follow a finite difference approach to approximately
estimate the functional gradient. At each step ¢, this trans-
lates to searching for the weak learner that maximizes the
decrease in the empirical loss according to the finite differ-
ence gradient, which can be expressed as

hi = argmax Ry X, V] = R + eh| X, V], (16)
heH
where € is a small constant value. As in the max-margin

case, we enumerate all possible h. Since inference can be
performed efficiently, this search remains tractable.

5. Experiments

We now demonstrate the effectiveness of our method
on large scale multiclass object co-detection. To this end,
we evaluate our approach on two challenging large datasets
with multiple object classes, i.e., PASCAL VOC 2007 and
2012, and compare our results with those of the state-of-
the-art methods.

5.1. Datasets and setup

The PASCAL VOC dataset [7] contains 20 object
classes. We use the standard trainval/test partitions.

Our training procedure consists of four stages: a) fine-
tuning the parameters of a deep network, b) training class-
specific SVM classifiers [9], c) learning the per-image lay-
out CRF [5], and d) learning the similarity kernels via struc-
tural boosting in our fully-connected CRF. We split the
trainval images into a training and a validation set. The
training set consists of randomly selected 75% of the train-
val images, and the remaining 25% of the trainval images
are kept as validation set. We use the training set to fine-
tune a pre-trained deep network (AlexNet [18]) and train the
21 class-specific SVMs as in [9]. We learn the layout CRF
and the kernels in our fully-connected CRF based on the
validation set. The unary and feature computation jointly
take 9 sec per image on average and the learning algorithm
takes approximately 72 hrs to train the full model.

At test time, we perform inference in our fully-connected
CREF, which not only computes the marginal posterior prob-
ability but also generate the maximum-a-posteriori labeling
for each object bounding box hypothesis. To evaluate per-
class performance, we divide our bounding-box pool into
different categories according to the MAP labeling and use
the marginal probability as the detection scores to generate
the precision-recall curves. The PASCAL VOC 2007 and
2012 datasets comprise 4952 and 10991 test images, respec-
tively. In both cases, we jointly perform detection in all the
test images via inference in our fully-connected CRF. Per-
forming inference in our fully-connected CRF containing a
total of 995937 nodes (VOC 2007) took 9.8052sec.

We compare our approach (CoDeT-G-LA: kernel selec-
tion using max-margin learning, and CoDeT-G-DL: ker-
nel selection using direct loss minimization) with the state-
of-the-art context-free detector RCNN [9] (R-CNN and R-
CNN-BB), the layout CRF [5] with RCNN as unary term
(CoDeT-G) and the state-of-the-art single class object co-
detection method [13]. For this last baseline, and to have
a fair comparison, we used CNN features to generate the
unary scores for each individual object detector. However,
the approach of [13] to learning object similarity does not
scale to CNN features and to large training sets. Therefore,
following [13], we employed color and local binary pattern
to define the pairwise potentials, and subsampled the train-
ing set to learn the similarity. The weight of the pairwise
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VOC 2007 (test) aero  bike bird boat bottle bus car cat  chair cow table dog horse mbike person plant sheep sofa train tv mAP
MLRR [12] 341 530 124 189 312 432 527 216 228 250 322 106 51.7 410 386 192 273 325 413 419 | 325

MCOL [5] 288 562 32 142 294 387 487 124 160 177 240 11.7 450 394 355 152 161 201 342 354 | 27.1

R-CNN (AlexNet) [9] 642 697 500 419 320 626 71.0 607 327 585 465 56.1 606 668 542 315 528 489 579 647 | 542
R-CNN BB (AlexNet) [9] 681 728 568 43.0 368 663 742 67.6 344 635 545 612 69.1 68.6 587 334 629 511 625 648 | 585
Co-detection (AlexNet) [13] 654 71.6 542 419 349 667 744 675 351 641 539 614 693 687 596 332 625 508 610 63.0 | 580
(Ours) CoDet-G (AlexNet) 70.1 724 588 435 387 672 748 683 341 654 568 634 703 689 589 332 639 512 642 652 | 595
(Ours) Codet-G-LA (AlexNet) | 70.2 748 60.7 436 450 670 749 641 342 658 587 621 720 704 60.1 354 655 475 61.1 640 | 599
(Ours) CoDet-G-DL (AlexNet) | 70.6  76.3 61.7 44.7 456 676 750 649 346 663 583 637 723 704 604 356 654 486 638 644 | 60.5
Fast R-CNN (VGG16) [10] 745 783 692 532 366 7713 782 82.0 407 727 679 796 792 73.0 690 301 654 702 758 658 | 669
(Ours) CoDet-G-DL (VGG16) | 75.8 78.1 69.3 53.8 369 775 79.0 825 401 735 677 814 822 754 700 334 654 700 743 672 | 67.7

Table 1. Detection average precision(%) on the PASCAL VOC 2007 test set.

Rows 1-2 shows the co-detection baselines. Rows 3-4 provide

the baseline state-of-the-art results for detection. R-CNN (without bounding-box regression); R-CNN BB (with bounding-box regression).
Row 5 provides the co-detection results with deep network unary potentials. Rows 6-8 show co-detection performance. CoDet-G (R-CNN-
BB with geometric context model learning); CoDet-G-LA (Kernel selection using max-margin learning); CoDet-G-DL (Kernel selection
using direct loss minimization). Rows 9-10 show the results of the Fast-RCNN baseline and of our method using VGG16.
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Figure 2. Precision/Recall curves performance comparison on four representative categories using the VOC 2007 dataset.
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Figure 3. Sensitivity and Impact Analysis: Overall detailed performance comparison using different metrics (i.e., occlusion, truncated, size,
aspect ratio, view point and part visibility). The black dashed line indicates the overall average normalized precision APxy.
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Figure 4. False positive analysis using all the vehicles category.

potential was learned using the validation set.
5.2. Results on VOC 2007

We report our results on the VOC 2007 test set using two
different evaluation protocols: the standard per-class metric
and the multiclass metric of [5].

Per-class scores We follow the VOC performance eval-
uation protocol and report the Average Precision (AP) and
mean of AP (mAP) for the 20 object classes in Table 1. We
can see that CoDet-G outperforms the R-CNN-BB results
on 18 out of 20 classes, which suggests that learning a ge-
ometric model to incorporate inter-class objects configura-
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VOC 2012 (test) | aero  bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN [9] 68.1 638 461 294 279 566 570 659 265 487 395 662 573 654 532 262 545 381 506 51.6 | 49.6
R-CNNBB[9] | 71.8 658 520 341 326 596 600 698 276 520 417 696 613 683 578 296 578 409 593 541 | 533
CoDet-G 725 642 514 348 326 625 603 712 278 524 424 697 605 677 586 300 577 40.0 610 556 | 53.6
CoDet-G-DL 69.8 675 523 344 357 630 634 683 283 54.0 41.1 677 652 70.7 60.6 325 60.0 41.1 547 579 | 544

Table 3. Detection average precision(%) on the PASCAL VOC 2012 test set. Rows 1-2 provide the baseline state-of-the-art results. R-CNN
(without bounding-box regression); R-CNN BB (with bounding-box regression). Row 3-4 show our co-detection performance. CoDet-G
(R-CNN-BB with geometric context model learning); CoDet-G-DL (Kernel selection using direct loss minimization).

VOC 2007 (test) | overall AP Max-A-Posteriori Acc.

R-CNN BB [9] 61.46 57.05
CoDet-G-LA 62.13 62.94
CoDet-G-DL 62.60 64.49

Table 2. Multi-class average precision(%) on the PASCAL VOC
2007 test set. CoDet-G-DL (Kernel selection using direct loss
minimization). We constructed the baseline curve for R-CNN-BB
(with bounding-box regression) by pooling the detections across
all object classes and images when computing the PR curves. Our
model clearly provides a noticeable boost in overall performance.

tion is vital to object detection when we have multiple ob-
jects appearing in the same image. By contrast, we observed
that the results of the co-detection method of [13] yields
virtually no improvement over the R-CNN-BB results. We
conjecture that this is due to the limited scalability of this
method, which forced us to subsample the training data
when learning the object similarity and to employ less infor-
mative, but lower-dimensional, features. Our CoDet-G-LA
algorithm yields a further small improvement over CoDet-
G on 14 classes, thus outperforming R-CNN-BB by 1.4%.
Our CoDet-G-DL algorithm yields an improvement of 2%
over the R-CNN BB baseline results. Recently the Feature
Edit method [22] outperformed the R-CNN BB baseline by
a margin of 1.6%. We also evaluated our method using
the VGG16 [24] network. We obtained an improvement of
0.8% over the Fast-RCNN VGG16 baseline [10]. In other
words, our CoDet-G-DL algorithm achieves state-of-the-art
results on VOC 2007 (based on the same kind of deep net-
work structure).

We also computed Precision-Recall (PR) curves for com-
parison with the R-CNN-BB baseline. Fig. 2 shows the
precision-recall curves for bicycle, boat, dining table and
motorbike. These curves clearly indicate that our method
improves over R-CNN-BB in the high-recall low-precision
region. Following [14], we provide a detailed comparison
of different performance criteria in Fig. 3. Our method out-
performs the R-CNN-BB baseline by 2.7% in average nor-
malized precision APy. Finally, in Fig. 4, we also provide
an analysis of the false-positives using the vehicles cate-
gory group. False positives with confusion across similar
object categories and different object categories are signifi-
cantly reduced by our approach. This shows the strength of
our multiclass object co-detection approach, which benefits
from intra-class and inter-class similarity to help reduce the

false positives.

Multi-class scores Multi-class object detection perfor-
mance is difficult to measure using per-class AP. Since our
main goal is multi-class object co-detection, we also re-
port the results according to the multiclass detection metric
of [5]. Following [5], we pool the detections across all the
classes and all the images and generate a single precision-
recall curve from which we compute the overall AP. We also
compute the labeling accuracy based on the Maximum-A-
Posteriori (MAP) estimation. The results are summarized
in Table 2. We can see that our method achieves a large
improvement over the baseline.

5.3. Results on VOC 2012

In Table 3, we report our results on the VOC 2012 test
dataset using the standard per-class metric based on the
summary statistics from the evaluation server. Precision-
recall curves and multi-class performance metrics cannot be
generated here, since we do not have access to the original
labeling of the VOC 2012 test dataset. Our CoDeT-G-DL
algorithm outperforms the R-CNN-BB baseline in 15 ob-
ject categories, which, altogether, yields 1.1% overall gain
in the mean average precision on VOC 2012 test dataset.
This indicates that our approach achieves a consistent im-
provement over the baseline method. Note that, to obtain
our results on VOC 2012, we simply re-used the kernels
learned using the VOC 2007 trainval dataset.

6. Conclusion

In this work, we have introduced a novel large scale
object co-detection method that simultaneously considers
multiple object classes. Our approach based on a fully-
connected CRF allows us to incorporate contextual infor-
mation within and across images, as well as within and
across the classes. Furthermore, our structural boosting
strategy lets us benefit from rich, high-dimensional features
to learn the object relationships within our CRF framework.
Our experiments have demonstrated the benefits of our ap-
proach over the state-of-the-art methods on PASCAL VOC
2007 and 2012, where we obtained state-of-the-art detection
accuracies. In the future, we intend to learn the geometric
model and instance similarity jointly as well as to exploit
the object segmentations within the bounding boxes to im-
prove the accuracy of object co-detection.
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