
Learning to Boost Filamentary Structure Segmentation

Lin Gu, Li Cheng

Bioinformatics Institute, A*STAR, Singapore

gulin,chengli@bii.a-star.edu.sg

Abstract

The challenging problem of filamentary structure seg-

mentation has a broad range of applications in biological

and medical fields. A critical yet challenging issue remains

on how to detect and restore the small filamentary frag-

ments from backgrounds: The small fragments are of di-

verse shapes and appearances, meanwhile the backgrounds

could be cluttered and ambiguous. Focusing on this issue,

this paper proposes an iterative two-step learning-based

approach to boost the performance based on a base seg-

menter arbitrarily chosen from a number of existing seg-

menters: We start with an initial partial segmentation where

the filamentary structure obtained is of high confidence

based on this existing segmenter. We also define a scan-

ning horizon as epsilon balls centred around the partial

segmentation result. Step one of our approach centers on

a data-driven latent classification tree model to detect the

filamentary fragments. This model is learned via a train-

ing process, where a large number of distinct local fig-

ure/background separation scenarios are established and

geometrically organized into a tree structure. Step two spa-

tially restores the isolated fragments back to the current

partial segmentation, which is accomplished by means of

completion fields and matting. Both steps are then alter-

nated with the growth of partial segmentation result, until

the input image space is entirely explored. Our approach is

rather generic and can be easily augmented to a wide range

of existing supervised/unsupervised segmenters to produce

an improved result. This has been empirically verified on

specific filamentary structure segmentation tasks: retinal

blood vessel segmentation as well as neuronal segmenta-

tions, where noticeable improvement has been shown over

the original state-of-the-arts.

1. Introduction

This work aims to address the problem of image-based

filamentary structure segmentation. In particular, we focus

on the challenging issue of preserving weak foreground sig-

nals, i.e., small and thin filaments from ambiguous back-

grounds. This problem is fundamental in a rather broad

range of applications such as neuronal tracing from micro-

scopic images [17], retinal blood vessel tracing in retinal

scans [9], as well as reconstruction of human vasculature

such as 2D digital subtraction angiography and 3D mag-

netic resonance angiography [10]. Difficulties of this prob-

lem lie in the high variability of filament shape, texture and

thickness, which is further complicated by the often noisy

and cluttered background that at times could even confuse a

trained eye [1].

Existing methods can be roughly categorized into three

types: Hessian-based, model-based and learning-based.

Hessian-based models make use of the second order deriva-

tives either to guide the development of snake [27], to detect

filament edges [2], or to combine with the eigenvalues [10]

for segmenting filamentary structures. They however of-

ten lack the flexibility to tackle irregular filamentary struc-

tures. Model-based methods instead emphasize on fitting

filaments with known geometric shapes. Zhao et al. [29]

regard individual fibres of neurons as connected tubular

shapes which are assembled to form neuronal tree struc-

tures. One widely used unsupervised method, optimally

oriented flux (OOF) [13], is based on the assumption of

circular filament cross-sections, which is further extended

in Turetken et al. [26] to segment filamentary structures

through a set of regularly spaced anchor points. Learning-

based methods [22, 21, 25, 6], on the other hand, advocate

the automation of the feature learning process. For example,

the method of [6] employs a gradient boosting framework

to optimize filters and often produces the state-of-the-art

performance. Existing filamentary structure segmentation

methods usually work very well when the filamentary struc-

tured foregrounds are of high contrast or with clear bound-

ary from the backgrounds. Their performance nevertheless

deteriorates dramatically when dealing with small and thin

filaments. This is often further complicated with cluttered

and ambiguous backgrounds, which are not uncommon in

real-world images.

In addition to the basic segmentation result, many of

the aforementioned methods also produce a pixelwise confi-

dence map, despite the heterogeneous nature of these meth-
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Figure 1: Exemplar results of our approach on two applications: (first row) retinal and (second row) neuronal images. For each application, the results of

the base segmenter [6] and results of our boosted are displayed. Note the blue channel in the neuronal image indicate the DAPI-tagged nuclei which can be

ignored in our context. In each of the results, Black pixels refer to true positive, magenta pixels are for false negative (miss), while lime pixels are for false

positive (false alarm).
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Figure 2: An illustration of the pipeline of our approach on a retinal image. From top-left to bottom-right: (a) Input image; (b) The confidence map from

a base segmenter. Here pixels with lower intensity values correspond to higher confidence scores. (c) Initial partial segmentation obtained by applying a

sufficiently high threshold in the confidence map. (d-f) Intermediate results of iterations 1-3, where the result of step 1 is shown for each iteration. (g) The

final reconstructed filamentary structure, in comparison with (h) the ground truth.

ods. A confidence map is a spatial mapping with each im-

age pixel assigned a non-negative score, which is larger if

this pixel more likely belongs to the filamentary structure

foreground, or lower if the other way around. This concept

has in fact been adopted by existing methods under different

names, such as vesselness [10] and tubularly score [26, 25].

It has been observed that when placing a sufficiently high

threshold on the confidence map, many such methods are

able to output solely true positive foregrounds which pro-

duces a partial segmentation that usually contains the main

trunk (i.e. the long and thick filaments). Similarly, when

placing a sufficiently low threshold, many of these meth-

ods are able to produce only true negative backgrounds.

The observations inspires us to propose a data-driven learn-

ing approach aiming at boosting the performance of these

existing segmentation methods. Our approach specifically
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focuses on detecting and restoring small foreground fila-

ments from ambiguous backgrounds, a bottleneck issue of

many state-of-the-art methods. To achieve this, an itera-

tive two-step pipeline is proposed. As shown in Figs. 1,

empirically our approach is demonstrated to boost the per-

formance of a wide spectrum of exemplar existing methods

such as [2, 13, 6], which contains supervised and unsuper-

vised methods, as well as Hessian-based, model-based, and

learning-based methods.

2. Our Approach

Based on one of the existing filamentary structure

segmentation methods that meet the above quantifications

(which we will refer to as a base segmenter), our approach

can be regarded as a value-added process to improve

its segmentation performance. As illustrated in Fig.2,

provided with an input image and the confidence map

output by the base segmenter, the pipeline of our approach

consists of the following steps:

Preprocessing: Obtain the partial segmentation (black-

colored main trunk in Fig.2(c)) by placing a sufficiently

high threshold on the confidence map. Define a scanning

horizon as epsilon balls centered around current partial

segmentation in the image space.

Step One: In the remaining low confidence regions, detect

the filamentary fragments (red components in Fig.2(c)) via

a latent classification tree model. The latent classification

tree (LCT) model is learned based on a large number

of distinct local figure/background separation scenarios,

which are geometrically organized into a tree structure.

The detected filamentary fragments are on the other hand

usually isolated from the main trunk due to missing edges.

Step Two: Grow current filamentary structure by restoring

the detected filamentary fragments, i.e., connecting them

back to the main trunk. This is achieved by making novel

usage of the matting technique guided with the completion

fields of these filamentary fragments.

Progress Check: Update the scanning horizon. Go back to

step one if the image space has not been entirely explored,

otherwise terminate.

Filamentary fragments(a) (b) Background fragments

Figure 3: (a) and (b) present exemplar filamentary fragments vs. back-

ground fragments encountered during step one, respectively where the first

row shows the input image patch and the second row shows the fragments.

2.1. Preprocessing

For an input image, its confidence map is obtained by

applying a base segmenter. By placing a threshold τh, we

obtain an initial partial segmentation that comprises a set

of pixels with confidence values exceeding τh. Note τh is

sufficiently high to ensure that only filamentary foreground

pixels are selected. In a similar manner, we can also define

another threshold τl to be sufficiently low for pure back-

grounds. At this moment, a partial foreground segmentation

is obtained, while the rest pixels remain undecided. We also

define a scanning horizon as an epsilon ball B around the

current partial segmentation with a searching radius ǫ.

2.2. Step One: Detect Filamentary Fragments via
latent classification tree (LCT) Model

As displayed in Fig.2(c), the long and thick filaments

(i.e. main trunk) are usually successfully detected as the

initial partial segmentation, while the bottleneck issue be-

comes that of identifying and reclaiming the small and thin

fragments. Given a base segmenter, starting from an initial

partial segmentation, the aim of step one is to detect fila-

mentary fragments from backgrounds in those pixels with

weak confidence values in the range of (τl, τh) within hori-

zon B. This is a rather challenging problem, mainly due to

significant variability of local geometrical shapes and tex-

tures upon which we rely to identify and reclaim filament

foregrounds from the ambiguous backgrounds. Simply

placing a global threshold in this range will inevitably re-

sult in the detection of fragment candidates which are a mix-

ture of filamentary fragments (coloured red) and ambiguous

background fragments (coloured blue) as illustrated in e.g.

Fig.2(d-f). To address this problem, we instead propose a

data-driven strategy to learn distinct local shape and texture

scenarios of filamentary fragments, with the underlying as-

sumption that for any test instance, similar scenarios would

usually exist in training data. This naturally corresponds

to a large number of distinct local figure/background sep-

aration scenarios, which are established and geometrically

organized into a tree structure, a latent tree model. This

divide-and-conquer strategy becomes beneficial in several

aspects: It helps to reduce the complexity of the original

problem to something that can be managed case by case; It

also facilitates the introduction of specific completion fields

that each dedicates to a group of filament fragments pos-

sessing similar orientations, shapes and textures.

2.2.1 Identify Distinct Local Filament Shapes and Tex-

tures by Filament Tokens

Following the idea of sketch tokens [14], we will identify

distinct local filamentary fragments that are referred to as

filament tokens. It works by grouping similar filamentary

fragments in terms of their shapes, textures, and orientations
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Figure 4: An illustration of the latent classification tree (LCT) model in step one: A latent split node which comprises a subset of similar tokens and is

split into multi-branches according to a multi-class classifier; A leaf node corresponds to a local foreground/background separation problem, with the set of

foreground filaments precisely corresponding to a unique token type, as displayed in the second row. For each token type, its completion field is presented

in the third row. In the legend: a split node contains a multi-class classifier, while a leaf node has its local forgeround/background separation problem.

in image patches centered on the centerline of filaments ob-

tained from the set of labeled training images. A wide spec-

trum of features could be applicable in our context, while

the histogram of gradient (HOG) feature is employed as

being relatively insensitive to slight spatial offsets. Note

the HOG feature is directly operated on the ground-truth

segmentation to extract local shapes of various filamentary

fragments. This is followed by k-means clustering to parti-

tion these filamentary fragment examples into T token types

based on their HOG features. Each token type corresponds

to a specific group of filamentary fragments with similar ge-

ometry pattern. In this paper, the patch size for images are

fixed to 31× 31. T is set to 180.

2.2.2 Detect Filamentary Fragments by LCT Model

When the filament tokens are prepared, the remaining prob-

lem of step one becomes that of solving a large number

of token type dependant figure/background separation sce-

narios. A straightforward approach would be that of em-

ploying a multi-class classifier such as support vector ma-

chine or random forest with respect to token types. This

approach nevertheless treats each token type as indepen-

dent one, which ends up tackling an unnecessarily hard

classification problem with large number of token types.

In fact, these token types inherently possess hierarchical

structures that characterize their non-uniform pairwise dis-

tances. Thus it would be advantageous to exploit the topol-

ogy structure within the token types. This inspires us to

consider the latent tree models [8, 19], which in our con-

text is a tree-structured probabilistic organization of these

local figure/background separation scenarios as being the

leaf nodes of Fig. 4, where the foregrounds of each scenario

come from one unique token type, and the backgrounds are

formed by nearby background fragments. The tree struc-

ture is obtained by the Chow-Liu neighbor joining (CLNJ)

method [8]: A Chow-Liu tree is constructed over all the to-

ken types to provide guidance on the groups of token types

that tend to be topologically close to each other. Provided

with the Chow-Liu tree and started from each of the individ-

ual token types as a leaf node, a neighbor joining strategy is

thus recursively employed to build sub-trees in a bottom-up

manner by connecting a group of several closest neighbors

at a time, until an entire tree is formed in the end. In this pa-

per, the distance between a pair of token types is determined

by the Euclidean distance of the aforementioned HOG fea-

tures describing the two token types.

Fig.4 illustrates an exemplar CLNJ tree, where each split

node possesses an internal multi-class classifier to assign a

fragment candidate to the corresponding sub-tree it belongs

to. At test run, a fragment candidate starts at the root node

of the LTM, and descends to one of the sub-trees following

decision made by invoking the current split node’s classi-

fier. This process is repeated until the candidate reaches a

leaf node. Each leaf node also maintains a binary classifier

with the purpose of retrieving true filament fragments from
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backgrounds under its local context. if it passes this veri-

fication process, the token type of the leaf node will be as-

signed to the fragment candidate. Note that these classifiers

could employ an arbitrary multi-class classification method.

After empirical evaluation we settle down with the random

forest, which gives the best performance in our context.

In what follows, we would specify the set of features

engaged by these classifiers used in our LCT model.

Figure 5: An example of completion fields of detected filamentary frag-

ments.

Confidence map Completion fields

Augmented confidence map Matting result

Figure 6: An example of restoring the missing connections between

the detected filamentary fragments and main trunk using the matting tech-

nique.

2.2.3 Features for the LCT Model

Once the tree structure of the LCT model is settled, we are

left to decide the classifiers utilized in our LCT model. Two

types of features are considered by these classifiers, namely

the filamentary-structure features and the low-level features,

as below.

Denote s a fragment candidate, for any pixel in the frag-

ment x ∈ s, let c(x) be its confidence score. As displayed

in Fig.2(c), shapes of the filamentary fragments often pre-

serve the filamentary structures as being thin and elongated,

while the background fragments could be of arbitrary shape.

This motivates us to consider the following features that

capture such shape discriminations: Given a fragment can-

didate s, we first approximate a typical filament fragment by

an ellipse, and denote as two features the major and minor

axes of the surrogate ellipse, f1(s) and f2(s). Second, the

size of the 2D area as well as the accumulative confidence

score of the fragment are calculated, as f3(s) =
∑

x∈s 1,

f4(s) =
∑

x∈s c(x). Third, ideally a true filament fragment

would connect naturally with the main branch (i.e. partial

segmentation) by a smooth curvilinear inter-connecter. This

inspires us to consider using the Dijkstra’s algorithm to find

a path Ss,b, a sequence of connected pixels along the possi-

ble path, with each denoted as x′, that attaches the fragment

candidate s back to current main branch b by minimizing

the objective function of
∑

x
′∈Ss,b

− log(c(x′)). Intuitively

this amounts to encouraging a short path along high confi-

dence pixels. For the obtained optimal path, its objective

value becomes f5(s) and its average curvature is f6(s).

In addition to above filamentary-structure features, we

also consider the low-level raw features. For images, the

Kernel Boost Features [6] are utilized as follows. The Ker-

nel Boost method is firstly trained on the set of filamentary

structured training images to yield discriminative convolu-

tional filters. The obtained filters are then applied on a 2D

image patch centered on the specific fragment candidate s,

which gives the kernel boost features as the filtered output.

Similar to the filament token parameters discussed previ-

ously, the patch size for 2D images are fixed to 31× 31.

2.3. Step Two: Restoring the Filamentary Frag
ments

Given the filamentary fragments detected from step one,

in step two, we elaborate on connecting these isolated frag-

ments back to the main trunk. The leading difficulty here

lies in the fact that in the confidence map, the detected fil-

ament fragments and current partial segmentation are spa-

tially separated by an uninformative zone of weak confi-

dence values. We thus consider the incorporation of com-

pletion fields in the augmented confidence map that pro-

vides prior information on how to join the fragments back

to the main trunk. This is followed by a novel utilization

of the matting technique to connect fragments back to the

main trunk.

2.3.1 Augmented Confidence Map by the Completion

Fields

The concept of completion fields is inspired by the work

of [28] and others on contour completion, and is used in our

context to provide prior information to guide the joining of

the detected fragments back to the main trunk. The fila-

ment tokens not only group similar filamentary fragments

into distinct token types according to their shapes and tex-
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tures, they also provide a good opportunity to establish the

completion fields as follows. Each token type corresponds

to a group of similar filamentary fragments from the train-

ing dataset, while each fragment is associated with an im-

age patch and its corresponding ground-truth label patch,

where background and foreground pixels are labeled as 0

and 1, respectively. Now, for each token type, its comple-

tion field is obtained by taking the average of these label

patches. As a result, each detected filamentary fragment

from test run has its completion field as illustrated in Fig. 5.

Moreover, a global completion field is obtained by sum-

ming up all the local completion fields from individual fil-

amentary fragments. In other words, if a pixel is contained

in the completion fields of multiple fragments, its score in

the global completion field is obtained by simply adding

up all the individual scores. In this manner, when there

are a sequence of nearby but broken fragments presented

along a missing filament, the influence of their completion

fields can be considered altogether, as illustrated in Fig. 6.

The augmented confidence map c̄(·) is therefore realized by

adding up the confidence map and the global completion

field scores for each pixel, where both the confidence map

and the global completion field are normalized separately

to within the range of [0, 1]. For any pixel x, its augmented

confidence score is c̄(x).

2.3.2 Restoring the Filamentary Fragments by Mat-

ting

Denote the known background and foreground pixels as 0

and 1, respectively, and the rest as unknown. At this mo-

ment, many of the foreground pixels are known, includ-

ing the detected filamentary fragments and the main trunk

as discussed previously. A number of background pixels

can also be obtained by those with sufficiently low con-

fidence scores (below τl). It remains to decide on the

rest unknown pixels. Interestingly our current situation re-

sembles that of the seemingly unrelated matting problem,

which aims at finding the α values of the unknown pixels

as a composition of foreground and background layers, i.e.

I(x) = α(x)F (x) + (1 − α
(

x)
)

B(x), where x indexes

a particular pixel location, α(x) ∈ [0, 1] is its alpha matte

value, F (·) and B(·) denote the foreground and background

layers, respectively. The filamentary fragments can then be

connected back to the main trunk by imposing a threshold

δ to categorize into foreground and background pixels as

those with α values ≥ δ and < δ, respectively.

While a wide range of image matting techniques can

be applied, in this paper we adopt the KNN matting

of [7], where the α values are computed as α = (Lc +
λM)−1(λv). Let n denote the number of pixels in an im-

age. Here M is a n×n diagonal matrix, with M(i, i) = 1 if

pixel i is a foreground or a background pixel, and M(i, i) =

0 otherwise. v is a binary vector of pixels corresponding to

the known foregrounds and backgrounds. The clustering

Laplacian Lc = (D − K)T (D − K), where K = [kij ] a

n × n affinity matrix with each entry kij being the affin-

ity value between pixels i and j, D = [dij ] is the diago-

nal degree matrix of K, dii =
∑

j kij . λ > 0 is a scalar

constant. With a slight abuse of notation, the affinity ma-

trix in our context is defined as kij = c̄(i) + c̄(j), where

i and j index two pixel locations that are within the com-

pletion fields and with their augmented confidence scores

above τm ∈ (τl, τh), a scalar threshold.

(1)

(2)

(3)

(4)

(5)

(6)

Figure 7: Performance on retinal datasets of DRIVE and STARE

datasets. The first two columns correspond to DRIVE and the last two

correspond to STARE. For each dataset, first column shows the full image

while the second column presents a detailed zoom-in view of a cropped

region. From top-down, rows are in the following order: (1) Input im-

age. (2) Ground-truth annotation. (3) our method based on [6]. (4) Kernel

Boost [6]. (5) OOF [13]. (6) IUWT [2]. True positive is denoted in black,

false positive in cyan, and false negative in green.
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