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Abstract

Photometric stereo (PS) is an established technique for

high-detail reconstruction of 3D geometry and appearance.

To correct for surface integration errors, PS is often com-

bined with multiview stereo (MVS). With dynamic objects,

PS reconstruction also faces the problem of computing op-

tical flow (OF) for image alignment under rapid changes in

illumination. Current PS methods typically compute optical

flow and MVS as independent stages, each one with its own

limitations and errors introduced by early regularization. In

contrast, scene flow methods estimate geometry and motion,

but lack the fine detail from PS. This paper proposes photo-

geometric scene flow (PGSF) for high-quality dynamic 3D

reconstruction. PGSF performs PS, OF, and MVS simulta-

neously. It is based on two key observations: (i) while image

alignment improves PS, PS allows for surfaces to be relit to

improve alignment; (ii) PS provides surface gradients that

render the smoothness term in MVS unnecessary, leading to

truly data-driven, continuous depth estimates. This synergy

is demonstrated in the quality of the resulting RGB appear-

ance, 3D geometry, and 3D motion.

1. Introduction

High-resolution geometry and appearance are invaluable

assets in the movie and video game industries—the quality

of a 3D model can make or break the perceived realism of

an animation. When it comes to facial models, people have

a remarkably low threshold for inaccuracies, and even the

smallest details in geometry and appearance are important.

In this paper, we improve the resolution and detail in the

geometry and appearance of dynamic 3D capture.

Photometric stereo (PS) is a well-established technique

to capture high-detail geometry and appearance of real ob-

jects, observed under different illumination conditions [32],

see Fig. 1(a). PS is generally used to enhance the detail of

an initial low-resolution geometry, most often obtained via

multiview stereo (MVS) [11,21]. Although computed inde-

pendently, PS and MVS are complementary in nature: PS

provides continuous depth values (fine detail) even for tex-
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Figure 1. Photogeometric scene flow (PGSF) provides high-

quality 3D surface, motion and RGB albedo by simultaneously

solving photometric stereo (PS), multiview stereo (MVS) and op-

tical flow (OF). The usual combination of color-PS and MVS (c)

corrects for low-frequency shape errors, but presents undercon-

strained shadow regions (e.g., nose) and monochromatic albedo.

tureless 3D surfaces, but suffers from integration drift (rela-

tive depth); MVS provides absolute depth, but its estimates

suffer from matching errors and spatial regularization fur-

ther smoothes fine detail, Fig. 1(b). When PS and MVS are

computed independently, this synergy is under-explored [8].

In dynamic PS reconstruction, object motion introduces

the additional need to align images taken under significant

changes in illumination, which remains a challenging prob-

lem. Typically, optical flow (OF) [7,16] is used as a third in-

dependent component, with residual misalignment leading

to loss of detail [31]. As an alternative, 3-color PS [13, 33]

was proposed to instantaneously capture 3D geometry in

a single frame—with spectrally multiplexed illumination.

However, 3-color PS requires objects to be monochromatic

and also suffers from self-shadowing (missing data) [14].

Fig. 1(c) is an example color-PS+MVS reconstruction.

In this paper, we propose a new approach for dynamic

3D capture that simultaneously computes PS, MVS, and OF

in a coupled way. Key to this approach is the fact that PS not
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only benefits from, but also facilitates the computation of

MVS and OF. Together, the solution of these subproblems

provides highly detailed 3D geometry, appearance, and in-

stantaneous 3D motion (flow). We therefore refer to this ap-

proach as photogeometric scene flow (PGSF). As in scene

flow [26], PGSF provides dense estimates of 3D motion

but at an increased level of geometric detail and with re-

lightable, full-color object appearance, see Fig. 1(d).

The following sections introduce PGSF using a simple

acquisition setup with two cameras and 9 directional lights

of 3 different colors, Fig. 2. These lights are multiplexed

in time and spectrally to provide an adequate sampling of

the instantaneous appearance of a deforming object, within

a short interval of only 3 video frames. This minimizes the

need for motion compensation, while avoiding overly re-

stricting the reflectance model due to insufficient sampling

(the main problem in 3-color PS). We then present a PGSF

algorithm for dynamic 3D reconstruction and motion com-

pensation under rapid, controlled changes in illumination.

Our new approach is general and can be used with large-

scale lighting setups (e.g. [11, 20]) and can adopt the latest

advances in optical flow theory and stereo matching.

2. Related Work

As the literature on PS, MVS, OF and scene flow is ex-

tensive, we focus on previous work closely related to PGSF.

A common approach to video-based, dynamic 3D cap-

ture is MVS [10, 36]. Because disparity (depth) is am-

biguous in regions with little salient texture, MVS results

are regularized and do not capture the finer surface details.

Thus, state-of-the-art approaches [6, 25] introduce photo-

metric constraints to partially recover missing detail and im-

prove visual perception of results. However, variability in

illumination is insufficient to define surface gradients (nor-

mal vectors) unambiguously. The recovered appearance

also includes undesirable baked-in shading effects. Simi-

larly, scene flow algorithms [26] are based on MVS [4] and

RGB-D sensors [23] that provide reduced geometry detail.

In standard, time-multiplexed PS, a single camera can

be used to obtain multiple images of a static object under

varying illumination [32]. These images are used to re-

cover the relative depth of pixels revealing the fine detail of

3D surfaces, even for uniform or texture-free surfaces that

are impossible to correspond in multiple views. As abso-

lute depth is unconstrained, reconstructions can present ar-

bitrary low-frequency (surface depth integration error) de-

formations. Thus, PS is often used to enhance the detail

of low-resolution geometry obtained independently with

MVS [11, 27]. The benefits of simultaneous computation

of MVS and PS are investigated in [8], but only for static

objects. To make the problem convex, their method approx-

imates depth as a piecewise linear function.

When dynamic objects, such as faces, are captured with

time-multiplexed PS, image alignment is required before re-

construction. As the brightness constancy assumption of

most image alignment methods does not hold in PS, this

task becomes quite challenging. Existing work on image

alignment under varying illumination often assume grad-

ual, global linear change [2], small relative motion of a

light source [5,35], or other shading variations [29] that are

relatively small when compared to illumination changes in

PS. For face capture, [30] interleaves special, uniformly-lit

tracking frames in the acquisition process; OF is computed

between pairs of tracking frames and interpolated for the

frames in between, assuming linear motion. Artifacts result-

ing from this linear assumption are demonstrated by [31].

They propose the use of complementary illumination con-

ditions that can be simultaneously aligned with a tracking

frame without interpolation. Their method is limited to

large-scale gradient illumination and can suffer from self-

shadowing in smaller setups. The need for special tracking

frames also limits temporal resolution.

Color PS with 3 colored lights does not require mo-

tion compensation because it can capture three different

illumination conditions simultaneously on an RGB sen-

sor [13, 14, 33]. However, 3-color PS cannot recover both

surface gradients and RGB albedo (only three inputs for

five unknowns). Also, unavoidable self-shadow areas re-

main underconstrained, require regularization, and intro-

duce reconstruction artifacts due to concave-convex ambi-

guities [15]. Most variants of 3-color PS only address the

former problem, imposing a monochromaticity constraint

on the observed object. An undesired consequence is that

light calibration becomes object-dependent, more difficult

to compute [28], and incorrect when chromaticity varies.

In [1], the chromaticity assumption is relaxed to piecewise

constant, but the method may introduce segmentation errors

on objects with complex appearance variations over space

and time. A simple solution used in [18] is to cover a face

in white make-up, at the cost of losing fine surface detail

and the ability to recover face albedo.

Other color PS approaches avoid the monochromatic-

ity assumption by acquiring more than one image (3 color

channels). In [12], a 6-channel image is obtained in a single

shot using two cameras aligned with a beam splitter, color

filters, and six spectrally distinct light sources. The spectral

distribution of surface reflectance is assumed to lie within

a low-dimensional space, requiring scene-dependent cali-

bration to alleviate reconstruction bias. In [17], color- and

time-multiplexed illumination are combined to reconstruct

dynamic surfaces. Image alignment is done via OF in the

red channel, with constant frontal illumination. Their ap-

proach uses five colored lights and yields surface estimates

only at every other video frame. In both [12] and [17], as in

3-color PS, the object is illuminated from only three direc-

tions and the shadow problem remains unaddressed.
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Figure 2. Binocular PGSF with time- and color-multiplexed illumination: (a) setup of camera and colored light sources used to acquire

9 illumination conditions in every 3-frame video interval; (b) the PGSF reconstruction problem is formulated as recovering the unknown

surface at time tw and its backwards and forwards motion within the 3-frame sliding window. These unknowns are parameterized by two

depthmaps and four 2D flow fields. Images are aligned by warping in the opposite direction of motion.

In contrast to the previous work, we propose a simple

setup that combines color and time multiplexing to obtain

a richer sampling on 9 different directions of illumination.

This setup reduces not only shadowing, but also the amount

of regularization and motion compensation. Photometric

calibration is simple and does not require any additional as-

sumption on diffuse reflectance. PGSF addresses the prob-

lem of image alignment under rapid changes in illumination

without requiring assumptions such as linear motion. The

result is full RGB albedo, 3D geometry and motion without

penalizing spatial detail or temporal resolution.

3. Photogeometric Scene Flow

This section presents an overview of photogeometric

scene flow (PGSF) for dynamic, detailed 3D reconstruction

from video. As discussed above, current state-of-the-art ap-

proaches correspond to combinations of PS, MVS and OF.

Most often, these difficult subproblems are solved indepen-

dently, with results combined in a final stage that accumu-

lates intermediate errors. Here, we propose PGSF as the si-

multaneous and synergistic solution of PS, MVS, and OF to

overcome challenges faced when these problems are solved

independently. While it is already clear that PS benefits

from OF alignment and from absolute depth from MVS,

these relations are in fact mutually beneficial because:

1. PS equips MVS with knowledge of surface gradients,

allowing for truly data-driven stereo matching with

continuous disparities and no need for spatial regular-

ization, which could over-smooth detail (Sec. 4).

2. PS facilitates OF under rapid, significant changes in il-

lumination; knowledge of illumination and surface ge-

ometry (normal vectors) can be used to relight input

images to closely resemble each other (Sec. 5).

These relations are dependent on an adequate sampling

of surface reflectance to unambiguously determine surface

orientation and RGB appearance in each video frame. This

requirement guides our choice of reflectance model and ac-

quisition setup described next.

3.1. PGSF With 9 Colored Lights

The capture of dynamic events, such 3D facial expres-

sions, is restricted by the short time window to sample in-

stantaneous surface geometry and appearance. For this rea-

son, we adopt a simple Lambertian model with five de-

grees of freedom (normal and RGB albedo). Thus, high-

lights (and shadows) are outliers that must be detected and

ignored [3]. Highlights can also be filtered out by cross-

polarizing light and sensor [20].

To fit the Lambertian model each surface patch (pixel)

must be observed under, at least, five different illumination

directions. Using color- and time-multiplexed illumination,

at least two consecutive video frames (6 color channels) are

required. This fact introduces the need for adequate motion

compensation. Due to self-shadows, just two frames are of-

ten insufficient to provide enough samples for many surface

patches of non-convex shapes – i.e., regions around the nose

and cheeks on a human face. Furthermore, using a minimal

number of observations makes the results more sensitive to

sensor noise and other imaging artifacts. For these reasons,

we propose a setup with 9 colored light sources to sample

reflectance under a richer set of directional illuminations,

within a 3-frame time window. This setup is illustrated in

Fig. 2(a). Note that there is no increase in the complexity

of 3-frame PGSF reconstruction, versus the 2-frame case,

since motion compensation is only required between adja-

cent frames (now for both directions in time). The result is

more robust 3D reconstruction.
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For our experiments, we built a light rig with 9 small

clusters of LEDs of a single color—referred to using la-

bels red, green, or blue—approximately matching the peak

wavelength sensitivity of each of the RGB camera sensors.

These sources are mounted in a nearly circular configu-

ration, Fig. 2(a). We define triplets of RGB sources Tt
(e.g., Tt ∈ {[5, 6, 1], [2, 9, 4], [8, 3, 7]}) that are turned on

one at a time in a sequential manner, each for the duration

of one video frame (please see supplementary video). These

RGB triplets can be defined in different ways. However, it is

important to spread out light sources (in space and time) to

minimize the intersection of their shadow areas on the target

object. This substantially reduces missing data (shadows).

As MVS is required to avoid low-frequency deforma-

tions in PS reconstruction, we consider the simplest case

with a binocular setup in which the two synchronized cam-

eras observe the target object under the same illumination

condition, which varies over time. Setups with more than

two cameras are possible. Video acquisition is performed

in a dark studio, with negligible ambient light. An example

3-frame window is shown in Fig. 2(b).

The goal of PGSF is to recover the 3D geometry and

RGB albedo of the surface at each time t. This task is

performed sequentially with a 3-frame sliding window cen-

tered at the current frame tw in both camera views. To

make full use of the photometric constraints in this time

window, image alignment is required. Thus, we need to

estimate (and remove) the surface motion between frames

(tw, tw +1) and (tw, tw − 1). Due to nonrigid motion, pos-

sible (dis)occlusion and the discrete nature of images, we

differentiate the backwards motion (tw, tw − 1) from the

forwards motion (tw − 1, tw). Alignment warps images in

the direction opposite to motion, Fig. 2(b).

The unknowns are encoded simply and effectively on the

image grids of each view, left (L) and right (R), at time tw.

The 3D surface is parameterized by depthmaps ZL and ZR.

Forwards and backwards 3D motions are each encoded by

two 2D optical flow fields (one per view) with cross-view

consistency constraints to account for the extra degree of

freedom. The forwards/backwards vector fields are denoted

VLF , VRF , and VLB , VRB .

Formally, the PGSF objective is defined in terms of the

unknowns Xc = {Zc,VcB ,VcF }, for c ∈ {L,R}, as

min
XL,XR

Esurf (XL,XR) + Eflow(XL,XR). (1)

These surface and flow energies represent, respectively, the

mutually beneficial relations between PS-MVS (Sec. 4) and

PS-OF (Sec. 5). They are minimized in a coupled manner,

and in alternation, following the common coarse-to-fine ap-

proach with Gaussian image pyramids (Sec. 6).

Estimating the parameters above requires establishing

pixel correspondences across views and time. With rapid

and significant changes in illumination, the traditional as-

sumption of constant pixel brightness needs to be revised.

A more adequate assumption is that RGB albedo remains

locally consistent over time (i.e., adjacent video frames).

To derive the surface and flow energies, we first formally

define our Lambertian model and basic albedo constraint.

3.2. Albedo Consistency

Consider a Lambertian surface patch p with RGB albedo

αp = [αr
p, α

g
p, α

b
p] and normal vector np at a particular

time t. This patch is simultaneously illuminated by three

directional lights of distinct colors (Tt). Let lr, lg , and

lb ∈ R
3 denote their light direction vectors scaled by the

corresponding light intensity. For simplicity of notation,

we represent normal and light vectors within a camera’s lo-

cal coordinate system; time and camera indices are omitted

when defining general relations.

After acquisition and demultiplexing of color channels,

this patch is depicted by an RGB pixel ip = [irp, i
g
p, i

b
p]

T ,

ip = M
−1̂

ip =





αr
p

αg
p

αb
p









l
T
r

l
T
g

l
T
b



np, (2)

where îp has the captured, multiplexed color values. Each

column of the mixing matrix M = [mr,mg,mb] ∈ R
3×3

encodes the RGB color of a light source as seen by the cam-

era (including color space transformations applied by cam-

era firmware). Here, the illumination parameters M, lr, lg ,

and lb are pre-calibrated for each triplet of LEDs, Tt, using

a white diffuse sphere and a mirrored sphere as in [14]. The

unknowns in (2) are therefore αp and np.

To derive the albedo consistency constraint, consider a

pair of corresponding pixels (p, p′) from two images (1, 2)
across time or cameras; their values are denoted iλp,1 and

iλp′,2, for each color channel λ ∈ {r, g, b}. From (2), we

define the basic pairwise image relation in PGSF as:

αλ
p,1 ≈ αλ

p′,2 ⇒
iλp,1

lTλ,1np

≈
iλp′,2

lTλ,2np

. (3)

To simplify notation, λ is omitted in the following sections,

but we always consider pairs of the same color channel.

When the two images are taken from adjacent time instants

(t, t′), this relation also implies the standard assumption in

time-multiplexed PS, np,t ≈ np′,t′ . This assumption corre-

sponds to an as-rigid-as-possible, small motion model that

is common in optical/scene flow methods [26].

The relation in (3) is completely defined by motion (cor-

respondence) and geometry (np), without actually requiring

explicit albedo estimates. This fact eliminates a large num-

ber of unknowns, since per-pixel RGB albedo does not need

to be computed before the PGSF solution has been obtained.
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4. Surface Reconstruction

The surface estimation step performs simultaneous PS

and binocular stereo, given current estimates of the 2D

flows (pre-aligned images). Thus, surface estimation at time

t can be formulated as a rigid problem once motion has been

removed from the input.

Next, we derive the unary and binary surface energy

terms on Xc. To emphasize that flows are treated as con-

stants during surface update, we express these energies only

in terms of depthmap Zc in each camera view,

Esurf (XL,XR) =
∑

c

EPS(Zc) + β1ESM (Zc) (4)

+ β2ELR(ZL,ZR).

These are the PS, stereo matching (SM), and LR-

consistency energies, weighted by constants β1 and β2.

To take full advantage of the complementary nature of

PS and MVS, we express all constraints directly in terms

of Zc, avoiding the need to compute intermediary results

(normal vectors and disparity) that can propagate errors.

4.1. Photometric Stereo

Consider the basic PGSF relation in (3) and a pair of

images t, t′ ∈ {tw − 1, tw, tw + 1} in the same view c.

Cross-multiplying denominators, we rewrite (3) as

(
ip′t′ l

T
t − iptl

T
t′

)

︸ ︷︷ ︸

[aptt′ bptt′ cptt′ ]

np ≈ 0, (5)

where the constant vector [aptt′ bptt′ cptt′ ] is orthogonal to

np. We now relate this linear constraint to the gradient field

∇zp of depth values zp = Zc(up, vp), where (up, vp) are

the coordinates of pixel p on the image grid of view c.

In perspective PS, we have

np ∝





1
1

up

fc

vp

fc

1
fc





[
∇zp
zp

]

, (6)

where fc is the focal distance of camera c and ∝ denotes up-

to-scale equality. Equation (6) is an equivalent expression

of a proof given in [22]. Since (5) is up-to-scale, it can be

combined with (6) to yield the photometric energy term

EPS(Zc) =
∑

p,t,t′,λ










aptt′

bptt′

cptt′





T 



1
1

up

fc

vp

fc

1
fc





[
∇zp
zp

]






2

,

(7)

over all pixels p and pairs of images (t, t′). Because ∇zp is

a linear function of Zc (using forwards derivatives), mini-

mizing (7) is equivalent to solving a large and sparse linear

system of (homogeneous) equations on the depthmap Zc.

Considering all pairs of images in our 3-frame window,

and all three RGB color channels (λ), we obtain 6 indepen-

dent constraints on the 2 degrees of freedom of np (or ∇zp).

This overconstraining is welcome since, in practice, the

effective number of constraints may be reduced by self-

shadowing in one or more color channels. It is still pos-

sible for a very small number of pixels to present only 1 or

0 pairwise constraints (e.g., points near the nostril cavities

on a face). Only in these rare cases we adopt the curvature-

based anisotropic regularization method of [15].

4.2. Stereo Matching

The basic PGSF constraint is now applied to image pairs

(c, c′) at the same time t but across views (to simplify no-

tation, we also omit the time index t). Both images present

illumination Tt, so we can drop the denominators in (3). Let

up = (up, vp) denote pixel coordinates of p. At each time

instant in the 3-frame window, we have

ic(up) = ic′(up′), up′ = up +wp, (8)

where wp ∈ R
2 is a displacement along the epipolar line.

By expressing wp = w(zp) in terms of zp = Zc(up) and

camera calibration, we can perform stereo matching while

solving directly for the depthmap. The result is a set of non-

linear constraints on Zc that need to be enforced iteratively.

Nevertheless, this task can be incorporated naturally into the

coarse-to-fine optimization strategy of PGSF (Sec. 6).

The advantages of this approach are two-fold: (i) we

directly triangulate continuous depth values; (ii) the new

stereo matching constraints on zp (absolute depth) and the

previous photometric constraints on ∇zp (relative depth,

detail) complement each other naturally; they render it un-

necessary to define a spatial smoothness term for stereo

matching (which could blur surface detail).

The 2D displacement vector along to the epipolar line is

w(zp) =
A[uT

p 1]T zp + b

cT [uT
p 1]T zp + d

− up, Mc′c =

[
A b

c
T d

]

, (9)

Mc′c ∈ R
3×4 is the projection matrix from view c to c′

(including camera intrinsincs), and A ∈ R
2×3.

The stereo matching energy term is then defined as

ESM (Zc) =
∑

p,t,λ

(ic′(up + w(zp))− ic(up))
2
γp, (10)

where γp is an occlusion weight based on foreshortening

and consistency of pairs (p, p′) given by ZL and ZR [34].

During optimization, the energy ESM (Zc) is linearized

about the current estimate of each zp. This yields a linear

data term (gradient) for the surface update ∆zp,

∇ic′(up′)TJw∆zp = ic(up)− ic′(up′), (11)

where Jw ∈ R
2 is the Jacobian of w(zp) in (9).
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4.3. Cross­View Consistency

To enforce that ZL and ZR provide a consistent repre-

sentation for those surface patches that are visible on both

views, we define the additional energy term,

ELR =
∑

c 6=c′

∑

p

(cT [uT
p 1]T zcp + d− zc

′

p )2γp, (12)

based on the projection matrices Mc′c ∈ R
3×4 in (9). By

optimizing ZL and ZR in an alternated manner, the energy

in (12) can also be treated as a set of linear constraints.

5. Motion Estimation

Motion estimation is used to achieve image alignment,

over time, in each camera view. This step is based on a

novel algorithm for the challenging task of performing OF

under significant illumination change. The key idea is to

take advantage of known surface normals, and illumination

Tt, to relight input images to closely resemble each other.

The OF algorithm derived next follows the seminal, vari-

ational approach of [16], with spatial regularization to ad-

dress the aperture problem. We assume albedo consistency

over time, rather than brightness. The general method that

we propose can be adapted easily to take advantage of new

developments in optical/scene flow estimation.

Given the current depthmap estimates, we define the

unary and binary motion energies in terms of the four 2D

flows Vcδ , for c ∈ {L,R} and direction δ ∈ {B,F},

Eflow(XL,XR) =
∑

c,δ

EPF (Vcδ) + β3ETV (Vcδ) (13)

+
∑

δ

β4ESF (VLδ,VRδ),

where β3 and β4 are fixed energy weights. The energy

ETV (·) represents the typical total variation (TV-L1) reg-

ularizer [7]. The photometric flow (PF) and scene flow (SF)

energies are derived as follows.

5.1. Photometric Flow

Consider the basic relation (3) for pairs of images in the

same view (index c is omitted) but at different times, with

t = tw and t′ ∈ {tw − 1, tw + 1}. With known illumi-

nation and normal vectors, we can pre-compute the shad-

ing terms in the denominators as the scalar spt = l
T
t np.

From (3), we obtain the relighting relation,

spt′it(up) ≈ sptit′(up′), up′ = up +wp, (14)

defined between two cross-shaded images. The coordinates

of up′ are defined by the 2D flow wp ∈ Vcδ . Note that the

surface shading terms are already defined on the image grid

at time t. Thus, only the image at time t′ is warped.

st st0it it0 st0it stit0

a) Input images b) Shading c) Cross-shaded

Figure 3. Relighting for photometric flow: images (a) are cross-

shaded (c) to closely match each other during alignment. Shading

values (b) are given by the surface estimate and light calibration.

This relighting relation can be understood as using the

known illumination patterns Tt and Tt′ to relight it and i′t
to closely match each other. Figure 3 illustrates this oper-

ation. Clearly, relighting facilitates OF computation since

differences in illumination are canceled. Another desirable

effect is down-weighting the influence of pixels with small

shading values (i.e., high photometric foreshortening).

Note that shadowed pixels represent missing input and,

thus, cannot be relit. Fortunately, a pixel is rarely shadowed

in more than one color channel with spectrally multiplexed

illumination. The flow wp is still constrained by the other

channels and, to a lesser extent, by the TV-L1 regularizer.

The relighting relation incorporates an image warp (the

2D flow field wp) and reflects a fundamental fact: image

alignment improves photometric reconstruction, and vice

versa. For wp ∈ Vcδ , the photometric flow energy is the

alignment error between cross-shaded images,

EPF (Vcδ) =
∑

p,λ

(sptit′(up +wp)− spt′it(up))
2. (15)

As in standard optical flow, the image indexing operation

results in nonlinear energy minimization. Linearizing (15)

yields one constraint (per pixel) on the update ∆wp ∈ R
2,

spt∇it′(up′)∆wp + (sptit′(up′)− spt′it(up)) ≈ 0. (16)

This result is a new, relit form of the space-time gradient in

standard OF. In fact, one can demonstrate that it represents

a weighted version of the constraint
dαp

dt ≈ 0.

5.2. Scene Flow

The scene flow energy term encourages the 2D flows VLδ

and VRδ to be consistent with a 3D vector field, thus fixing

the extra degree of freedom (per pixel) in the parameteriza-

tion, which could introduce errors into the estimated flows.

Let (p, p′) denote corresponding pixels across views, de-

fined by the depthmaps Zc. Their 2D flow vectors are

wp ∈ VLδ and wp′ ∈ VRδ . These pixels and displacements

are related by the projection Mc′c in (9), yielding

wp′ =
A[(up +wp)

T 1]T (zp + wz
p) + b

cT [(up +wp)T 1]T (zp + wz
p) + d

− up′ . (17)
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Algorithm 1 Photogeometric Scene Flow (PGSF)

1: for 3-frame window at time t do

2: Detect shadows, highlights on the 6 input images.

3: Compute a Gaussian pyramid for each image.

4: Initialize: V{L,R}{B,F}← nil,

Z{L,R}← orthographic PS at coarsest resolution (pyramid top).

5: for each pyramid level, from coarse to fine, do

6: Update flows V{L,R}B in alternation, given Z{L,R} (Sec. 5).

7: Update flows V{L,R}F in alternation

8: Align images it−1, it, it+1 in each view.

9: Update depthmaps Z{L,R} in alternation (Sec. 4).

10: end for

11: Compute final RGB albedo at time t using Eq. (2).

12: end for

Equation (17) provides two linear constraints on the un-

known scalar wz
p , the third component of the 3D scene flow

represented in view c. Therefore, after each update of the

2D flows, we can compute wz
p and enforce that the 2D flows

are consistent with the projections of this single 3D scene

flow. We enforce this consistency symmetrically, on both

views, by minimizing the scene flow energy

ESF (VLδ,VRδ) =
∑

p,c

‖wp − P(wp′ , wz
p′)‖22γp. (18)

The projection P(·) is as in (17); γp is the occlusion weight.

6. Optimization

To handle large in-plane motion at high resolutions, both

surface and motion are estimated in a coarse-to-fine man-

ner using Gaussian image pyramids [9]. We adopt block-

coordinate descent optimization and update surface and mo-

tion estimates (Sec. 4 and 5) in alternation. In addition,

within these steps, the unknowns on the L- and R-views

are also updated in alternation for proper minimization of

binary energy terms, as listed in Algorithm 1.

The total number of alignment-reconstruction steps is

controlled by the number of levels of the Gaussian pyra-

mids. We define the number of levels using a typical 75%
image down-sampling factor. At the coarsest level, flow

is initialized as nil and the initial surface is obtained from

orthographic PS (initial absolute depth is given by cam-

era calibration). Surface reconstruction uses off-the-shelf

solvers for large and sparse systems of linear equations

(e.g., Mathworks Matlab solvers). Our flow algorithm is

based on [7, 19] and uses successive over-relaxation.

Reconstruction is performed with a 3-frame sliding win-

dow. It can optionally reuse the result from the previous

window to initialize and constrain the subsequent solution,

but this is not required. Initial shadow detection is carried

out by simple image thresholding [14]. Highlights are re-

moved with polarizers [20] or detected as outliers (those

image values that are substantially brighter than the rest of

the 16-bit sensor data). The resulting mask of outliers is

used to discard all constraints involving those observations.
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Figure 4. Evaluation on 300-frame synthetic dataset with ground-

truth motion and geometry (left) versus the baseline method BL.

7. Experimental Results

Our capture setup (Fig. 2) has two cameras located cen-

trally, in front of the light rig, and 1.5 meters from the target

object. We use two Sony PMW-F55 cameras (with 85mm

lenses) that output 16-bit raw (linear) color at 4k resolu-

tion (4096 × 2160), 60Hz. LED light multiplexing is pro-

grammed in an Arduino microcontroller. It is synchronized

to camera framerate via an interrupt pin connected to a v-

sync decoder and a genlock generator.

For quantitative evaluation, this setup was simulated in

software (Maya). A synthetic, 300-frame stereo sequence

(5 seconds, 1k resolution) was rendered for a face model

animated by real, marker-based motion capture [24]. Dense

ground-truth motion and geometry were also generated. We

compare the performance of PGSF to that of a baseline al-

gorithm (BL) with a pipeline of three independent steps:

(i) OF with linear motion interpolation [30]; (ii) our MVS

method with spatial regularization [15]; and (iii) PS with

precomputed MVS [21]. Error distributions for estimated

motion, surface, and normal vectors are given in Fig. 4.

The coupled solutions of PGSF are clearly more accurate,

with major improvements concentrated on the 80th-100th

error percentiles (due to localized face deformation). For

both methods, larger surface errors occur at the sides of

the face, where occlusion prevents MVS triangulation. Mo-

tion and geometry are also less accurate inside the mouth,

due to occlusion and shadowing.

Figure 5 shows the 3D reconstruction for a real video

frame acquired with the setup above. Since ground-truth

geometry is not available for these real images, we validate

surface estimates against the popular PMVS algorithm [10].

PMVS is a state-of-the-art MVS method based on patch

matching and does not require regularization, providing 3D

point clouds instead of dense depthmaps. On a total of

100 video frames, PGSF and PMVS estimate depth consis-

tently within fractions of a millimeter (Fig. 5, supplemen-

tary file). However, PMVS triangulates spurious points at

highly foreshortened areas; its results also lack the fine de-
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(a) (b) (c) (d)

Figure 5. Detailed 3D reconstruction (b) for a real frame (a) in

the supplementary video. The profile view (c) is overlaid with the

PMVS point cloud, showing close agreement (median depth dif-

ference of 0.13 mm, 90th percentile at 0.5 mm, over 100 frames);

(d) recovered surface overlaid on image of a profile camera, used

only for evaluation (offset added to ease visualization).

PGSF[6] MVS only [6] mesoscopic

[6]

PGSF

Figure 6. Comparison with the MVS method [6]: results at similar

resolution, same actor and expression, different capture sessions.

tail of PGSF. To further assess depth accuracy on real data,

Fig. 5(d) shows the reconstructed face overlaid on the actual

silhouette seen by a profile camera, used for validation only.

Figure 6 shows the improved detail provided by PGSF

for eyes, brows, nostrils and lips in comparison to [6].

With uniform illumination, [6] does not recover shading-

free albedo; mesoscopic detail is heuristic and not metri-

cally correct (changes in albedo are mistaken as geometry).

The superior accuracy of cross-shaded photometric flow

on real images is also shown in the supplementary video,

which compares the residual motion in images aligned by

PGSF and by the method in [30]. The supplementary video

further demonstrates the quality of the geometry, appear-

ance and 3D motion estimated by PGSF (Fig. 7).

The ability of PGSF to reconstruct highly detailed sur-

faces with different materials and colors is demonstrated in

Fig. 8. An important advantage of PGSF over 3-color PS

is the ability to capture temporal variability of RGB albedo,

Fig. 9. Full color albedo is a valuable asset in building re-

alistic models for animation and for post-production. For

instance, relighting is a frequent task faced by artists during

movie and game production in which previously captured

performances have to be adapted to match a certain environ-

ment. The application of PGSF in the realistic relighting of

captured 3D faces is illustrated in the supplementary video.

Figure 7. RGB albedo, 3D geometry and estimated motion com-

ponent orthogonal to the image plane (see supplementary video).

(a) (b) (c)

Figure 8. Detailed reconstruction of surfaces with different mate-

rials, colors and skin tones: (a)-(b) depthmaps ZL and ZR (with

RGB albedo), (c) recovered surface ZR with and without albedo.

Figure 9. Captured temporal variation in RGB albedo due to

changes in blood flow (with polarizers, see supplementary video).

8. Conclusion

We propose photogeometric scene flow (PGSF) as the

simultaneous and synergistic estimation of PS, MVS, and

OF for high-detail, dynamic 3D capture. PGSF couples the

solution of these three difficult subproblems to overcome

the challenges faced when they are solved independently.

To unambiguously capture surface normals and full RGB

albedo in each video frame, we propose a simple binocu-

lar setup with 9 colored lights that are spectrally and tem-

porally multiplexed within a period of three frames. This

design minimizes shadows and also the amount of motion

compensation. Nevertheless, the key ideas in PGSF are gen-

eral and also applicable in more complex acquisition setups

with a different number of cameras and light sources.
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